Disease Mechanisms

  • Haner Direskeneli
  • Güher Saruhan-Direskeneli


An infectious agent is possibly required to trigger the inflammation in Behçet syndrome (BS). Innate immune system through neutrophils is activated early and aggressively. However, unlike classical autoinflammatory disorders, an adaptive response is also possibly sustained through bacterial persistence or autoantigen-activated dendritic T or B cells with mainly a pro-inflammatory and Th1/Th17 type of cytokine profile. Adaptive immune responses against various autoantigens such as heat shock proteins are shown to be expressed, especially by the nature of the peripheral blood cells of BS patients; however, their pathogenic role is still not clear. Among genetic associations, HLA-B∗51 is the most clearly defined, and “MHC-I-opathies” are suggested as a unified concept of spondyloarthropathies and BS. Organ-specific pathogenic factors such as venous thrombotic tendency or the role of male gender in disease severity are also not clarified yet.


Innate and adaptive immunity Pathogenesis Th1/Th17 pathways 


  1. 1.
    Yazici H, Seyahi E, Hatemi G, Yazici Y. Behcet syndrome: a contemporary view. Nat Rev Rheumatol. 2018;14(2):119.CrossRefGoogle Scholar
  2. 2.
    Direskeneli H. Behcet’s disease: infectious aetiology, new autoantigens, and HLA-B51. Ann Rheum Dis. 2001;60(11):996–1002.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    McGonagle D, Aydin SZ, Gul A, Mahr A, Direskeneli H. ‘MHC-I-opathy’-unified concept for spondyloarthritis and Behcet disease. Nat Rev Rheumatol. 2015;11(12):731–40.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Zierhut M, Mizuki N, Ohno S, Inoko H, Gul A, Onoe K, et al. Immunology and functional genomics of Behcet’s disease. Cell Mol Life Sci. 2003;60(9):1903–22.CrossRefGoogle Scholar
  5. 5.
    Mumcu G, Inanc N, Yavuz S, Direskeneli H. The role of infectious agents in the pathogenesis, clinical manifestations and treatment strategies in Behcet’s disease. Clin Exp Rheumatol. 2007;25(4 Suppl 45):S27–33.PubMedGoogle Scholar
  6. 6.
    Hatemi G, Bahar H, Uysal S, Mat C, Gogus F, Masatlioglu S, et al. The pustular skin lesions in Behcet’s syndrome are not sterile. Ann Rheum Dis. 2004;63(11):1450–2.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Lee S, Bang D, Cho YH, Lee ES, Sohn S. Polymerase chain reaction reveals herpes simplex virus DNA in saliva of patients with Behcet’s disease. Arch Dermatol Res. 1996;288(4):179–83.PubMedCrossRefGoogle Scholar
  8. 8.
    Mege JL, Dilsen N, Sanguedolce V, Gul A, Bongrand P, Roux H, et al. Overproduction of monocyte derived tumor necrosis factor alpha, interleukin (IL) 6, IL-8 and increased neutrophil superoxide generation in Behcet’s disease. A comparative study with familial Mediterranean fever and healthy subjects. J Rheumatol. 1993;20(9):1544–9.PubMedGoogle Scholar
  9. 9.
    Greco A, De Virgilio A, Ralli M, Ciofalo A, Mancini P, Attanasio G, et al. Behcet’s disease: new insights into pathophysiology, clinical features and treatment options. Autoimmun Rev. 2018;17(6):567–75.PubMedCrossRefGoogle Scholar
  10. 10.
    Eksioglu-Demiralp E, Direskeneli H, Kibaroglu A, Yavuz S, Ergun T, Akoglu T. Neutrophil activation in Behcet’s disease. Clin Exp Rheumatol. 2001;19(5 Suppl 24):S19–24.PubMedGoogle Scholar
  11. 11.
    Takeno M, Kaiyone A, Yamashita N, Takiguchi M, Mizushima Y, Kaneoka H, et al. Excessive function of peripheral blood neutrophils from patients with Behcet’s disease and from HLA-B51 transgenic mice. Arthritis Rheum. 1995;38:426–33.CrossRefGoogle Scholar
  12. 12.
