Advertisement

Animal Models of Behçet Syndrome

  • Idan Goldberg
  • Ehud Baharav
  • Abraham Weinberger
  • Ilan KrauseEmail author
Chapter

Abstract

Animal models for Behçet syndrome (BS) can be divided according to the proposed etiological paradigms. These include environmental pollution and infectious (bacterial and viral) models, as well as various autoimmune and transgenic animal models. The environmental pollution model, though resembles the multisystem symptoms of BS, has limitations to become utilized as a model for the disease since it is difficult to produce, and the onset of symptoms appears erratically in a wide time range. The Streptococcal models have similarity only to the eye involvement in BS. This model is simple to induce with high rate of homogeneity. The HSV model has multisystem manifestations resembling BS; it has a moderate reproducibility. The autoimmune models utilizing S-Ag and IRBP are monosymptomatic models of BS-like uveitis. Those models are easy to induce, and extensive studies elucidated some of the immunological characteristics of BS including the paradigm of anti-HLA autoimmunity. The α-tropomyosin model shares some clinical features of BS. This model has a potential to become a useful autoimmune model for BS. The only published trial to establish a transgenic model for BS did not show any significant similarity to the human disease except a hyper-responsiveness of neutrophils.

Keywords

Infectious Autoimmunity Herpes simplex Air pollution Heat shock proteins Uveitis Behçet syndrome Animal model 

