Mast Cells in Tumor Angiogenesis and Lymphangiogenesis

  • Domenico RibattiEmail author


The ability of mast cells to store angiogenic growth factors and their cell-specific release of preformed factors into the surrounding tissue by piecemeal degranulation (Dvorak and Kissel 1991) indicate that their granules are a depot for endothelial survival factors.


  1. Aaltomaa S, Lipponen P, Papinaho S et al (1993) Mast cells in breast cancer. Anticancer Res 13:785–788PubMedGoogle Scholar
  2. Alessandri G, Raju KS, Gullino PM (1984) Characterization of a chemoattractant for endothelium induced by angiogenic effectors. Cancer Res 44:1579–1584PubMedPubMedCentralGoogle Scholar
  3. Bashkin P, Razin E, Eldor A et al (1990) Degranulating mast cells secrete an endoglycosidase which degrades heparin sulfate in subendothelial extracelluar matrix. Blood 75:2204–2212PubMedPubMedCentralGoogle Scholar
  4. Blair RJ, Meng H, Marchese MJ et al (1997) Tryptase is a novel, potent angiogenic factor. J Clin Invest 99:2691–2700PubMedPubMedCentralCrossRefGoogle Scholar
  5. Brideau G, Makinen MJ, Elamaa H et al (2007) Endostatin overexpression inhibits lymhangiogenesis and lymph node metastasis in mice. Cancer Res 67:11528–11535PubMedCrossRefPubMedCentralGoogle Scholar
  6. Carlini MJ, Dalurzo MC, Lastiri JM et al (2010) Mast cell phenotypes and microvessels in non-small cell lung cancer and its prognostic significance. Hum Pathol 41:697–705PubMedCrossRefPubMedCentralGoogle Scholar
  7. Castellot JJ, Karnovsky MJ, Spiegelman BM (1982) Differentiation-dependent stimulation of neovascularization and endothelial cell chemotaxis by 3T3 adipocytes. Proc Natl Acad Sci U S A 79:5597–5601PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cawley EF, Hoch-Ligeti C (1961) Association of tissue mast cells and skin tumors. Arch Dermatol 83:92–96PubMedCrossRefPubMedCentralGoogle Scholar
  9. Clinton M, Long WF, Williamson FB et al (1988) Effect of the mast cell activator compound 48/80 and heparin on angiogenesis in the chick chorioallantoic membrane. Int J Microcirc Clin Exp 7:315–326PubMedPubMedCentralGoogle Scholar
  10. Coussens LM, Web Z (1996) Matrix metalloproteinases and the development of cancer. Chem Biol 3:895–904PubMedCrossRefPubMedCentralGoogle Scholar
  11. Crivellato E, Nico B, Vacca A et al (2002) Mast cell heterogeneity in B-cell non-Hodgkin’s lymphomas: an ultrastructural study. Leuk Lymphoma 43:2201–2205CrossRefGoogle Scholar
  12. Dabbous M, Walker R, Haney L et al (1986) Mast cells and matrix degradation at sites of tumor invasion in rat mammary adenocarcinoma. Br J Cancer 54:459–465PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dabiri S, Huntsman D, Makretsov N et al (2004) The presence of stromal mast cells identifies a subset of invasive breast cancers with a favorable prognosis. Mod Pathol 17:690–695PubMedCrossRefGoogle Scholar
  14. Della Rovere F, Granata A, Familiari D et al (2007) Mast cells in invasive ductal breast cancer different: behavior in high and minimum hormone-receptive cancers. Anticancer Res 27:2465–2471PubMedPubMedCentralGoogle Scholar
  15. Dethlefsen SM, Matsuura N, Zetter BR (1994) Mast cell accumulation at sites of murine tumor implantation: implications for angiogenesis and tumor metastasis. Invasion Metastasis 14:395–408PubMedPubMedCentralGoogle Scholar
  16. Di Girolamo N, Wakefiled D (2000) In vitro and in vivo expression of interstitial collagenase/MMP-1 by human mast cells. Dev Immunol 7:131–142Google Scholar