    Fujimori K, Oh-i K, Takeuchi M, Yamakawa N, Hattori T, Kezuka T, et al. Circulating neutrophils in Behcet disease is resistant for apoptotic cell death in the remission phase of uveitis. Graefes Arch Clin Exp Ophthalmol. 2008;246(2):285–90.PubMedCrossRefGoogle Scholar
  13. 13.
    Han EC, Cho SB, Ahn KJ, Oh SH, Kim J, Kim DS, et al. Expression of pro-inflammatory protein S100A12 (EN-RAGE) in Behcet’s disease and its association with disease activity: a pilot study. Ann Dermatol. 2011;23(3):313–20.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Mumcu G, Cimilli H, Karacayli U, Inanc N, Ture-Ozdemir F, Eksioglu-Demiralp E, et al. Salivary levels of antimicrobial peptides Hnp 1-3, Ll-37 and S100 in Behcet’s disease. Arch Oral Biol. 2012;57(6):642–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Safi R, Kallas R, Bardawil T, Mehanna CJ, Abbas O, Hamam R, et al. Neutrophils contribute to vasculitis by increased release of neutrophil extracellular traps in BEHCET’S disease. J Dermatol Sci. 2018;92(2):143–50.PubMedCrossRefGoogle Scholar
  16. 16.
    Hasan MS, Bergmeier LA, Petrushkin H, Fortune F. Gamma delta (gammadelta) T cells and their involvement in Behcet’s disease. J Immunol Res. 2015;2015:705831.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Freysdottir J, Hussain L, Farmer I, Lau S-H, Fortune F. Diversity of gammadelta T cells in patients with Behcet’s disease is indicative of polyclonal activation. Oral Dis. 2006;12(3):271–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Ergun T, Ince U, Eksioglu-Demiralp E, Direskeneli H, Gurbuz O, Gurses L, et al. HSP 60 expression in mucocutaneous lesions of Behcet’s disease. J Am Acad Dermatol. 2001;45(6):904–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Triolo G, Accardo-Palumbo A, Dieli F, Ciccia F, Ferrante A, Giardina E, et al. Vgamma9/Vdelta2 T lymphocytes in Italian patients with Behcet’s disease: evidence for expansion, and tumour necrosis factor receptor II and interleukin-12 receptor beta1 expression in active disease. Arthritis Res Ther. 2003;5(5):R262–8.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Accardo-Palumbo A, Giardina AR, Ciccia F, Ferrante A, Principato A, Impastato R, et al. Phenotype and functional changes of Vgamma9/Vdelta2 T lymphocytes in Behcet’s disease and the effect of infliximab on Vgamma9/Vdelta2 T cell expansion, activation and cytotoxicity. Arthritis Res Ther. 2010;12(3):R109.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Direskeneli H, Saruhan-Direskeneli G. The role of heat shock proteins in Behcet’s disease. Clin Exp Rheumatol. 2003;21(4 Suppl 30):S44–8.PubMedGoogle Scholar
  22. 22.
    Parlakgul G, Guney E, Erer B, Kilicaslan Z, Direskeneli H, Gul A, et al. Expression of regulatory receptors on gammadelta T Cells and their cytokine production in Behcet’s disease. Arthritis Res Ther. 2013;15(1):R15.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Deniz R, Tulunay-Virlan A, Ture Ozdemir F, Unal AU, Ozen G, Alibaz-Oner F, et al. Th17-inducing conditions lead to in vitro activation of both Th17 and Th1 responses in Behcet’s disease. Immunol Investig. 2017;46(5):518–25.CrossRefGoogle Scholar
  24. 24.
