Advertisement

Mast Cells as Therapeutic Target in Cancer

  • Domenico RibattiEmail author
Chapter

Abstract

Reducing mast cells number is a therapeutic approach in mastocytosis and other diseases in which mast cells number is increased. The number of mast cells may be reduced by the targeted induction of apoptosis or by blocking their recruitment, migration and differentiation.

References

  1. Akin C, Metcalfe DD (2004) The biology of kit in disease and the application of pharmacogenetics. J Allergy Clin Immunol 114:13–19CrossRefGoogle Scholar
  2. Aoyama T, Ino Y, Ozeki M et al (1984) Pharmacological studies of FUT-175, nanafamstat mesilate. I. Inhibition of protease activity in vitro and in vivo experiments. Jap J Pharmacol 35:203–227CrossRefGoogle Scholar
  3. Arock M, Valent P (2010) Pathogenesis, classification and treatment of mastocytosis: state of the art in 2010 and future perspectives. Expert Rev Hematol 3:497–516CrossRefGoogle Scholar
  4. Bowrey PF, King J, Magarey C et al (2000) Histamine, mast cells and tumour cell proliferation in breast cancer: does preoperative cimetidine administration have an effect? Br J Cancer 82:167–170CrossRefGoogle Scholar
  5. Brandi G, Tavolari S, de Rosa F et al (2012) Antitumoral efficacy of the protease inhibitor gabexate mesilase in colon cancer cells harbouring KRAS, BRAFand PIK3CA utations. PLoS ONE 7:e41374CrossRefGoogle Scholar
  6. Cerny-Reiter S, Rabenhorst A, Stefanzl G et al (2015) Long-term treatment with imatinib results in profound mast cell deficiency in Ph+ chronic myeloid leukemia. Oncotarget 6:3071–3084CrossRefGoogle Scholar
  7. Dubreuil P, Letard S, Ciufolini M et al (2009) Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS ONE 4:e7258CrossRefGoogle Scholar
  8. Erba F, Fiorucci L, Pascarella S et al (2001) Selective inhibition of human mast cell tryptase by gabexate mesylase, an antiproteinase drug. Biochem Pharmacol 61:271–276CrossRefGoogle Scholar
  9. Fujiwara Y, Furukawa K, Haruki K et al (2011) Nafamostat mesilate can prevent adhesion, invasion and peritoneal dissemination of pancreatic cancer thorough nuclear factor kappa-B inhibition. J Hepatobiliary Pancreat Sci 18:731–739CrossRefGoogle Scholar
  10. Gleixner KV, Mayerhofer M, Sonneck K (2007) Synergistic growth-inhibitory effects of two tyrosine kinase inhibitors, dasatinib and PKC412, on neoplastic mast cells expressing the D816V-mutated oncogenic variant of KIT. Haematologica 92:1451–1459CrossRefGoogle Scholar
  11. Gotlib J (2006) KIT mutations in mastocytosis and their potential as therapeutic targets. Immunol Allergy Clin North Am 26:575–592CrossRefGoogle Scholar
  12. Gotlib J, Berube C, Growney JD et al (2005) Activity of the tyrosine kinase inhibitor PKC412 in a patient with mast cell leukemia with the D816V KIT mutation. Blood 106:2865–2870CrossRefGoogle Scholar
  13. Gounaris E, Erdman SE, Restaino C et al (2007) Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci U S A 104:19977–19982CrossRefGoogle Scholar
  14. Huang B, Lei Z, Zhang GM et al (2008) SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 112:1269–1279CrossRefGoogle Scholar
  15. Irani AA, Nilsson G, Ashman LK et al (1995) Dexamethasone inhibits the development of mast cells from dispersed human fetal liver cells cultured in the presence of recombinant human stem cell factor. Immunology 84:72–78PubMedPubMedCentralGoogle Scholar