  17. Dunn MR, Montogomery POB (1957) A study of the relationship of mast cells to carcinoma in situ of the uterine cervix. Lab Invest 6:542–546PubMedPubMedCentralGoogle Scholar
  18. Dvorak AM (1992) Basophils and mast cells: piecemeal degranulation in situ and ex vivo: a possible mechanism for cytokine-induced function and disease. Immunol Ser 57:169–271PubMedPubMedCentralGoogle Scholar
  19. Dvorak AM, Kissell S (1991) Granule changes of human skin mast cells characteristic of piecemeal degranulation and associated with recovery during wound healing in situ. J Leukoc Biol 49:197–210PubMedCrossRefPubMedCentralGoogle Scholar
  20. Ehrlich P (1879) Beiträge zur Kenntnis der Granulierten Bindegewebszellen und der Eosinophilen Leukozyten. Arch Anat Physiol 3:166–169Google Scholar
  21. Elpek GO, Gelen T, Aksoy NH et al (2001) The prognostic relevance of angiogenesis and mast cells in squamous cell carcinoma of the oesophagus. J Clin Pathol 54:940–944PubMedPubMedCentralCrossRefGoogle Scholar
  22. Fang KC, Wolters PJ, Steinhoff M et al (1999) Mast cell expression of gelatinase A and B is regulated by kit ligand and TGF-Β. J Immunol 162:5528–5535PubMedPubMedCentralGoogle Scholar
  23. Fisher ER, Pasik SM, Rockette M et al (1989) Prognostic significance of eosinophils and mast cells in rectal cancer: finding from the national surgical adjuvant breast and bowel project (protocol R-01). Hum Pathol 20:159–163PubMedCrossRefPubMedCentralGoogle Scholar
  24. Fleischmann A, Schlomm T, Kollermann J et al (2009) Immunological microenvironment in prostate cancer: high mast cell densities are associated with favourable tumor characteristics and good prognosis. Prostate 69:976–981PubMedCrossRefPubMedCentralGoogle Scholar
  25. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931–10934Google Scholar
  26. Fukushima N, Satoh T, Sano M et al (2001) Angiogenesis and mast cell in non hodgkin’s lymphoma; a strong correlation in angioimmunoblastic T-cell lymphoma. Leuk Lymphoma 42:709–720PubMedCrossRefPubMedCentralGoogle Scholar
  27. Glowacki J, Milltan JB (1982) Mast cells in hemangiomas and vascular malformation. Pediatrics 70:48–51PubMedPubMedCentralGoogle Scholar
  28. Gruber BL, Marchese MJ, Suzuki K et al (1989) Synovial procollagenase activation by human mast cell tryptase dependence upon matrix metalloproteinase 3 activation. J of Clin Invest 84:1657–1662CrossRefGoogle Scholar
  29. Gruber BL, Marchese MJ, Kaw R (1995) Angiogenic factors stimulate mast cell migration. Blood 86:2488–2493PubMedPubMedCentralGoogle Scholar
  30. Hagiwara K, Khaskhely NM, Uezato H et al (1999) Mast cell “densities” in vascular proliferation: a preliminary study of pyogenic granuloma, portwine stain, cavernous hemangioma, cherry angioma, kaposi’ sarcoma, and malignant hemangioendothelioma. J Dermatol 26:577–586PubMedCrossRefPubMedCentralGoogle Scholar
  31. Hartveit F (1981) Mast cells and metachromasia in human breast cancer: their occurrence, significance and consequence. A preliminary report. J Pathol 134:7–11PubMedCrossRefPubMedCentralGoogle Scholar
  32. Hartveit F, Thoresen S, Tangen M et al (1984) Mast cell changes and tumour dissemination in human breast carcinoma. Invasion Metastasis 4:146–155PubMedPubMedCentralGoogle Scholar
  33. Henderson WR, Chi EY, Yong EC et al (1981) Mast cell-mediated tumor cell cytotoxicity: role of the peroxidase system. J Exp Med 153:520–533PubMedCrossRefPubMedCentralGoogle Scholar