    Clemente Ximenis A, Crespi Bestard C, Cambra Conejero A, Pallares Ferreres L, Juan Mas A, Olea Vallejo JL, et al. In vitro evaluation of gammadelta T cells regulatory function in Behcet’s disease patients and healthy controls. Hum Immunol. 2016;77(1):20–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Kaneko F, Takahashi Y, Muramatsu R, Adachi K, Miura Y, Nakane A, et al. Natural killer cell numbers and function in peripheral lymphoid cells in Behcet’s disease. Br J Dermatol. 1985;113(3):313–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Hamzaoui K, Ayed K, Hamza M, Touraine JL. Natural killer cells in Behcet’s disease. Clin Exp Immunol. 1988;71(1):126–31.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Yamaguchi Y, Takahashi H, Satoh T, Okazaki Y, Mizuki N, Takahashi K, et al. Natural killer cells control a T-helper 1 response in patients with Behcet’s disease. Arthritis Res Ther. 2010;12(3):R80.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kucuksezer UC, Aktas-Cetin E, Bilgic-Gazioglu S, Tugal-Tutkun I, Gul A, Deniz G. Natural killer cells dominate a Th-1 polarized response in Behcet’s disease patients with uveitis. Clin Exp Rheumatol. 2015;33(6 Suppl 94):S24–9.PubMedGoogle Scholar
  29. 29.
    Cosan F, Aktas Cetin E, Akdeniz N, Emrence Z, Cefle A, Deniz G. Natural killer cell subsets and their functional activity in Behcet’s disease. Immunol Investig. 2017;46(4):419–32.CrossRefGoogle Scholar
  30. 30.
    Saruhan-Direskeneli G, Uyar FA, Cefle A, Onder SC, Eksioglu-Demiralp E, Kamali S, et al. Expression of KIR and C-type lectin receptors in Behcet’s disease. Rheumatology (Oxford). 2004;43(4):423–7.CrossRefGoogle Scholar
  31. 31.
    Erer B, Takeuchi M, Ustek D, Tugal-Tutkun I, Seyahi E, Ozyazgan Y, et al. Evaluation of KIR3DL1/KIR3DS1 polymorphism in Behcet’s disease. Genes Immun. 2016;17(7):396–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Stojanov S, Kastner DL. Familial autoinflammatory diseases: genetics, pathogenesis and treatment. Curr Opin Rheumatol. 2005;17(5):586–99.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Gul A. Beh et’s disease as an autoinflammatory disorder. Curr Drug Targets Inflamm Allergy. 2005;4(1):81–3.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Atagunduz P, Ergun T, Direskeneli H. MEFV mutations are increased in Behcet’s disease (BS) and are associated with vascular involvement. Clin Exp Rheumatol. 2003;21(4 Suppl 30):S35–7.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Rabinovich E, Shinar Y, Leiba M, Ehrenfeld M, Langevitz P, Livneh A. Common FMF alleles may predispose to development of Behcet’s disease with increased risk for venous thrombosis. Scand J Rheumatol. 2007;36(1):48–52.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kirino Y, Zhou Q, Ishigatsubo Y, Mizuki N, Tugal-Tutkun I, Seyahi E, et al. Targeted resequencing implicates the familial Mediterranean fever gene MEFV and the toll-like receptor 4 gene TLR4 in Behcet disease. Proc Natl Acad Sci U S A. 2013;110(20):8134–9.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Yazici H, Fresko I. Behcet’s disease and other autoinflammatory conditions: what’s in a name? Clin Exp Rheumatol. 2005;23(4 Suppl 38):S1–2.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Ergun T, Gurbuz O, Harvell J, Jorizzo J, White W. The histopathology of pathergy: a chronologic study of skin hyperreactivity in Behcet’s disease. Int J Dermatol. 1998;37(12):929–33.PubMedCrossRefGoogle Scholar
  39. 39.
    Melikoglu M, Uysal S, Krueger JG, Kaplan G, Gogus F, Yazici H, et al. Characterization of the divergent wound-healing responses occurring in the pathergy reaction and normal healthy volunteers. J Immunol. 2006;177(9):6415–21.CrossRefGoogle Scholar
  40. 40.
    Tunc R, Uluhan A, Melikoglu M, Ozyazgan Y, Ozdogan H, Yazici H. A reassessment of the International Study Group criteria for the diagnosis (classification) of Behcet’s syndrome. Clin Exp Rheumatol. 2001;19(5 Suppl 24):S45–7.Google Scholar
  41. 41.