  16. Jeong HJ, Oh HA, Nam SY et al (2013) The critical role of mast cell-derived hypoxia-inducible factor-1α in human and mice melanoma growth. Int J Cancer 132:2492–2501CrossRefGoogle Scholar
  17. Johnson D, Seeldrayers PA, Weiner HL (1988) The role of mast cells in demyelination. 1. Myelin proteins are degraded by mast cell proteases and myelin basic protein and P2 can stimulate mast cell degranulation. Brain Res 444:195–198CrossRefGoogle Scholar
  18. Kiwamoto T, Kawasaki N, Paulson JC et al (2012) Siglec-8 as a drug ale target to treat eosinophil and mast cell-associated conditions. Phramacol Ther 135:327–336CrossRefGoogle Scholar
  19. Kneilling M, Hultner L, Pichler BJ et al (2007) Targeted mast cell silencing protects against joint destruction and angiogenesis in experimental arthritis in mice. Arthritis Rheum 56:1806–1816CrossRefGoogle Scholar
  20. Le Cesne A, Blay JY, Bui BN et al (2010) Phase II study of oral masitinib mesilate in imatinib-naïve patients with locally advanced or metastatic gastro-intestinal stromal tumour (GIST). Eur J Cancer 46:1344–1351CrossRefGoogle Scholar
  21. London CA, Hannah AL, Zadovoskaya R et al (2003) Phase I dose-escalating study of SU11654, a small molecule receptor tyrosine kinase inhibitor, in dogs with spontaneous malignancies. Clin Cancer Res 9:2755–2768PubMedGoogle Scholar
  22. Menegatti E, Bolognesi M, Scalia S et al (1986) Gabexate mesylate inhibition of serine proteases: thermodynamic and computer-graphic analysis. J Pharmaceutical Sci 75:1171–1174CrossRefGoogle Scholar
  23. Metcalfe DD (2008) Mast cells and mastocytosis. Blood 112:946–956CrossRefGoogle Scholar
  24. Mitry E, Hammel P, Deplanque G et al (2010) Safety and activity of masitinib in combination with gemcitabine in patients with advanced pancreatic cancer. Cancer Chemother Pharmacol 66:395–403CrossRefGoogle Scholar
  25. Molica S, Montillo M, Ribatti D et al (2007) Intense reversal of bone marrow angiogenesis after sequential fludarabine-induction and c-consolidation therapy in advanced chronic lymphocytic leukemia. Haematologica 92:1367–1374PubMedGoogle Scholar
  26. Moqbel R, Walsh GM, Macdonald AJ et al (1986) Effect of disodium cromoglycate on activation of human eosinophils and neutrophils following reversed (anti-IgE) anaphylaxis. Clin Allergy 16:73–83CrossRefGoogle Scholar
  27. Nordlund JJ, Askenase PW (1983) The effect of histamine, antihistamines, and a mast cell stabilizer on the growth of cloudman melanoma cells in DBA/2 mice. J Invest Dermatol 81:28–31CrossRefGoogle Scholar
  28. Peter B, Cerny-Reiterer S, Hadzijusufovic E et al (2014) The pan-Bcl-2 blocker obatoclax promotes the expression of puma, noxa, and Bim mRNA and induces apoptosis in neoplastic mast cells. J Leukoc Biol 95:95–104CrossRefGoogle Scholar
  29. Pipkorn U, Hammarlund A, Enerbäck L (1989) Prolonged treatment with topical glucorticoids results in an inhibition of the allergen-induced weal-and-flare response and a reduction in skin mast cell numbers and histamine content. Clin Exp Allergy 19:19–25Google Scholar
  30. Pittoni P, Tripodo C, Piconese S et al (2011a) Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers. Cancer Res 71:5987–5997CrossRefGoogle Scholar
  31. Pittoni P, Piconese S, Tripodo C et al (2011b) Tumor-intrinsic and -extrinsic roles of c-kit: mast cells as the primary off-target of tyrosine kinase inhibitors. Oncogene 30:757–769CrossRefGoogle Scholar