  34. Hopsu VK, Glenner GG (1963) A histochemical enzyme kinetic system applied to the trypsin-like amidase and esterase activity in human mast cells. J Cell Biol 17:503–520PubMedPubMedCentralCrossRefGoogle Scholar
  35. Imada D, Shijubo N, Kojima H et al (2000) Mast cells correlate with angiogenesis and poor outcome in stage I lung adenocarcinoma. Eur Respir J 15:1087–1093PubMedCrossRefPubMedCentralGoogle Scholar
  36. Ishai-Michaeli R, Svahn CM, Chaiek-Shaul T et al (1992) Importance of size and sulphation of heparin in release of basic fibroblast growth factor from the vascular endothelium and extracellular matrix. Biochemistry 31:2080–2088PubMedCrossRefPubMedCentralGoogle Scholar
  37. Jakobson AM, Hahnenberger R (1991) Antiangiogenic effecto heparin and other sulphated glycosaminoglycans in the chick embryo chorioallantoic membrane. Pharmacol Toxicol 69:122–126PubMedCrossRefPubMedCentralGoogle Scholar
  38. Johansson A, Rudolfsson S, Hammarsten P et al (2010) Mast cells are novel independent prognostic markers in prostate cancer and represent a target for therapy. Am J Pathol 177:1031–1041PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kessler DA, Langer RS, Pless NA et al (1976) Mast cells and tumor angiogenesis. Int J Cancer 18:703–709PubMedCrossRefPubMedCentralGoogle Scholar
  40. Kops SK, Van Loveren H, Rosenstein RW et al (1984) Mast cell activation and vascular alterations in immediate hypersensitivity-like reactions induced by a T-cell-derived antigen-binding factor. Lab Invest 50:421–434PubMedPubMedCentralGoogle Scholar
  41. Majewski S, Kaminski MJ, Szmurlo A et al (1984) Inhibition of tumour-induced angiogenesis by systemically administered protamine sulfate. Int J Cancer 33:831–833PubMedCrossRefPubMedCentralGoogle Scholar
  42. Marks RM, Roche WR, Czerniecki M et al (1986) Mast cell granules cause proliferation of human microvascular endothelial cells. Lab Invest 55:289–294PubMedPubMedCentralGoogle Scholar
  43. Melillo RM, Guarino V, Avilla E et al (2010) Mast cells have a protumorigenic role in human thyroid cancer. Oncogene 29:6203–6215PubMedCrossRefPubMedCentralGoogle Scholar
  44. Molica S, Vacca A, Crivellato E et al (2003) Tryptase-positive mast cells predict clinical outcome of patients with early B-cell chronic lymphocytic leukemia. Eur J Haematol 71:137–139PubMedCrossRefPubMedCentralGoogle Scholar
  45. Muramatsu M, Katada J, Hattori M et al (2000a) Chymase as a proangiogenic factor; a possible involvement of chymase-angiotensin-dependent pathway in the hamster sponge angiogenesis model. J Biol Chem 275:5545–5552PubMedCrossRefPubMedCentralGoogle Scholar
  46. Muramatsu M, Katada J, Hattori M et al (2000b) Chymase mediates mast cell-induced angiogenesis in the hamster sponge granuloma. Eur J Pharmacol 402:181–191PubMedCrossRefPubMedCentralGoogle Scholar
  47. Nakanishi H, Oguri K, Takenaga K et al (1994) Differential fibrotic stromal responses of host tissue to low- and high-metastatic cloned lewis lung carcinoma cells. Lab Invest 70:324–332PubMedPubMedCentralGoogle Scholar
  48. Nielsen HJ, Hansen U, Christensen IJ et al (1999) Independent prognostic value of eosinophil and mast cell infiltration in colorectale cancer tissue. J Pathol 189:487–495PubMedCrossRefPubMedCentralGoogle Scholar
