Advertisement

Renal Failure After Cardiac Surgery

  • Marc VivesEmail author
  • Juan Bustamante-Munguira
Chapter
  • 14 Downloads

Abstract

Acute kidney injury (AKI) is the most common clinically important complication after cardiac surgery. In critically ill patients, cardiac surgery is the second most common cause of AKI after sepsis. The development of acute kidney injury is independently associated with significant short- and long-term morbidity and mortality. In this chapter, we explore the definition of cardiac surgery associated acute kidney injury (CSA-AKI), and identify its risk factors. We discuss current theories of the pathophysiology of CSA-AKI and describe its clinical course. Furthermore, we introduce diagnostic tools with particular reference to novel biomarkers of AKI and their potential utility. We also analyze currently applied interventions aimed at attenuating AKI in patients undergoing cardiac surgery. Finally, we explore issues in the use of renal replacement therapy, its timing and its preferred modalities in patients with CSA-AKI, and discuss the prognosis of CSA-AKI in terms of patient survival and kidney recovery.

Keywords

Acute kidney injury Cardiac surgery associated acute kidney injury Dialysis Haemofiltration Renal replacement therapy 

References

  1. 1.
    Hoste EA, Cruz DN, Davenport A, et al. The epidemiology of cardiac surgery-associated acute kidney injury. Int J Artif Organs. 2008;31:158–65.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Lassnigg A, Schmidlin D, Mouhieddine M, et al. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol. 2004;15:1597–605.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Wijeysundera DN, Karkouti K, Dupuis JY, et al. Derivation and validation of a simplified predictive index for renal replacement therapy after cardiac surgery. JAMA. 2007;297:1801–9.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Mehta RH, Grab JD, O’Brien SM, et al. Society of Thoracic Surgeons National Cardiac Surgery Database Investigators. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation. 2006;114:2208–16.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Thakar CV, Arrigain S, Worley S, Yared JP, Paganini EP. A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol. 2005;16:162–8.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Thakar CV, Worley S, Arrigain S, Yared JP, Paganini EP. Influence of renal dysfunction on mortality after cardiac surgery: modifying effect of preoperative renal function. Kidney Int. 2005;67:1112–9.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Khawaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120:c179–84.Google Scholar
  8. 8.
    Luo X, Jiang L, Du B, Wen Y, Wang M, Xi X. Beijing Acute Kidney Injury Trial (BAKIT) workgroup. A comparison of different diagnostic criteria of acute kidney injury in critically ill patients. Crit Care. 2014;18:R144.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Bellomo R, Auriemma S, Fabbri A, et al. The pathophysiology of cardiac surgery-associated acute kidney injury (CSA-AKI). Int J Artif Organs. 2008;31:166–78.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Perez-Valdivieso JR, Monedero P, Vives M, Garcia-Fernandez N, Bes-Rastrollo M; GEDRCC (Grupo Español de Disfunción Renal en Cirugía Cardiaca). Cardiac-surgery associated acute kidney injury requiring renal replacement therapy. A Spanish retrospective case-cohort study. BMC Nephrol. 2009;10:27.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Tuttle KR, Worrall NK, Dahlstrom LR, Nandagopal R, Kausz AT, Davis CL. Predictors of ARF after cardiac surgical procedures. Am J Kidney Dis. 2003;41:76–83.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Demirjian S, Schold JD, Navia J, et al. Predictive models for acute kidney injury following cardiac surgery. Am J Kidney Dis. 2012;59:382–9.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Echarri G, Duque-Sosa P, Callejas R, et al. Renal Dysfunction in Cardiac Surgery Spanish Group (GEDRCC2). External validation of predictive models for acute kidney injury following cardiac surgery: a prospective multicentre cohort study. Eur J Anaesthesiol. 2017;34:81–8.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Petricevic M, Biocina B, Konosic S, Burcar I. Preoperative aspirin use and outcomes in cardiac surgery patients. Ann Surg. 2012;255:399–404.CrossRefGoogle Scholar
  15. 15.
