Advertisement

Next-Generation Artificial Intelligence Techniques for Satellite Data Processing

  • Neha SisodiyaEmail author
  • Nitant Dube
  • Priyank Thakkar
Chapter
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 24)

Abstract

In this chapter, we have tried to cover majority of the artificial intelligence (AI) techniques that has contributed to the remote sensing community in the form of satellite data processing, right from the basics to advanced level. A wide variety of applications and enormous amount of satellite data growing exponentially has critical demands in speedup, cost cutting, and automation in its processing while maintaining the accuracy. We have started with the need of AI techniques and evolution made for revolutionary changes in remote sensing and other areas. Subsequently, the traditional ML techniques and its limitations, advancements, and need of introducing DL in various applications are reviewed with what is the present requisites and expectation from AI community to overcome the issues and meet the upraised demands by emerging applications. We concluded that ML and DL technology should integrate with big data technologies and cloud computing to meet the future needs.

Keywords

Satellite images AI Machine learning Deep learning Hyperspectral Multispectral 

References

  1. 1.
    Camps-Valls G (2009) Machine learning in remote sensing data processing. IEEE international workshop on machine learning for signal processing, pp 1–6, September 2009Google Scholar
  2. 2.
  3. 3.
    Dev S, Wen B, Lee YH, Winkler S (2016) Machine learning techniques and applications for ground-based image analysis. CoRR abs/1606.02811. http://arxiv.org/abs/1606.02811
  4. 4.
    Bay H, Ess A, Tuytelaars T, Gool LV (2008) Speeded-up robust features (SURF). Comput Vision Image Understand 110(3):346–359CrossRefGoogle Scholar
  5. 5.
    Ball JE, Anderson DT, Chan CS (2017) A comprehensive survey of deep learning in remote sensing: theories, tools and challenges for the community. CoRR abs/1709.00308. http://arxiv.org/abs/1709.00308 CrossRefGoogle Scholar
  6. 6.
    Radhika K, Varadarajan S (2018) A neural network based classification of satellite images for change detection applications. Cogent Engineering 5(1):1–9CrossRefGoogle Scholar
  7. 7.
    Bilgin G, Erturk S, Yildirim T (2008) Unsupervised classification of hyperspectral-image data using fuzzy approaches that spatially exploit membership relations. IEEE Geosci Rem Sens Lett 5(4):673–677CrossRefGoogle Scholar
  8. 8.
    Cannon RL, Dave JV, Bezdek JC, Trivedi MM (1986) Segmentation of a thematic mapper image using the fuzzy c-means clustering algorithm. IEEE Trans Geosc Rem Sens GE-24(3):400–408CrossRefGoogle Scholar
  9. 9.
    Bandyopadhyay S, Maulik U, Mukhopadhyay A (2007) Multiobjective genetic clustering for pixel classification in remote sensing imagery. IEEE Trans Geosc Rem Sens 45(5):1506–1511CrossRefGoogle Scholar
  10. 10.
    Tyagi M, Bovolo F, Mehra AK, Chaudhuri S, Bruzzone L (2008) A context-sensitive clustering technique based on graph-cut initialization and expectation-maximization algorithm. IEEE Geosc Rem Sens Lett 5(1):21–25CrossRefGoogle Scholar
  11. 11.
    Bachmann CM, Donato TF, Lamela GM, Rhea WJ, Bettenhausen MH, Fusina RA, Du Bois KR, Porter JH, Truitt BR (Oct 2002) Automatic classification of land cover on smith island, va, using hymap imagery. IEEE Trans Geosc Rem Sens 40(10):2313–2330CrossRefGoogle Scholar
  12. 12.
    Marcal ARS, Castro L (2005) Hierarchical clustering of multispectral images using combined spectral and spatial criteria. IEEE Geosc Rem Sens Lett 2(1):59–63CrossRefGoogle Scholar
  13. 13.
    Sarkar A, Biswas MK, Kartikeyan B, Kumar V, Majumder KL, Pal DK (2002) A MRF model-based segmentation approach to classification for multispectral imagery. IEEE Trans Geosc Rem Sens 40(5):1102–1113CrossRefGoogle Scholar
  14. 14.
    Awad M, Chehdi K, Nasri A (2007) Multicomponent image segmentation using a genetic algorithm and artificial neural network. IEEE Geosc Rem Sens Lett 4(4):571–575CrossRefGoogle Scholar
  15. 15.
    Heas P, Datcu M (2005) Modeling trajectory of dynamic clusters in image time-series for spatio-temporal reasoning. IEEE Trans Geosc Rem Sens 43(7):1635–1647CrossRefGoogle Scholar