  49. Nonomura N, Takayama H, Nishimura K et al (2007) Decreased number of mast cells infiltrating into needle biopsy specimens leads to a better prognosis of prostate cancer. Br J Cancer 97:952–956PubMedPubMedCentralCrossRefGoogle Scholar
  50. Norrby K (1985) Evidence of mast cell histamine being mitogen in intact tissue. Agents Actions 16:287–290PubMedCrossRefPubMedCentralGoogle Scholar
  51. Norrby K (1993) Heparin and angiogenesis: a low molecular weight fraction inhibits and a high-molecular weight fraction stimulates angiogenesis systematically. Haemostasis 23:144–149Google Scholar
  52. Norrby K, Sorbo J (1992) Heparin enhances angiogenesis by a systemic mode of action. Int J Exp Pathol 73:1451–1455Google Scholar
  53. Norrby K, Woolley D (1993) Role of mast cells in mitogenesis and angiogenesis in normal tissue and tumour tissue. Adv Biosci 89:71–116Google Scholar
  54. Norrby K, Jakobsson A, Sorbo J (1986) Mast-cell-mediated angiogenesis: a novel experimental model using the rat mesentery. Virchows Arch B Cell Pathol Incl Mol Pathol 52:195–206PubMedCrossRefGoogle Scholar
  55. Poole TJ, Zetter BR (1983) Mast cell chemotaxis to tumor derived factors. Cancer Res 43:5857–5862PubMedPubMedCentralGoogle Scholar
  56. Qu Z, Liebler JM, Powers MR et al (1995) Mast cells are a major source of basic fibroblast growth factor in chronic inflammation and cutaneous hemangioma. Am J Pathol 147:564–573PubMedPubMedCentralGoogle Scholar
  57. Raiput AB, Turbin DA, Cheang MC et al (2008) Stromal mast cells in invasive breast cancer are a marker of favourable prognosis: a study of 4.444 cases. Breast Cancer Res Treat 107:249–257CrossRefGoogle Scholar
  58. Raza SL, Cornelius LA (2000) Matrix metalloproteinases: pro- and anti-angiogenic activities. J Investig Dermatol Symp Proc 5:47–54PubMedCrossRefGoogle Scholar
  59. Ribatti D, Roncali L, Nico B et al (1987) Effects of exogenous heparin on the vasculogenesis of the chorioallantoic membrane. Acta Anat (Basel) 130:257–263CrossRefGoogle Scholar
  60. Ribatti D, Contino R, Tursi A (1988) Do mast cells intervene in the vasoproliferative processes of the rheumatoid synovitis? J Submicrosc Cytol Pathol 20:635–637PubMedPubMedCentralGoogle Scholar
  61. Ribatti D, Nico B, Vacca A et al (1998) Do mast cells help to induce angiogenesis in B-cell non-hodgkin’s lymphomas? Br J Cancer 77:1900–1906PubMedPubMedCentralCrossRefGoogle Scholar
  62. Ribatti D, Vacca A, Nico B et al. (1996) Angiogenesis spectrum in the stroma of B cell non Hodgkin’s lymphoma. An immunohistochemical and ultrastructural study. Eur J Haematol 56:45–53CrossRefGoogle Scholar
  63. Ribatti D, Vacca A, Nico B et al (1999) Bone marrow angiogenesis and mast cell density increase simultaneously with progression of human multiple myeloma. Br J Cancer 79:451–455PubMedPubMedCentralCrossRefGoogle Scholar
  64. Ribatti D, Vacca A, Marzullo A et al (2000) Angiogenesis and mast cell density with tryptase activity increase simultaneously with pathological progression in B-cell non-hodgkin’s lymphomas. Int J Cancer 85:171–175PubMedCrossRefPubMedCentralGoogle Scholar
  65. Ribatti D, Crivellato E, Candussio L et al (2001a) Mast cells and their secretory granules are angiogenic in the chick embryo chorioallantoic membrane. Clin Exp Allergy 31:602–608CrossRefGoogle Scholar
  66. Ribatti D, Vacca A, Nico B et al (2001b) The role of mast cells in tumour angiogenesis. Brit J Haematol 115:514–521CrossRefGoogle Scholar