References

  1. 1.
    Hori Y, Miyazawa S, Nishiyama S. Experimental Behcet’s disease and ultrastructural X-ray microanalysis of pathological tissues. J Dermatol. 1979;6:31–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Bang D, Honma T, Saito T, Nakagawa S, Ueki H, Lee S. Electron microscopic observation on dark endothelial cells in erythema nodosum-like lesions of behcet’s disease with ultrastructural x-ray spectroanalysis. J Toxicol Sci. 1987;12:321–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Kaneko F, Oyama N, Nishibu A. Streptococcal infection in the pathogenesis of Behçet’s disease and clinical effects of minocycline on the disease symptoms. Yonsei Med J. 1997;38:444–54.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Shimizu J, Kubota T, Takada E, Takai K, Fujiwara N, Arimitsu N, et al. Bifidobacteria abundance-featured gut microbiota compositional change in patients with behcet’s disease. PLoS One. 2016;11(4):1–13.CrossRefGoogle Scholar
  5. 5.
    Coit P, Mumcu G, Ture-Ozdemir F, Unal AU, Alpar U, Bostanci N, et al. Sequencing of 16S rRNA reveals a distinct salivary microbiome signature in Behcet’s disease. Clin Immunol. 2016;169:28–35.PubMedCrossRefGoogle Scholar
  6. 6.
    Wu H, Ivanov II, Darce J, Hattori K, Shima T. Gut-residing segmented filamentous bacteria drive autoimmune arthritis viat T helper 17. Cell. 2011;32(6):815–27.Google Scholar
  7. 7.
    Saenz A, Ausejo M, Shea B, Wells GA, Welch V, Tugwell P. Pharmacotherapy for Behcet’s syndrome. Cochrane Database Syst Rev. 1998;(2).Google Scholar
  8. 8.
    Sohn S, Lee ES, Bang D, Lee S. Behcet’s disease-like symptoms induced by the Herpes simplex virus in ICR mice. Eur J Dermatol. 1998;8(1):21–3.PubMedGoogle Scholar
  9. 9.
    Kim DY, Cho S, Choi MJ, Sohn S, Lee E-S, Bang D. Immunopathogenic role of herpes simplex virus in Behçet’s disease. Genet Res Int. 2013;2013:1–6.CrossRefGoogle Scholar
  10. 10.
    Sohn S, Lee ES, Lee S. The correlation of MHC haplotype and development of Behçet’s disease-like symptoms induced by herpes simplex virus in several inbred mouse strains. J Dermatol Sci. 2001;26(3):173–81.PubMedCrossRefGoogle Scholar
  11. 11.
    Bang D, Choi B, Kwon HJ, Lee ES, Lee S, Sohn S. Rebamipide affects the efficiency of colchicine for the herpes simplex virus-induced inflammation in a Behcet’s disease mouse model. Eur J Pharmacol. 2008;598(1–3):112–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Choi B, Hwang Y, Kwon HJ, Lee ES, Park KS, Bang D, et al. Tumor necrosis factor alpha small interfering RNA decreases herpes simplex virus-induced inflammation in a mouse model. J Dermatol Sci. 2008;52(2):87–97.PubMedCrossRefGoogle Scholar
  13. 13.
    Sohn S, Lutz M, Kwon HJ, Konwalinka G, Lee S, Schirmer M. Therapeutic effects of gemcitabine on cutaneous manifestations in an Adamantiades-Behcet’s disease-like mouse model. Exp Dermatol. 2004;13(10):630–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Sohn S, Lee E-S, Lee SI, Kim YA, Kwon HJ, Bang D, et al. Therapeutic effect of thalidomide through cytokine and chemokine regulation in herpes simplex virus-induced Behçet’s disease-like animal model. Adv Exp Med Biol. 2003;528:585–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Lee ES, Kim YA, Kwon HJ, Bang D, Lee S, Sohn S. Thalidomide upregulates macrophage inflammatory protein-1α in a herpes simplex virus-induced Behçet’s disease-like animal model. Arch Dermatol Res. 2004;296(4):175–81.PubMedGoogle Scholar
  16. 16.
    Choi B, Lee ES, Sohn S. Vitamin D3 ameliorates herpes simplex virus-induced Behçet’s disease-like inflammation in a mouse model through down-regulation of Toll-like receptors. Clin Exp Rheumatol. 2011;29(4 SUPPL. 67):S13–9.PubMedGoogle Scholar
  17. 17.
    Lee SI, Kwon HJ, Lee ES, Yang BC, Bang D, Lee S, et al. Using pCIN-mIL-4 DNA vector to express mRNA and protein and to improve herpes simplex virus-induced Behcet’s disease symptoms in mice. Vaccine. 2007;25(41):7047–55.PubMedCrossRefGoogle Scholar
  18. 18.
    Shim J, Byun HO, Lee YD, Lee ES, Sohn S. Interleukin-6 small interfering RNA improved the herpes simplex virus-induced systemic inflammation in vivo Behcet’s disease-like mouse model. Gene Ther. 2009;16(3):415–25.PubMedCrossRefGoogle Scholar