    Cakir N, Yazici H, Chamberlain MA, Barnes CG, Yurdakul S, Atasoy S, et al. Response to intradermal injection of monosodium urate crystals in Behcet’s syndrome. Ann Rheum Dis. 1991;50(9):634–6.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Gogus F, Fresko I, Elbir Y, Eksioglu-Demiralp E, Direskeneli H. Oxidative burst response to monosodium urate crystals in patients with Behcet’s syndrome. Clin Exp Rheumatol. 2005;23(4 Suppl 38):S81–5.PubMedGoogle Scholar
  43. 43.
    Direskeneli H, Eksioglu-Demiralp E, Kibaroglu A, Yavuz S, Ergun T, Akoglu T. Oligoclonal T cell expansions in patients with Behcet’s disease. Clin Exp Immunol. 1999;117(1):166–70.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Esin S, Gul A, Hodara V, Jeddi-Tehrani M, Dilsen N, Konice M, et al. Peripheral blood T cell expansions in patients with Behcet’s disease. Clin Exp Immunol. 1997;107(3):520–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Frassanito M, Dammacco R, Cafforio P, Dammacco F. Th1 polarization of the immune response in Behcet’s disease. Arthritis Rheum. 1999;42:1967–74.PubMedCrossRefGoogle Scholar
  46. 46.
    Sugi-Ikai N, Nakazawa M, Nakamura S, Ohno S, Minami M. Increased frequencies of interleukin-2- and interferon-gamma-producing T cells in patients with active Behcet’s disease. Invest Ophthalmol Vis Sci. 1998;39(6):996–1004.PubMedGoogle Scholar
  47. 47.
    Imamura Y, Kurokawa MS, Yoshikawa H, Nara K, Takada E, Masuda C, et al. Involvement of Th1 cells and heat shock protein 60 in the pathogenesis of intestinal Behcet’s disease. Clin Exp Immunol. 2005;139(2):371–8.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Nara K, Kurokawa MS, Chiba S, Yoshikawa H, Tsukikawa S, Matsuda T, et al. Involvement of innate immunity in the pathogenesis of intestinal Behcet’s disease. Clin Exp Immunol. 2008;152(2):245–51.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lew W, Chang JY, Jung JY, Bang D. Increased expression of interleukin-23 p19 mRNA in erythema nodosum-like lesions of Behcet’s disease. Br J Dermatol. 2008;158(3):505–11.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Mantas C, Direskeneli H, Eksioglu-Demiralp E, Akoglu T. Serum levels of Th2 cytokines IL-4 and IL-10 in Behcet’s disease. J Rheumatol. 1999;26(2):510–2.PubMedGoogle Scholar
  51. 51.
    Suzuki Y, Hoshi K, Matsuda T, Mizushima Y. Increased peripheral blood gamma delta+ T cells and natural killer cells in Behcet’s disease. J Rheumatol. 1992;19(4):588–92.PubMedGoogle Scholar
  52. 52.
    Ahn JK, Chung H, Lee DS, Yu YS, Yu HG. CD8brightCD56+ T cells are cytotoxic effectors in patients with active Behcet’s uveitis. J Immunol. 2005;175(9):6133–42.PubMedCrossRefGoogle Scholar
  53. 53.
    Romagnani S. Human Th17 cells. Arthritis Res Ther. 2008;10(2):206.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hamzaoui K, Hamzaoui A, Guemira F, Bessioud M, Hamza M, Ayed K. Cytokine profile in Behcet’s disease patients. Relationship with disease activity. Scand J Rheumatol. 2002;31(4):205–10.PubMedCrossRefGoogle Scholar
  55. 55.
    Chi W, Zhu X, Yang P, Liu X, Lin X, Zhou H, et al. Upregulated IL-23 and IL-17 in Behcet patients with active uveitis. Invest Ophthalmol Vis Sci. 2008;49(7):3058–64.PubMedCrossRefGoogle Scholar
  56. 56.
