Advertisement

Myocardial Protection in Children

  • Abdullah Doğan
  • Rıza TürközEmail author
Chapter
  • 8 Downloads

Abstract

The combination of hypothermia and potassium-based cardioplegic arrest has become the most common method of myocardial protection in the evolution of cardiac surgery. Since the 1980s, blood was added to cardioplegia solution in order to supply the myocardium with oxygen, nutrients, and for buffering purposes. Most cardiac operations are performed under cardioplegic arrest in pediatric cardiac surgery, and similar myocardial protection methods have been used in pediatric and adult patients for many years. However, the immature heart of a pediatric patient differs in many ways from the mature heart of an adult. Low cardiac output is observed more often in pediatric patients. Poor myocardial protection is still considered as a significant cause of hospital mortality in children. Today there are many different types of cardioplegia solutions and methods used in pediatric cardiac surgery. After the 1990s, normothermic perfusion and cardioplegia has been used in pediatric myocardial protection. Since 2010, the del Nido cardioplegic solution has been widely used which is generally administered in a single dose fashion. Myocardial protection may be more challenging in long and complex operations especially in which repeated cardioplegia delivery from the open aortic root is required, in newborn patients, or in preoperatively damaged myocardium. If the morbidity and mortality rate is high, particularly in long and complex procedures, revision of the myocardial protection method must be taken into account.

Keywords

Buckberg solution Cardioplegia del Nido solution Myocardial protection Normothermic perfusion 