  19. 19.
    Lee M, Choi B, Kwon HJ, Shim JA, Park KS, Lee ES, et al. The role of Qa-2, the functional homolog of HLA-G, in a Behcet’s disease-like mouse model induced by the herpes virus simplex. J Inflamm. 2010;7:1–12.CrossRefGoogle Scholar
  20. 20.
    Shim JA, Park S, Lee ES, Niki T, Hirashima M, Sohn S. Galectin-9 ameliorates herpes simplex virus-induced inflammation through apoptosis. Immunobiology [Internet]. 2012;217(6):657–66.CrossRefGoogle Scholar
  21. 21.
    Choi B, Lim HC, Lee ES, Anower AKMM, Sohn S. CCL21 attenuates HSV-induced inflammation through up-regulation of CD8+ memory cells. Immunobiology [Internet]. 2013;218(4):579–90.CrossRefGoogle Scholar
  22. 22.
    Choi J, Lee ES, Choi B, Sohn S. Therapeutic potency of Poly I: C in HSV-induced inflammation through up-regulation of IL-15 receptor alpha. Immunobiology. 2013;218(9):1119–30.PubMedCrossRefGoogle Scholar
  23. 23.
    Shim JA, Lee ES, Choi B, Sohn S. The role of T cell immunoglobulin mucin domains 1 and 4 in a herpes simplex virus-induced Behçet’s disease mouse model. Mediat Inflamm. 2013;2013:1.CrossRefGoogle Scholar
  24. 24.
    Anower AKMM, Shim JA, Choi B, Kwon HJ, Sohn S. The role of classical and alternative macrophages in the immunopathogenesis of herpes simplex virus-induced inflammation in a mouse model. J Dermatol Sci [Internet]. 2014;73(3):198–208.CrossRefGoogle Scholar
  25. 25.
    Choi B, Kim HA, Suh CH, Byun HO, Jung JY, Sohn S. The relevance of miRNA-21 in HSV-induced inflammation in a mouse model. Int J Mol Sci. 2015;16(4):7413–27.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Choi JY, Choi B, Shim JA, Lee ES, Kim DY, Bang D, et al. IL-2/IL-2 antibody immune complex regulates HSV-induced inflammation through induction of IL-2 receptor alpha, beta, and gamma in a mouse model. Immunobiology. 2015;220(12):1381–92.PubMedCrossRefGoogle Scholar
  27. 27.
    Cho SB, Sohn S, Zheng Z, Cho A, Kim H, Kang WJ, et al. Detection of the inflammatory process in a Behçet’s disease-like mouse model using 18F-fluorodeoxyglucose positron emission tomography. Clin Exp Rheumatol. 2013;31(SUPPL.77):47–53.PubMedGoogle Scholar
  28. 28.
    Sohn S, Lee ES, Bang D. Learning from HSV-infected mice as a model of Behcet’s disease. Clin Exp Rheumatol. 2012;30(10):S96–103.PubMedGoogle Scholar
  29. 29.
    Javid B, MacAry PA, Lehner PJ. Structure and function: heat shock proteins and adaptive immunity. J Immunol. 2007;179(4):2035–40.PubMedCrossRefGoogle Scholar
  30. 30.
    Birtas-Atesoglu E, Inanc N, Yavuz S, Ergun T, Direskeneli H. Serum levels of free heat shock protein 70 and anti-HSP70 are elevated in Behçet’s disease. Clin Exp Rheumatol. 2008;26(4 SUPPL. 50):8–10.Google Scholar
  31. 31.
    Sahebari M, Hashemzadeh K, Mahmoudi M, Saremi Z, Mirfeizi Z. Diagnostic yield of heat shock protein 70 (HSP-70) and anti-HSP-70 in behcet-induced uveitis. Scand J Immunol. 2013;77(6):476–81.PubMedCrossRefGoogle Scholar
  32. 32.
    Feng R, Chao K, Chen SL, Sun CH, Qiu Y, Chen BL, et al. Heat shock protein family A member 6 combined with clinical characteristics for the differential diagnosis of intestinal Behçet’s disease. J Dig Dis. 2018;19(6):350–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Hu W, Hasan A, Wilson A, Stanford MR, Li-Yang Y, Todryk S, et al. Experimental mucosal induction of uveitis with the 60-kDa heat shock protein-derived peptide 336–351. Eur J Immunol. 1998;28(8):2444–55.PubMedCrossRefGoogle Scholar
  34. 34.
    Phipps PA, Stanford MR, Son JB, Xiao BG, Holmgren J, Shinnick T, et al. Immunopathogenesis and prevention of uveitis with the Behcet’s disease-specific peptide linked to cholera toxin B. Adv Exp Med Biol. 2003;528:173–80.PubMedGoogle Scholar
  35. 35.
    Stanford M, Whittall T, Bergmeier LA, Lindblad M, Lundin S, Shinnick T, et al. Oral tolerization with peptide 336-351 linked to cholera toxin B subunit in preventing relapses of uveitis in Behcet’s disease. Clin Exp Immunol. 2004;137(1):201–8.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    De Smet MD, Bitar G, Mainigi S, Nussenblatt RB. Human S-antigen determinant recognition in uveitis. Invest Ophthalmol Vis Sci. 2001;42:3233–8.PubMedGoogle Scholar