  16. 16.
    Jia X, Richards JA (2002) Cluster-space representation for hyperspectral data classification. IEEE Trans Geosc Rem Sens 40(3):593–598CrossRefGoogle Scholar
  17. 17.
    Rahman MR, Lateh H (2017) Climate change in Bangladesh: a spatio-temporal analysis and simulation of recent temperature and rainfall data using GIS and time series analysis model. Theoret Appl Climatol 128(1-2):27–41CrossRefGoogle Scholar
  18. 18.
    Schneider A, Friedl MA, Potere D (2009) A new map of global urban extent from MODIS satellite data. Environ Res Lett 4(4):044003CrossRefGoogle Scholar
  19. 19.
    Levien LM, Roffers P, Maurizi B, Suero J, Fischer C, Huang X 1999 A machine-learning approach to change detection using multi-scale imagery. American Society of Photogrammetry and Remote Sensing. Annual conference, Portland, Oregon, May 20, 1999Google Scholar
  20. 20.
    Tang Z, Tang H, He S, Mao T (2015) Object-based change detection model using correlation analysis and classification for VHR image. IEEE international geoscience and remote sensing symposium (IGARSS), pp. 4840–4843, July 2015Google Scholar
  21. 21.
    Tuia D, Ratle F, Pozdnoukhov A, Camps-Valls G, (2008) Multi-source composite kernels for urban image classification. IEEE Geosc Rem Sens Lett (Accepted)Google Scholar
  22. 22.
    Camps-Valls G, Gómez-Chova L, Mu noz Mar´ı J, Rojo-Álvarez JL, Mart´ınez-Ram´on M (2008) Kernel-based framework for multi-temporal and multi-source remote sensing data classification and change detection. IEEE Trans Geosci Remote Sens 46(6):1822–1835CrossRefGoogle Scholar
  23. 23.
    Bovolo F, Bruzzone L, Marconcini M (2008) A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure. IEEE Trans Geosc Rem Sens 46(7):2070–2082CrossRefGoogle Scholar
  24. 24.
    Ghosh S, Bruzzone L, Patra S, Bovolo F, Ghosh A (2007) A novel context-sensitive technique for unsupervised change detection based on hopfield type neural networks. IEEE Trans Geosc Rem Sens 45(3):778–789CrossRefGoogle Scholar
  25. 25.
    Bruzzone L, Serpico SB (2000) A technique for features selection in multiclass problems. Int J Rem Sens 21(3):549–563CrossRefGoogle Scholar
  26. 26.
    Pal M (2006) Support vector machine-based feature selection for land cover classification: a case study with DAIS hyperspectral data. Int J Rem Sens 27(14):2877–2894CrossRefGoogle Scholar
  27. 27.
    Archibald R, Fann G (2007) Feature selection and classification of hyperspectral images with support vector machines. IEEE Geosc Rem Sens Lett 4(4):674–679CrossRefGoogle Scholar
  28. 28.
    Shaw G, Manolakis D “Signal processing for hyperspectral image exploitation,” in IEEE Signal Processing Magazine, vol. 19, no. 1, pp. 12–16, Jan. 2002. doi: 10.1109/79.974715CrossRefGoogle Scholar
  29. 29.
    Camps-Valls G, Bruzzone L (2009) Kernel methods for remote sensing data analysis. Wiley, HobokenGoogle Scholar
  30. 30.
    Bazi Y, Melgani F (2008) Classification of hyperspectral remote sensing images using gaussian processes. IEEE Intl Geosci Rem Sens Symp (IGRASS) 2:II-1013–II-1016Google Scholar
  31. 31.
    Keshava N, Mustard JF (2002) Spectral unmixing. IEEE Signal Process Mag 19(1):44–57CrossRefGoogle Scholar
  32. 32.
    Camps-Valls G, Bruzzone L (2009). Kernel Methods for Remote Sensing Data Analysis. 10.1002/9780470748992.Google Scholar
  33. 33.
    Camps-Valls G, Bruzzone L, Rojo-Álvarez JL, Melgani F (2006) Robust support vector regression for biophysical parameter estimation from remotely sensed images. IEEE Geosc Rem Sens Lett 3(3):339–343CrossRefGoogle Scholar
  34. 34.
    Camps-Valls G, Mu˜noz-Mar´ı J, Gómez-Chova L, Richter K, Calpe-Maravilla J (2009) Biophysical parameter estimation with a semi-supervised support vector machine. IEEE Geosc Rem Sens LettGoogle Scholar
  35. 35.
    Camps-Valls G, Gomez-Chova L, Vila-Franc´es J, Amor´os- L´opez J, Mu˜noz-Mar´ı J, Calpe-Maravilla J (2006) Retrieval of oceanic chlorophyll concentration with relevance vector machines. Rem.Sens Environ 105(1):23–33Google Scholar
  36. 36.
    Pasolli L, Melgani F, Blanzieri E (2008) Estimating biophysical parameters from remotely sensed imagery with Gaussian processes. In: IEEE international geoscience and remote sensing symposium. IGARSS’08, BostonGoogle Scholar