References

  1. 1.
    Melrose DG, Dreyer B, Bentall HH, Baker JBE. Elective cardiac arrest. Lancet. 1955;269:21–2.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Chambers DJ, Fallouh HB. Cardioplegia and cardiac surgery: pharmacological arrest and cardioprotection during global ischemia and reperfusion. Pharmacol Ther. 2010;127:41–52.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Bigelow WG, Lindsay WK, Greenwood WF. Hypothermia. Its possible role in cardiac surgery: an investigation of factors governing survival in dogs at low body temperatures. Ann Surg. 1950;132:849–66.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bigelow WG, Mustard WT, Evans JG. Some physiological concepts of hypothermia and their application to cardiac surgery. J Thorac Cardiovasc Surg. 1954;28:463–80.Google Scholar
  5. 5.
    Shumway E, Lower RR, Stofer RC. Selective hypothermia of the heart in anoxic cardiac arrest. Surg Gynecol Obstet. 1959;109:750–4.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Swan H, Zeavin I. Cessation of circulation in general hypothermia: techniques of intracardiac surgery under direct vision. Ann Surg. 1954;139:385–96.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Swan H. Clinical hypothermia: a lady with a past and some promise for the future. Surgery. 1973;73:736–58.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Shumway NE, Lower RR. Hypothermia for extended periods of anoxic arrest. Surg Forum. 1959;10:563–6.Google Scholar
  9. 9.
    Sanger PW, Robicsek F, Daugherty HK, Gallucci V, Lesage A. Topical cardiac hypothermia in lieu of coronary perfusion. Thorac Cardiovasc Surg. 1966;52:533–41.CrossRefGoogle Scholar
  10. 10.
    Kay EB, Head LR, Nogueira C. Direct coronary artery perfusion for aortic valve surgery; report of technique. JAMA. 1958;168:1767–8.CrossRefGoogle Scholar
  11. 11.
    Littlefield JB, Lowicki EM, Muller WH Jr. Experimental left coronary artery perfusion through an aortotomy during cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1960;40:685–91.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Senning A. Ventricular fibrillation during extracorporeal circulation used as a method to prevent air embolisms and to facilitate intracardiac operations. Acta Chir Scand Suppl. 1952;171:1–79.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Bretschneider HJ. Survival time and recuperative time of the heart in normothermia and hypothermia. Verh Dtsch Ges Kreislaufforsch. 1964;30:11–34.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Reimer KA, Jennings RB, Tatum AH. Pathobiology of acute myocardial ischemia: metabolic, functional and ultrastructural studies. Am J Cardiol. 1983;52:72A–81A.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Hosenpud JD, Bennett LE, Keck BM, Boucek MM, Novick RJ. The registry of the international society for heart and lung transplantation: eighteenth official report—2001. J Heart Lung Transplant. 2001;20:805–15.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Manrique AM, Kelly K, Litchenstein SE. The effects of cardiopulmonary bypass following pediatric cardiac surgery. In: Muñoz R, Morell VO, da Cruz EM, Vetterly CG, editors. Critical care of children with heart disease. Basic medical and surgical concepts. London: Springer; 2010. p. 103–20.Google Scholar
  17. 17.
    Goodwin GW, Ahmad F, Doenst T, Taegtmeyer H. Energy provision from glycogen, glucose, and fatty acids on adrenergic stimulation of isolated working rat hearts. Am J Physiol. 1998;274:H1239–47.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Lopaschuk GD, Spafford MA, Marsh DR. Glycolysis is predominant source of myocardial ATP production immediately after birth. Am J Physiol. 1991;261:H1698–705.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Yano Y, Braimbridge MV, Hearse DJ. Protection of the pediatric myocardium. Differential susceptibility to ischemic injury of the neonatal rat heart. J Thorac Cardiovasc Surg. 1987;94:887–96.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Julia PL, Kofsky ER, Buckberg GD, Young HH, Bugyi HI. Studies of myocardial protection in the immature heart. I. Enhanced tolerance of immature versus adult myocardium to global ischemia with reference to metabolic differences. J Thorac Cardiovasc Surg. 1990;100:879–87.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Grosso MA, Banerjee A, St Cyr JA, et al. Cardiac 5′-nucleotidase activity increases with age and inversely relates to recovery from ischemia. J Thorac Cardiovasc Surg. 1992;103:206–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Boudreaux JP, Schieber RA, Cook DR. Hemodynamic effects of halothane in the newborn piglet. Anesth Analg. 1984;63:731–7.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Caspi J, Coles JG, Benson LN, et al. Age-related response to epinephrine-induced myocardial stress. A functional and ultra-structural study. Circulation. 1991;84:III394–9.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Gombosova I, Boknik P, Kirchhefer U, et al. Postnatal changes in contractile time parameters, calcium regulatory proteins, and phosphates. Am J Physiol. 1998;274:H2123–32.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Boucek RJ Jr, Shelton M, Artman M, Mushlin PS, Starnes VA, Olson RD. Comparative effects of verapamil, nifedipine, and diltiazem on contractile function in the isolated immature and adult rabbit heart. Pediatr Res. 1984;18:948–52.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Boland R, Martonosi A, Tillack TW. Developmental changes in the composition and function of sarcoplasmic reticulum. J Biol Chem. 1974;249:612–23.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Yamamoto H, Yamamoto F. Myocardial protection in cardiac surgery: a historical review from the beginning to the current topics. Gen Thorac Cardiovasc Surg. 2013;61:485–96.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Doenst T, Schlensak C, Beyersdorf F. Cardioplegia in pediatric cardiac surgery: do we believe in magic? Ann Thorac Surg. 2003;75:1668–77.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Matt P, Arbeleaz E, Schwirtz G, Doebele T, Eckstein F. Low-volume, single-shot crystalloid cardioplegia is safe for isolated aortic valve replacement. Thorac Cardiovasc Surg. 2012;60:360–2.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Liu J, Feng Z, Zhao J, Li B, Long C. The myocardial protection of HTK cardioplegic solution on the long-term ischemic period in pediatric heart surgery. ASAIO J. 2008;54:470–3.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Hayashi Y, Sawa Y, Nishimura M, Ichikawa H, Kagisaki K, Ohtake S, et al. Clinical evaluation of leukocyte-depleted blood cardioplegia for pediatric open heart operation. Ann Thorac Surg. 2000;69:1914–9.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Wei J, Chang CY, Chuang YC, et al. Successful heart trans-plantation after 13 hours of donor heart ischemia with the use of HTK solution: a case report. Transplant Proc. 2005;37:2253–4.