    Geri G, Terrier B, Rosenzwajg M, Wechsler B, Touzot M, Seilhean D, et al. Critical role of IL-21 in modulating TH17 and regulatory T cells in Behcet disease. J Allergy Clin Immunol. 2011;128(3):655–64.PubMedCrossRefGoogle Scholar
  57. 57.
    Wang C, Tian Y, Ye Z, Kijlstra A, Zhou Y, Yang P. Decreased interleukin 27 expression is associated with active uveitis in Behcet’s disease. Arthritis Res Ther. 2014;16(3):R117.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Nanke Y, Yago T, Kotake S. The role of Th17 cells in the pathogenesis of Behcet’s disease. J Clin Med. 2017;6(7).PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Lightman S, Taylor SR, Bunce C, Longhurst H, Lynn W, Moots R, et al. Pegylated interferon-alpha-2b reduces corticosteroid requirement in patients with Behcet’s disease with upregulation of circulating regulatory T cells and reduction of Th17. Ann Rheum Dis. 2015;74(6):1138–44.PubMedCrossRefGoogle Scholar
  60. 60.
    Hamzaoui K, Hamzaoui A, Houman H. CD4+CD25+ regulatory T cells in patients with Behcet’s disease. Clin Exp Rheumatol. 2006;24(5 Suppl 42):S71–8.PubMedGoogle Scholar
  61. 61.
    Nanke Y, Kotake S, Goto M, Ujihara H, Matsubara M, Kamatani N. Decreased percentages of regulatory T cells in peripheral blood of patients with Behcet’s disease before ocular attack: a possible predictive marker of ocular attack. Mod Rheumatol. 2008;18(4):354–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Hamzaoui K. Paradoxical high regulatory T cell activity in Behcet’s disease. Clin Exp Rheumatol. 2007;25(4 Suppl 45):S107–13.PubMedGoogle Scholar
  63. 63.
    Ye Z, Deng B, Wang C, Zhang D, Kijlstra A, Yang P. Decreased B and T lymphocyte attenuator in Behcet’s disease may trigger abnormal Th17 and Th1 immune responses. Sci Rep. 2016;6:20401.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Yazici H. The place of Behcet’s syndrome among the autoimmune diseases. Int Rev Immunol. 1997;14(1):1–10.PubMedCrossRefGoogle Scholar
  65. 65.
    Gunaydin I, Ustundag C, Kaner G, Pazarli H, Yurdakul S, Hamuryudan V, et al. The prevalence of Sjogren’s syndrome in Behcet’s syndrome. J Rheumatol. 1994;21(9):1662–4.PubMedGoogle Scholar
  66. 66.
    Direskeneli H. Autoimmunity vs autoinflammation in Behcet’s disease: do we oversimplify a complex disorder? Rheumatology (Oxford). 2006;45(12):1461–5.CrossRefGoogle Scholar
  67. 67.
    Eksioglu-Demiralp E, Kibaroglu A, Direskeneli H, Yavuz S, Karsli F, Yurdakul S, et al. Phenotypic characteristics of B cells in Behcet’s disease: increased activity in B cell subsets. J Rheumatol. 1999;26(4):826–32.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Direskeneli H, Keser G, D’Cruz D, Khamashta MA, Akoglu T, Yazici H, et al. Anti-endothelial cell antibodies, endothelial proliferation and von Willebrand factor antigen in Behcet’s disease. Clin Rheumatol. 1995;14(1):55–61.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Michelson JB, Chisari FV, Kansu T. Antibodies to oral mucosa in patients with ocular Behcet’s disease. Ophthalmology. 1985;92(9):1277–81.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Nagafuchi H, Takeno M, Yoshikawa H, Kurokawa MS, Nara K, Takada E, et al. Excessive expression of Txk, a member of the Tec family of tyrosine kinases, contributes to excessive Th1 cytokine production by T lymphocytes in patients with Behcet’s disease. Clin Exp Immunol. 2005;139(2):363–70.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lule S, Colpak AI, Balci-Peynircioglu B, Gursoy-Ozdemir Y, Peker S, Kalyoncu U, et al. Behcet Disease serum is immunoreactive to neurofilament medium which share common epitopes to bacterial HSP-65, a putative trigger. J Autoimmun. 2017;84:87–96.PubMedCrossRefGoogle Scholar
  72. 72.