    Yao L, Young N, Liu H, et al. Evidence for preoperative aspirin improving major outcomes in patients with chronic kidney disease undergoing cardiac surgery: a cohort study. Ann Surg. 2015;261:207–12.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Billings FT IV, Brown NJ. Statins to reduce acute kidney injury after cardiac surgery--reply. JAMA. 2016;316:349–50.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Zheng Z, Jayaram R, Jiang L, et al. Perioperative rosuvastatin in cardiac surgery. N Engl J Med. 2016;374:1744–53.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Molnar AO, Parikh CR, Coca SG, et al. TRIBE-AKI Consortium. Association between preoperative statin use and acute kidney injury biomarkers in cardiac surgical procedures. Ann Thorac Surg. 2014;97:2081–7.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Karkouti K, Wijeysundera DN, Yau TM, et al. Acute kidney injury after cardiac surgery: focus on modifiable risk factors. Circulation. 2009;119:495–502.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Society of Thoracic Surgeons Blood Conservation Guideline Task Force, Ferraris VA, Brown JR, Despotis GJ, et al. 2011 update to the Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation clinical practice guidelines. Ann Thorac Surg. 2011;91:944–82.CrossRefGoogle Scholar
  21. 21.
    Mazer CD, Whitlock RP, Fergusson DA, et al. Restrictive or liberal red-cell transfusion for cardiac surgery. N Engl J Med. 2017;377:2133–44.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Gross I, Seifert B, Hofmann A, Spahn DR. Patient blood management in cardiac surgery results in fewer transfusions and better outcome. Transfusion. 2015;55:1075–81.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Asteriou C, Antonitsis P, Argiriadou H, et al. Minimal extracorporeal circulation reduces the incidence of postoperative major adverse events after elective coronary artery bypass grafting in high-risk patients. A single-institutional prospective randomized study. Perfusion. 2013;28:350–6.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Anastasiadis K, Antonitsis P, Haidich AB, Argiriadou H, Deliopoulos A, Papakonstantinou C. Use of minimal extracorporeal circulation improves outcome after heart surgery; a systematic review and meta-analysis of randomized controlled trials. Int J Cardiol. 2013;164:158–69.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Matata BM, Scawn N, Morgan M, et al. A single-center randomized trial of intraoperative zero-balanced ultrafiltration during cardiopulmonary bypass for patients with impaired kidney function undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2015;29:1236–47.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Magruder JT, Crawford TC, Harness HL, et al. A pilot goal-directed perfusion initiative is associated with less acute kidney injury after cardiac surgery. J Thorac Cardiovasc Surg. 2017;153:118–125 e1.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Lamy A, Devereaux PJ, Prabhakaran D, et al. CORONARY Investigators. Effects of off-pump and on-pump coronary-artery bypass grafting at 1 year. N Engl J Med. 2013;368:1179–88.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Lamy A, Devereaux PJ, Prabhakaran D, et al. CORONARY Investigators. Five-year outcomes after off-pump or on-pump coronary-artery bypass grafting. N Engl J Med. 2016;375:2359–68.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Cai J, Xu R, Yu X, Fang Y, Ding X. Volatile anesthetics in preventing acute kidney injury after cardiac surgery: a systematic review and meta-analysis. J Thorac Cardiovasc Surg. 2014;148:3127–36.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Zarbock A, Schmidt C, Van Aken H, et al. RenalRIPC Investigators. Effect of remote ischemic preconditioning on kidney injury among high-risk patients undergoing cardiac surgery: a randomized clinical trial. JAMA. 2015;313:2133–41.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Zarbock A, Kellum JA, Van Aken H, et al. Long-term effects of remote ischemic preconditioning on kidney function in high-risk cardiac surgery patients: follow-up results from the renalRIP trial. Anesthesiology. 2017;126:787–98.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    McIlroy D, Murphy D, Kasza J, Bhatia D, Wutzlhofer L, Marasco S. Effects of restricting perioperative use of intravenous chloride on kidney injury in patients undergoing cardiac surgery: the LICRA pragmatic controlled clinical trial. Intensive Care Med. 2017;43:795–806.