  37. 37.
    Bachman CM, Ainsworth TL, Fusina RA (2005) Exploiting manifold geometry in hyperspectral imagery. IEEE Trans Geosci Rem Sens 43(3):441–454CrossRefGoogle Scholar
  38. 38.
    Bachman CM, Ainsworth TL, Fusina RA (2006) Improved manifold coordinate representations of large-scale hyperspectral scenes. IEEE Trans Geosci Rem Sens 44(10):2786–2803CrossRefGoogle Scholar
  39. 39.
    Gomez-Chova L, Camps-Valls G, Munoz-Mari J, Calpe J (2008) Semisupervised image classification with Laplacian support vector machines. IEEE Geosci Rem Sens Lett 5(3):336–340CrossRefGoogle Scholar
  40. 40.
    Ma X, Liu W, Li S, Zhou Y Hypergraph-Laplacian regularization for remote sensing image recognition. Comput Vision Pattern Recog. Submitted, June 2018Google Scholar
  41. 41.
    Huigang Z, Xiao B, Huaxin Z, Huijie Z, Jun Z, Jian C, Hanqing L (2013) Hierarchical remote sensing image analysis via graph Laplacian energy. IEEE Geosci Rem Sens Lett 10(2):396–400CrossRefGoogle Scholar
  42. 42.
    Boschetti F (2005) Dimensionality reduction and visualization of geoscientific images via locally linear embedding. Comput Geosci 31(6):689–697CrossRefGoogle Scholar
  43. 43.
    Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Sci Am Assoc Adv Sci 290(5500):2323–2326Google Scholar
  44. 44.
    de Ridder D, Kouropteva O, Okun O, Pietikainen M, Duin RPW (2003) Supervised locally linear embedding. Artificial neural networks and neural information processing, Springer, Berlin/Heidelberg, pp 333–341Google Scholar
  45. 45.
    Shi R, Shen I, Chen W (2005) Image denoising through locally linear embedding. Intl Conf Comput Graph Imag Visual:147–152Google Scholar
  46. 46.
    Zhang S-q (2009) Enhanced supervised locally linear embedding. Pattern Recog Lett 30(13):1208–1218CrossRefGoogle Scholar
  47. 47.
    Chang C-I, Du Q (2004) Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Trans Geosc Rem Sens 42(3):608–619CrossRefGoogle Scholar
  48. 48.
    Jackson Q, Landgrebe DA (2001) An adaptive classifier design for high-dimensional data analysis with a limited training data set. IEEE Trans Geosc Rem Sens 39:2664–2679CrossRefGoogle Scholar
  49. 49.
    Réjichi S, Chaabane F (2015) Satellite image time series classification and analysis using an adapted graph labeling. International workshop on the analysis of multitemporal remote sensing images (Multi-Temp), pp 1–4, July 2015Google Scholar
  50. 50.
    G´omez-Chova L, Camps-Valls G, Mu˜noz Mar´ı J, Calpe, J (2008) Semi-supervised image classification with Laplacian support vector machines. IEEE Geosc Rem Sens Lett 5:336–340Google Scholar
  51. 51.
    Camps-Valls G, Bandos T, Zhou D (2007) Semi-supervised graph-based hyperspectral image classification. IEEE Trans. Geosc. Rem. Sens. 45(10):3044–3054CrossRefGoogle Scholar
  52. 52.
    Tuia D, Camps-Valls G (2009) Semi-supervised remote sensing image classification with cluster kernels. IEEE Geosci Remote Sens Lett 6(1):224–228CrossRefGoogle Scholar
  53. 53.
    Bovolo F, Bruzzone L, Marconcini M (2008) A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure. IEEE Trans. Geosc. Rem Sens 46(7):2070–2082CrossRefGoogle Scholar
  54. 54.
    Bruzzone L, Chi M, Marconcini M (2006) A novel transductive SVM for semisupervised classification of remote sensing images. IEEE Trans Geosci Remote Sens 44(11):3363–3373CrossRefGoogle Scholar
  55. 55.
    Chi M, Bruzzone L (2007) Semi-supervised classification of hyperspectral images by SVMs optimized in the primal. IEEE Trans Geosci Rem Sens 45(4):1870–1880CrossRefGoogle Scholar
  56. 56.
    Bruzzone L, Chi M, Marconcini M (2006) A novel transductive SVM for semisupervised classification of remote-sensing images. IEEE Trans Geosci Remote Sens 44(11):3363–3373CrossRefGoogle Scholar
  57. 57.
    Dundar M, Langrebe A (2004) A cost-effective semisupervised classifier approach with kernels. IEEE Trans Geosci Remote Sens 42(1):264–270CrossRefGoogle Scholar
  58. 58.
    Gómez-Chova L, Camps-Valls G, Bruzzone L, Calpe-Maravilla J Semi-supervised remote sensing image classification based on clustering and the kernel mean map. In IEEE international geoscience and remote sensing symposium, IGARSS’08, Boston, USA, 2008Google Scholar