    Ohno S, Asanuma T, Sugiura S, Wakisaka A, Aizawa M, Itakura K. HLA-Bw51 and Behcet’s disease. JAMA. 1978;240(6):529.CrossRefGoogle Scholar
  73. 73.
    Gul A, Hajeer AH, Worthington J, Barrett JH, Ollier WE, Silman AJ. Evidence for linkage of the HLA-B locus in Behcet’s disease, obtained using the transmission disequilibrium test. Arthritis Rheum. 2001;44(1):239–40.PubMedCrossRefGoogle Scholar
  74. 74.
    Giza M, Koftori D, Chen L, Bowness P. Is Behcet’s disease a ‘class 1-opathy’? The role of HLA-B∗51 in the pathogenesis of Behcet’s disease. Clin Exp Immunol. 2018;191(1):11–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Ombrello MJ, Kirino Y, de Bakker PI, Gul A, Kastner DL, Remmers EF. Behcet disease-associated MHC class I residues implicate antigen binding and regulation of cell-mediated cytotoxicity. Proc Natl Acad Sci U S A. 2014;111(24):8867–72.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Yasuoka H, Okazaki Y, Kawakami Y, Hirakata M, Inoko H, Ikeda Y, et al. Autoreactive CD8+ cytotoxic T lymphocytes to major histocompatibility complex class I chain-related gene A in patients with Behcet’s disease. Arthritis Rheum. 2004;50(11):3658–62.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Gul A. Pathogenesis of Behcet’s disease: autoinflammatory features and beyond. Semin Immunopathol. 2015;37(4):413–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Gul A, Uyar FA, Inanc M, Ocal L, Barrett JH, Aral O, et al. A weak association of HLA-B∗2702 with Behcet’s disease. Genes Immun. 2002;3(6):368–72.CrossRefGoogle Scholar
  79. 79.
    Wildner G, Thurau SR. Cross-reactivity between an HLA-B27-derived peptide and a retinal autoantigen peptide: a clue to major histocompatibility complex association with autoimmune disease. Eur J Immunol. 1994;24(11):2579–85.CrossRefGoogle Scholar
  80. 80.
    Baum H, Davies H, Peakman M. Molecular mimicry in the MHC: hidden clues to autoimmunity? Immunol Today. 1996;17(2):64–70.PubMedCrossRefGoogle Scholar
  81. 81.
    Kurhan-Yavuz S, Direskeneli H, Bozkurt N, Ozyazgan Y, Bavbek T, Kazokoglu H, et al. Anti-MHC autoimmunity in Behcet’s disease: T cell responses to an HLA-B-derived peptide cross-reactive with retinal-S antigen in patients with uveitis. Clin Exp Immunol. 2000;120(1):162–6.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6(3):173–82.PubMedCrossRefGoogle Scholar
  83. 83.
    Martinon F, Agostini L, Meylan E, Tschopp J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr Biol. 2004;14(21):1929–34.CrossRefGoogle Scholar
  84. 84.
    Gutierrez-Vazquez C, Quintana FJ. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity. 2018;48(1):19–33.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Wang C, Ye Z, Kijlstra A, Zhou Y, Yang P. Decreased expression of the aryl hydrocarbon receptor in ocular Behcet’s disease. Mediat Inflamm. 2014;2014:195094.Google Scholar
  86. 86.
    Palizgir MT, Akhtari M, Mahmoudi M, Mostafaei S, Rezaeimanesh A, Akhlaghi M, et al. Macrophages from Behcet’s disease patients express decreased level of aryl hydrocarbon receptor (AHR) mRNA. Iran J Allergy Asthma Immunol. 2017;16(5):418–24.PubMedGoogle Scholar
  87. 87.