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Bove T, Zangrillo A, Guarracino F, et al. Effect of fenoldopam on use of renal replacement therapy among patients with acute kidney injury after cardiac surgery: a randomized clinical trial. JAMA. 2014;312:2244–53.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Patel NN, Angelini GD. Pharmacological strategies for the prevention of acute kidney injury following cardiac surgery: an overview of systematic reviews. Curr Pharm Des. 2014;20:5484–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Haase M, Haase-Fielitz A, Bellomo R, et al. Sodium bicarbonate to prevent increases in serum creatinine after cardiac surgery: a pilot double-blind, randomized controlled trial. Crit Care Med. 2009;37:39–47.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    McGuinness SP, Parke RL, Bellomo R, Van Haren FM, Bailey M. Sodium bicarbonate infusion to reduce cardiac surgery-associated acute kidney injury: a phase II multicenter double-blind randomized controlled trial. Crit Care Med. 2013;41:1599–607.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Bailey M, McGuinness S, Haase M, et al. Sodium bicarbonate and renal function after cardiac surgery: a prospectively planned individual patient meta-analysis. Anesthesiology. 2015;122:294–306.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Zhou C, Gong J, Chen D, Wang W, Liu M, Liu B. Levosimendan for prevention of acute kidney injury after cardiac surgery: a meta-analysis of randomized controlled trials. Am J Kidney Dis. 2016;67:408–16.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Tena MÁ, Urso S, González JM, et al. Levosimendan versus placebo in cardiac surgery: a systematic review and meta-analysis. Interact Cardiovasc Thorac Surg. 2018;27:677–85.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Landoni G, Lomivorotov VV, Alvaro G, et al. CHEETAH Study Group. Levosimendan for hemodynamic support after cardiac surgery. N Engl J Med. 2017;376:2021–31.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Mehta RH, Leimberger JD, van Diepen S, et al. LEVO-CTS Investigators. Levosimendan in patients with left ventricular dysfunction undergoing cardiac surgery. N Engl J Med. 2017;376:2032–42.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Guarracino F, Heringlake M, Cholley B, et al. Use of levosimendan in cardiac surgery: an update after the LEVO-CTS, CHEETAH, and LICORN trials in the light of clinical practice. J Cardiovasc Pharmacol. 2018;71:1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Cho JS, Shim JK, Soh S, Kim MK, Kwak YL. Perioperative dexmedetomidine reduces the incidence and severity of acute kidney injury following valvular heart surgery. Kidney Int. 2016;89:693–700.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Hajjar LA, Vincent JL, Barbosa Gomes Galas FR, et al. Vasopressin versus norepinephrine in patients with vasoplegic shock after cardiac surgery: the VANCS randomized controlled trial. Anesthesiology. 2017;126:85–93.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Meersch M, Schmidt C, Hoffmeier A, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43:1551–61.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Liu Y, Davari-Farid S, Arora P, Porhomayon J, Nader ND. Early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury after cardiac surgery: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth. 2014;28:557–63.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Zarbock A, Kellum JA, Schmidt C, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA. 2016;315:2190–9.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Wang Y, Bellomo R. Cardiac surgery-associated acute kidney injury: risk factors, pathophysiology and treatment. Nat Rev Nephrol. 2017;13:697–711.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Samra M, Abcar AC. False estimates of elevated creatinine. Perm J. 2012;16:51–2.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Ronco C, Kellum JA, Haase M. Subclinical AKI is still AKI. Crit Care. 2012;16:313.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Anesthesiology and Critical Care, Hospital Universitari Dr. Josep TruetaUniversitat de GironaGironaSpain
  2. 2.Department of Cardiac SurgeyHospital Clinico Universitario de ValladolidValladolidSpain

Personalised recommendations