  67. Ribatti D, Polimeno G, Vacca A et al (2002) Correlation of bone marrow angiogenesis and mast cells with tryptase activity in myelodysplastic syndromes. Leukemia 16:1680–1684PubMedCrossRefPubMedCentralGoogle Scholar
  68. Ribatti D, Vacca A, Ria R et al (2003a) Neovascularization, expression of fibroblast growth factor-2, and mast cell with tryptase activity increase simultaneously with pathological progression in human malignant melanoma. Eur J Cancer 39:666–765PubMedCrossRefPubMedCentralGoogle Scholar
  69. Ribatti D, Molica S, Vacca A et al (2003b) Tryptase-positive mast cells correlate positively with bone marrow angiogenesis in B-cell chronic lymphocytic leukemia. Leukemia 17:1428–1430PubMedCrossRefPubMedCentralGoogle Scholar
  70. Ribatti D, Nico B, Crivellato E et al (2007a) Macrophages and tumor angiogenesis. Leukemia 21:2085–2089CrossRefGoogle Scholar
  71. Ribatti D, Finato N, Crivellato E et al (2007b) Angiogenesis and mast cells in human breast cancer sentinel lymph node with and without micrometastasis. Histopathology 51:837–842CrossRefGoogle Scholar
  72. Roche WR (1985) Mast cells and tumor angiogenesis: the tumor-mediated release of an endothelial growth factor from mast cells. Int J Cancer 36:721–728PubMedCrossRefPubMedCentralGoogle Scholar
  73. Romanoff AL (1960) The avian embryo: structural and functional development. MacMillan, New YorkGoogle Scholar
  74. Sawatsubashi M, Yamada T, Fukushima N et al (2000) Association of vascular endothelial growth factor and mast cells with angiogenesis in laryngeal squamous cell carcinoma. Virchows Arch 436:243–248PubMedCrossRefPubMedCentralGoogle Scholar
  75. Sayama S, Iozzo RV, Lazarus GS et al (1987) Human skin chymotrypsin-like proteinase chymase. Subcellular localization to mast cell granules and interaction with heparin and other glycosaminoglycans. J Biol Chem 262:6808–6815PubMedPubMedCentralGoogle Scholar
  76. Schwartz LB, Lewis RA, Austen KF (1981) Tryptase from human pulmonary mast cells. Purification and Characterization. J Biol Chem 256:11939–11943Google Scholar
  77. Sorbo J, Jakobson A, Norrby K (1994) Mast cell histamine is angiogenic through receptors for histamine 1 and histamine 2. Int J Exp Pathol 75:43–50PubMedPubMedCentralGoogle Scholar
  78. Starkey JR, Crowle PK, Taubenberger S (1988) Mast-cell-deficient W/Wv mice exhibit a decreased rate of tumor angiogenesis. Int J Cancer 42:48–52PubMedCrossRefPubMedCentralGoogle Scholar
  79. Taipale J, Lohi J, Saarinen J et al (1995) Human mast cell chymase and leukocyte elastase release latent transforming growth factor beta-1 from the extracellular matrix of cultured human epithelial and endothelial cells. J Biol Chem 270:4689–4696PubMedCrossRefPubMedCentralGoogle Scholar
  80. Takanami I, Takeuchi K, Naruke M (2000) Mast cell density is associated with angiogenesis and poor prognosis in pulmonary adenocarcinoma. Cancer 88:2686–2692PubMedCrossRefPubMedCentralGoogle Scholar
  81. Tan SY, Fan Y, Luo HS et al (2005) Prognostic significance of cell infiltrations of immunosurveillance in colorectal cancer. World J Gastroenterol 11:1210–1214PubMedPubMedCentralCrossRefGoogle Scholar
  82. Taylor S, Folkman J (1982) Protamine is an inhibitor of angiogenesis. Nature 297:307–312PubMedCrossRefPubMedCentralGoogle Scholar
  83. Thompson WD, Brown FI (1987) Quantitation of histamine-induced angiogenesis in the chick chorioallantoic membrane: mode of action of histamine is indirect. Int J Microcirc Clin Exp 6:343–357PubMedPubMedCentralGoogle Scholar