  32. Prenen H, Cools J, Mentens N et al (2006) Efficacy of the kinase inhibitor SU11248 against gastrointestinal stromal tumor mutants refractory to imatinib mesylate. Clin Cancer Res 12:2622–2627CrossRefGoogle Scholar
  33. Pryer NK, Lee LB, Zadovaskaya R et al (2003) Proof of target for SU11654: inhibition of KIT phosphorylation in canine mast cell tumors. Clin Cancer Res 9:5729–5734Google Scholar
  34. Ramakrishnan G, Jagan S, Kamaraj S et al (2009) Silymarin attenuated mast cell recruitment thereby decreased the expressions of matrix metalloproteinases-2 and 9 in rat liver carcinogenesis. Invest New Drugs 27:233–240CrossRefGoogle Scholar
  35. Reber LL, Marichal T, Galli SJ (2012) New models for analyzing mast cell functions in vivo. Trends Immunol 33:613–625CrossRefGoogle Scholar
  36. Ribatti D, Crivellato E (2012) Mast cells, angiogenesis, and tumour growth. Biochim Biophys Acta 1822:2–8CrossRefGoogle Scholar
  37. Ribatti D, Crivellato E (2014) Mast cell ontogeny: an historical overview. Immunol Lett 159:11–14CrossRefGoogle Scholar
  38. Samoszuk M, Corwin MA (2003a) Mast cell inhibitor cromolyn increases blood clotting and hypoxia in murine breast cancer. Int J Cancer 107:159–163CrossRefGoogle Scholar
  39. Samoszuk M, Corwin MA (2003b) Acceleration of tumor growth and peri-tumoral blood clotting by imatinib mesylate (gleevec). Int J Cancer 106:647–652CrossRefGoogle Scholar
  40. Santos DD, Hatjiharissi E, Tournilhac O et al (2006) CD52 is expressed on human mast cells and is a potential therapeutic target in Waldenstrom’s macroglobulinemia and mast cell disorders. Clin Lymphoma Myeloma 6:478–483CrossRefGoogle Scholar
  41. Schittenhelm MM, Shiraga S, Schroeder A et al (2006) Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies. Cancer Res 66:473–481CrossRefGoogle Scholar
  42. Schneweiss MA, Peter Barbara, Blatt Katharina et al (2016) The multi-kinase inhibitor DCC-2618 inhibits proliferation and survival of neoplastic mast cells and other cell types involved in systemic mastocytosis. Blood 128:1965Google Scholar
  43. Shah NP, Lee FY, Luo R (2006) Dasatinib (BMS-354825) inhibits KITD816V, an imatinib-resistant activating mutation that triggers neoplastic growth in most patients with systemic mastocytosis. Blood 108:286–291CrossRefGoogle Scholar
  44. Smith SJ, Piliponsky AM, Rosenhead F et al (2002) Dexamethasone inhibits maturation, cytokine production and Fc epsilon RI expression of human cord blood-derived mast cells. Clin Exp Allergy 32:906–913CrossRefGoogle Scholar
  45. Soucek L, Lawlor ER, Soto D (2007) Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med 13:1211–1218CrossRefGoogle Scholar
  46. Ustun C, DeRemer DL, Akin C (2011) Tyrosine kinase inhibitors in the treatment of systemic mastocytosis. Leuk Res 35:1143–1152CrossRefGoogle Scholar
  47. von Bubnoff N, Gorantla SHP, Kancha RK et al (2005) The systemic mastocytosis-specific activating ckit mutation D816V can be inhibited by the tyrosine kinase inhibitor AMN107. Leukemia 19:1670–1671CrossRefGoogle Scholar
  48. Yoon WH, Jung YJ, Kim TD et al (2004) Gabexate mesilate inhibits colon cancer growth, invasion, and metastasis by reducing matrix metalloproteinases and angiogenesis. Clin Cancer Res 10:4517–4526CrossRefGoogle Scholar
  49. Zhang T, Finn DF, Barlow JW et al (2016) Mast cell stabilizers. Eur J Pharmacol 778:158–168CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biomedical Sciences, Neurosciences and Sensory OrgansUniversity of BariBariItaly

Personalised recommendations