  37. 37.
    Kurhan-Yavuz S, Direskeneli H, Bozkurt N, Ozyazgan Y, Bavbek T, Kazokoglu H, et al. Anti-MHC autoimmunity in Behçet’s disease: T cell responses to an HLA-B-derived peptide cross-reactive with retinal-S antigen in patients with uveitis. Clin Exp Immunol. 2000;120(1):162–6.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Takeuchi M, Usui Y, Okunuki Y, Zhang L, Ma J, Yamakawa N, et al. Immune responses to interphotoreceptor retinoid-binding protein and s-antigen in behçet’s patients with uveitis. Investig Ophthalmol Vis Sci. 2010;51(6):3067–75.CrossRefGoogle Scholar
  39. 39.
    Yamamoto JH, Minami M, Inaba G, Masuda K, Mochizuki M. Cellular autoimmunity to retinal specific antigens in patients with Behqet ’ s disease. Br J Ophthalmol. 1993;77:584–9.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Caspi RR, Grubbs BG, Chan CC, Chader GJ, Wiggert B. Genetic control of susceptibility to experimental autoimmune uveoretinitis in the mouse model. Concomitant regulation by MHC and non-MHC genes. J Immunol. 1992;148(8):2384–9.PubMedGoogle Scholar
  41. 41.
    Avichezer D, Silver PB, Chan CC, Wiggert B, Caspi RR. Identification of a new epitope of human IRBP that induces autoimmune uveoretinitis in mice of the H-2b haplotype. Investig Ophthalmol Vis Sci. 2000;41(1):127–31.Google Scholar
  42. 42.
    Sugita S, Kawazoe Y, Imai A, Kawaguchi T, Horie S, Keino H, et al. Role of IL-22 and TNF- producing Th22 cells in uveitis patients with Behcet’s disease. J Immunol. 2013;190(11):5799–808.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Gardner PJ, Joshi L, Lee RWJ, Dick AD, Adamson P, Calder VL. SIRT1 activation protects against autoimmune T cell-driven retinal disease in mice via inhibition of IL-2/Stat5 signaling. J Autoimmun [Internet]. 2013;42(2013):117–29.CrossRefGoogle Scholar
  44. 44.
    Yoshimura T, Sonoda KH, Ohguro N, Ohsugi Y, Ishibashi T, Cua DJ, et al. Involvement of Th17 cells and the effect of anti-IL-6 therapy in autoimmune uveitis. Rheumatology. 2009;48(4):347–54.PubMedCrossRefGoogle Scholar
  45. 45.
    Okunuki Y, Usui Y, Kezuka T, Hattori T, Masuko K, Nakamura H, et al. Proteomic surveillance of retinal autoantigens in endogenous uveitis: implication of esterase D and brain-type creatine kinase as novel autoantigens. Mol Vis [Internet]. 2008;14(June 2007):1094–104.Google Scholar
  46. 46.
    Mor F, Weinberger A, Cohen IR. Identification of alpha-tropomyosin as a target self-antigen in Behçet’s syndrome. Eur J Immunol. 2002;32(2):356–65.PubMedCrossRefGoogle Scholar
  47. 47.
    Baharav E, Mor F, Halpern M, Weinberger A. Nutritional immunology lactobacillus GG Bacteria ameliorate arthritis in Lewis rats 1. J Nutr. 2004;134(December 2003):1964–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Baharav E, Mor F, Halpern M, Quintana F, Weinberger A. Tropomyosin-induced arthritis in rats. Clin Exp Rheumatol. 2007;25(4 SUPPL. 45):6–12.Google Scholar
  49. 49.
    Ohno S, Ohguchi M, Hirose S, Matsuda H, Wakisaka A, Aizawa M. Close association of hla-bw51 with Behçet’s disease. Arch Ophthalmol. 1982;100:1455–8.CrossRefGoogle Scholar
  50. 50.
    Takeno M, Kariyone A, Yamashita N, Takiguchi M, Mizushima Y, Kaneoka H, et al. Excessive function of peripheral blood neutrophils from patients with Behçet’s disease and from HLA-B51 transgenic mice. Arthritis Rheum. 1995;38:426–33.CrossRefGoogle Scholar
  51. 51.
    Direskeneli H. Behçet’s disease: infectious aetiology, new autoantigens, and HLA-B51. Ann Rheum Dis. 2001;60:996–1002.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Baharav E, Weinberger A. The HLA-B∗5101 molecule-binding capacity to antigens used in animal models of Behçet’s disease: a bioinformatics study. Isr Med Assoc J. 2012;14(7):424–8.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Idan Goldberg
    • 1
    • 2
  • Ehud Baharav
    • 2
  • Abraham Weinberger
    • 2
  • Ilan Krause
    • 1
    • 2
    Email author
  1. 1.Department of Medicine F - RecanatiRabin Medical Center, Beilinson HospitalPetah-TikvaIsrael
  2. 2.Sackler Faculty of Medicine, Tel Aviv UniversityTel Aviv-YafoIsrael

Personalised recommendations