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Reichenspurner H, Russ C, Uberfuhr P, et al. Myocardial preservation using HTK solution for heart transplantation. A multicenter study. Eur J Cardiothorac Surg. 1993;7:414–9.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Corno AF, Bethencourt DM, Laks H, et al. Myocardial protection in the neonatal heart. A comparison of topical hypothermia and crystalloid and blood cardioplegic solutions. J Thorac Cardiovasc Surg. 1987;93:163–7.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Amark K, Berggren H, Björk K, et al. Blood cardioplegia provides superior protection in infant cardiac surgery. Ann Thorac Surg. 2005;80:989–94.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Modi P, Suleiman MS, Reeves B, et al. Myocardial metabolic changes during pediatric cardiac surgery: a randomized study of 3 cardioplegic techniques. J Thorac Cardiovasc Surg. 2004;128:67–75.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Matte GS, del Nido PJ. History and use of del Nido cardioplegia solution at Boston Children’s Hospital. J Extra Corpor Technol. 2012;44:98–103.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Pourmoghadam KK, Ruzmetov M, O’Brien MC, et al. Comparing del nido and conventional cardioplegia in infants and neonates in congenital heart surgery. Ann Thorac Surg. 2017;103:1550–6.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Talwar S, Bhoje A, Sreenivas V, Makhija N, Aarav S, Choudhary SK, et al. Comparison of del Nido and St Thomas Cardioplegia solutions in pediatric patients: a prospective randomized clinical trial. Semin Thorac Cardiovasc Surg. 2017;29:366–74.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kotani Y, Tweddell J, Gruber P, Pizarro C, Austin EH, Woods RK, et al. Current cardioplegia practice in pediatric cardiac surgery: a north American multiinstitutional survey. Ann Thorac Surg. 2013;96:923–9.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Dobson GP, Jones MW. Adenosine and lidocaine: a new concept in nondepolarizing surgical myocardial arrest, protection, and preservation. J Thorac Cardiovasc Surg. 2004;127:794–805.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Watanabe M, Egi K, Shimizu M, Nakahara H, Tanaka H, Sakamoto T, et al. Non-depolarizing cardioplegia activates Ca2+-ATPase in sarcoplasmic reticulum after reperfusion. Eur J Cardio-Thoracic Surg. 2002;22:951–6.CrossRefGoogle Scholar
  43. 43.
    Chambers DJ. Polarization and myocardial protection. Curr Opin Cardiol. 1999;14:495–500.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    O’Brien JD, Howlett SE, Burton HJ, O’Blenes SB, Litz DS, Friesen CLH. Pediatric cardioplegia strategy results in enhanced calcium metabolism and lower serum troponin T. Ann Thorac Surg. 2009;87:1517–23.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Buckberg GD, Brazier JR, Nelson RL, Goldstein SM, McConnell DH, Cooper N. Studies of the effects of hypothermia on regional myocardial blood flow and metabolism during cardiopulmonary bypass. I. The adequately perfused beating, fibrillating, and arrested heart. J Thorac Cardiovasc Surg. 1977;73:87–94.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Magovern GJ Jr, Flaherty JT, Gott VL, Bulkley BH, Gardner TJ. Failure of blood cardioplegia to protect myocardium at lower temperatures. Circulation. 1982;66:I60–7.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Lichtenstein SV, el Dalati H, Panos A, Slutsky AS. Long cross-clamp time with warm heart surgery. Lancet. 1989;1:1443.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Lichtenstein SV, Abel JG, Panos A, Slutsky AS, Salerno TA. Warm heart surgery: experience with long cross-clamp times. Ann Thorac Surg. 1991;52:1009–13.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Lichtenstein SV, Ashe KA, el Dalati H, Cusimano RJ, Panos A, Slutsky AS. Warm heart surgery. J Thorac Cardiovasc Surg. 1991;101:269–74.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Mezzetti A, Calafiore AM, Lapenna D, et al. Intermittent antegrade warm cardioplegia reduces oxidative stress and improves metabolism of the ischemic-reperfused human myocardium. J Thorac Cardiovasc Surg. 1995;109:787–95.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Durandy Y, Hulin S. Intermittent warm blood cardioplegia in the surgical treatment of congenital heart disease: clinical experience with 1400 cases. J Thorac Cardiovasc Surg. 2007;133:241–6.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Rosenkranz ER, Vinten-Johansen J, Buckberg GD, et al. Benefits of normothermic induction of blood cardioplegia in energy-depleted hearts with maintenance of arrest with multidose blood cardioplegia infusions. J Thorac Cardiovasc Surg. 1982;84:667–77.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Allen BS, Barth MJ, Ilbawi M. Pediatric myocardial protection: an overview. Semin Thorac Cardiovasc Surg. 2001;13:56–72.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Kronon MT, Allen BS, Rahman S, et al. Reducing postischemic reperfusion damage in neonates using a terminal warm substrate-enriched blood cardioplegic reperfusate. Ann Thorac Surg. 2000;70:765–70.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Toyoda Y, Yamaguchi M, Yoshimura N, Oka S, Okita Y. Cardioprotective effects and the mechanisms of terminal warm blood cardioplegia in pediatric cardiac surgery. J Thorac Cardiovasc Surg. 2003;125:1242–51.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Teoh KH, Christakis GT, Weisel RD, et al. Accelerated myocardial metabolic recovery with terminal warm blood cardioplegia. J Thorac Cardiovasc Surg. 1986;91:888–95.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Kawasuji M, Tomita S, Yasuda T, Sakakibara N, Takemura H, Watanabe Y. Myocardial oxygenation during terminal warm blood cardioplegia. Ann Thorac Surg. 1998;65:1260–4.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Busro PW, Romolo H, Sastroasmoro S, Rachmat J, Sadikin M, Santoso A, et al. Role of terminal warm blood cardioplegia in complex congenital heart surgery. Asian Cardiovasc Thorac Ann. 2018;26:196–202.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Durandy Y. Warm pediatric cardiac surgery: European experience. Asian Cardiovasc Thorac Ann. 2010;18:386–95.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Menasché P, Touchot B, Pradier F, Bloch G, Piwnica A. Simplified method for delivering normothermic blood cardioplegia. Ann Thorac Surg. 1993;55:177–8.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Gong B, Ji B, Sun Y, Wang G, Liu J, Zheng Z. Is microplegia really superior to standard blood cardioplegia? The results from a meta-analysis. Perfusion. 2015;30:375–82.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Türköz R, Gülcan O, Türköz A. Cardioplegia by minicardioplegia technique. Anadolu Kardiyol Derg. 2006;6:178–9.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Jonas R. Myocardial protection. In: Jonas R, editor. Comprehensive surgical management of congenital heart disease. London: Arnold; 2004. p. 175–84.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Cardiovascular SurgeryAcibadem Bakirkoy HospitalIstanbulTurkey

Personalised recommendations