  84. Thompson WD, Campbell R, Evans T (1995) Fibrin degradation and angiogenesis: quantitative analysis of the angiogenic response in the chick chorioallantoic membrane. J Pathol 145:27–37CrossRefGoogle Scholar
  85. Thorton SC, Mueller SM, Levine EM (1983) Human endothelial cells: use of heparin in cloning and long term cultivation. Science 222:623–625CrossRefGoogle Scholar
  86. Tomita M, Matsuzaki Y, Onitsuka T (1999) Correlation between mast cells and survival rates in patients with pulmonary adenocarcinoma. Lung Cancer 26:103–109PubMedCrossRefPubMedCentralGoogle Scholar
  87. Tomita M, Matsuzaki Y, Onitsuka T (2000) Effect of mast cells on tumor angiogenesis in lung cancer. Ann Thorac Surg 69:1686–1690PubMedCrossRefPubMedCentralGoogle Scholar
  88. Toth T, Toth-Jakatics R, Jimi S et al (2000) Cutaneous malignant melanoma: correlation between neovascularization and peritumor accumulation of mast cells overexpressing vascular endothelial growth factor. Hum Pathol 31:955–960CrossRefGoogle Scholar
  89. Vacca A, Ribatti D, Roncali L et al (1994) Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 87:503–508PubMedCrossRefPubMedCentralGoogle Scholar
  90. Vacca A, Ribatti D, Presta M et al (1999) Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 93:3064–3073PubMedPubMedCentralGoogle Scholar
  91. Vincent AJ, Zhang J, Ostor A et al (2000) Matrix metalloproteinase-1 and-3 and mast cells are present in the endometrium of women using progestin-only contraceptives. Hum Reprod 15:123–130PubMedCrossRefPubMedCentralGoogle Scholar
  92. Vlodavski J, Elkin M, Rappo A et al (2000) Mammalian heparanase as a mediator of tumor metastasia and angiogenesis. Isr Med Assoc J 2:37–45Google Scholar
  93. Vlodavsky J, Eldor A, Haimovitz-Friedman A et al (1992) Expression of haparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis 12:112–127PubMedPubMedCentralGoogle Scholar
  94. Welsh TJ, Green RH, Richardson D et al (2005) Macrophage and mast cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J Clin Oncol 23:8959–8967PubMedCrossRefGoogle Scholar
  95. Westphal E (1891) Uber mastzellen. Hirschwald Press, BerlinGoogle Scholar
  96. Wilks JW, Scott PS, Urla LK et al (1991) Inhibition of angiogenesis with combination treatments of angiostatic steroids and suramin. Int J Radiat Biol 60:73–77PubMedCrossRefPubMedCentralGoogle Scholar
  97. Wintroub BU, Kaempfer CE, Schechter NM et al (1986) A human lung mast cell chymotrypsin-like enzyme. Identification and partial characterization. J Clin Invest 77:196–201PubMedPubMedCentralCrossRefGoogle Scholar
  98. Xiang M, Gu Y, Zhao F et al (2010) Mast cell tryptase promotes breast cancer migration and invasion. Oncol Rep 23:615–619PubMedPubMedCentralGoogle Scholar
  99. Yano H, Kinuta M, Tateishi H et al (1999) Mast cell infiltration around gastric cancer cells correlates with tumor angiogenesis and metastasis. Gastric Cancer 2:26–32PubMedCrossRefPubMedCentralGoogle Scholar
  100. Yayon A, Klagsbrun M, Esko JD et al (1991) Cell surface heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64:841–848PubMedCrossRefPubMedCentralGoogle Scholar
  101. Zudaire E, Martinez A, Garayoa M et al (2006) Adrenomedullin is a cross-talk molecule that regulatestumor and mast cell function during human carcinogenesis. Am J Pathol 168:280–291PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biomedical Sciences, Neurosciences and Sensory OrgansUniversity of BariBariItaly

Personalised recommendations