  59. 59.
    Saha S, Banerjee B, Merchant SN (2016) Unsupervised domain adaptation without source domain training samples: a maximum margin clustering based approach. In Proceedings of the Tenth Indian conference on computer vision, graphics and image processing, ICVGIP’16 ACM, pp 56:1–56:8, 2016Google Scholar
  60. 60.
    Bietti A (2012) Active learning for object detection on satellite images. Technical report, California Institute of Technology, PasadenaGoogle Scholar
  61. 61.
    Lu Q, Ma Y, Xia G-S (2017) Active learning for training sample selection in remote sensing image. Rem Sens Lett Taylor & Francis 8(12):1210–1219CrossRefGoogle Scholar
  62. 62.
    Kao C-C, Lee T-Y, Sen P, Liu M-Y (2018) Localization-aware active learning for object detection. J CoRR, arXivGoogle Scholar
  63. 63.
    Blaschko MB, Lampert CH (2008) Learning to localize objects with structured output regression. In: Forsyth D, Torr P, Zisserman A (eds) Computer vision: ECCV2008, pp 2–15, SpringerGoogle Scholar
  64. 64.
    Tuia D, Kanevski M, Munoz Mari J, Camps-Valls G (2009) Structured SVM for remote sensing image classification. In IEEE workshop machine learning and signal processing, MLSP09, Grenoble, FranceGoogle Scholar
  65. 65.
    Qu Y et al (2017) Joint hierarchical category structure learning and large-scale image classification. IEEE Trans Image Process 26(9):4331–4346MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Quan D, Wang S, Ning M, Xiong T, Jiao L (2016) Using deep neural networks for synthetic aperture radar image registration. Intl Geosci Rem Sens Symp 2016:2799–2802Google Scholar
  67. 67.
    Zhao J, Gong M, Liu J, Jiao L (2014) Deep learning to classify difference image for image change detection. International joint conference on neural networks (IJCNN), pp 411-417Google Scholar
  68. 68.
    Chan T, Jia K, Gao S, Lu J, Zeng Z, Ma Y (2015) PCANet: a simple deep learning baseline for image classification? IEEE Trans Image Process 24(12):5017–5032MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Kuwata K, Shibasaki R (2015) Estimating crop yields with deep learning and remotely sensed data. IEEE Intl Geosci Rem Sens Symp (IGARSS):858–861Google Scholar
  70. 70.
    Zhu XX, Tuia D, Mou L, Xia G, Zhang L, Xu F, Fraundorfer F (2017) Deep learning in remote sensing: a comprehensive review and list of resources. IEEE Geosci Rem Sens Mag 5(4):8–36CrossRefGoogle Scholar
  71. 71.
    Mou L, Zhu XX (2016) Spatiotemporal scene interpretation of space videos via deep neural network and tracklet analysis. IEEE Intl Geosci Rem Sens Symp (IGARSS) 2016:1823–1826Google Scholar
  72. 72.
    Marmanis D, Datcu M, Esch T, Stilla U (2016) Deep learning earth observation classification using ImageNet pre-trained networks. IEEE Geosci Rem Sens Lett 13(1):105–109CrossRefGoogle Scholar
  73. 73.
    Ball A, Chan (2017) Online content provided with paper. A comprehensive survey of deep learning in remote sensing: theories, tools and challenges for the community.Google Scholar
  74. 74.
    Palafox LF, Hamilton, CW, Scheidt SP, Alvarez AM (2017) Automated detection of geological landforms on Mars using convolutional neural networks. Computers and Geosciences, Elsevier Limited, vol 101, pp 48–56, April 2017Google Scholar
  75. 75.
    Shi X, Chen Z, Wang H, Yeung D-Y, Wong W-K, Woo W-C (2015) Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R (eds) Advances in neural information processing systems, vol 28. Curran Associates, Inc, pp 802–810. http://papers.nips.cc/paper/5955-convolutional-lstm-network-a-machine-learning-approach-for-precipitation-nowcasting.pdf
  76. 76.
    Lv Q, Dou Y, Niu X, Xu J, Li B (2014) Classification of land cover based on deep belief networks using polarimetric RADARSAT-2 data. IEEE Geosci Rem Sens Symp:4679–4682Google Scholar
  77. 77.
  78. 78.
  79. 79.
  80. 80.
  81. 81.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Technology, Department of Computer Science EngineeringNirma UniversityAhmedabadIndia
  2. 2.Space Application Center–Indian Space Research OrganizationAhmedabadIndia

Personalised recommendations