    Wang C, Ye Z, Kijlstra A, Zhou Y, Yang P. Activation of the aryl hydrocarbon receptor affects activation and function of human monocyte-derived dendritic cells. Clin Exp Immunol. 2014;177(2):521–30.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Xavier JM, Shahram F, Sousa I, Davatchi F, Matos M, ABSollahi BS, et al. FUT2: filling the gap between genes and environment in Behcet’s disease? Ann Rheum Dis. 2015;74(3):618–24.CrossRefGoogle Scholar
  89. 89.
    Takeuchi M, Mizuki N, Meguro A, Ombrello MJ, Kirino Y, Satorius C, et al. Dense genotyping of immune-related loci implicates host responses to microbial exposure in Behcet’s disease susceptibility. Nat Genet. 2017;49(3):438–43.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Vabulas RM, Wagner H, Schild H. Heat shock proteins as ligands of toll-like receptors. Curr Top Microbiol Immunol. 2002;270:169–84.PubMedGoogle Scholar
  91. 91.
    Yavuz S, Elbir Y, Tulunay A, Eksioglu-Demiralp E, Direskeneli H. Differential expression of toll-like receptor 6 on granulocytes and monocytes implicates the role of microorganisms in Behcet’s disease etiopathogenesis. Rheumatol Int. 2008;28(5):401–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Do JE, Kwon SY, Park S, Lee ES. Effects of vitamin D on expression of toll-like receptors of monocytes from patients with Behcet’s disease. Rheumatology (Oxford). 2008;47(6):840–8.CrossRefGoogle Scholar
  93. 93.
    Nakano H, Kirino Y, Takeno M, Higashitani K, Nagai H, Yoshimi R, et al. GWAS-identified CCR1 and IL10 loci contribute to M1 macrophage-predominant inflammation in Behcet’s disease. Arthritis Res Ther. 2018;20(1):124.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Inanc N, Mumcu G, Birtas E, Elbir Y, Yavuz S, Ergun T, et al. Serum mannose-binding lectin levels are decreased in Behcet’s disease and associated with disease severity. J Rheumatol. 2005;32(2):287–91.Google Scholar
  95. 95.
    Mantas C, Direskeneli H, Oz D, Yavuz S, Akoglu T. IL-8 producing cells in patients with Behcet’s disease. Clin Exp Rheumatol. 2000;18(2):249–51.PubMedGoogle Scholar
  96. 96.
    Keller M, Spanou Z, Schaerli P, Britschgi M, Yawalkar N, Seitz M, et al. T cell-regulated neutrophilic inflammation in autoinflammatory diseases. J Immunol. 2005;175(11):7678–86.PubMedCrossRefGoogle Scholar
  97. 97.
    Aksu K, Donmez A, Keser G. Inflammation-induced thrombosis: mechanisms, disease associations and management. Curr Pharm Des. 2012;18(11):1478–93.CrossRefGoogle Scholar
  98. 98.
    Melikoglu M, Kural-Seyahi E, Tascilar K, Yazici H. The unique features of vasculitis in Behcet’s syndrome. Clin Rev Allergy Immunol. 2008;35(1–2):40–6.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Lee KH, Cho HJ, Kim HS, Lee WJ, Lee S, Bang D. Activation of extracellular signal regulated kinase 1/2 in human dermal microvascular endothelial cells stimulated by anti-endothelial cell antibodies in sera of patients with Behcet’s disease. J Dermatol Sci. 2002;30(1):63–72.PubMedCrossRefGoogle Scholar
  100. 100.
    Kiraz S, Ertenli I, Ozturk MA, Haznedaroglu IC, Celik I, Calguneri M. Pathological haemostasis and “prothrombotic state” in Behcet’s disease. Thromb Res. 2002;105(2):125–33.PubMedCrossRefGoogle Scholar
  101. 101.
    Chamorro AJ, Marcos M, Hernandez-Garcia I, Calvo A, Mejia JC, Cervera R, et al. Association of allelic variants of factor V Leiden, prothrombin and methylenetetrahydrofolate reductase with thrombosis or ocular involvement in Behcet’s disease: a systematic review and meta-analysis. Autoimmun Rev. 2013;12(5):607–16.CrossRefGoogle Scholar
  102. 102.
    Tokay S, Direskeneli H, Yurdakul S, Akoglu T. Anticardiolipin antibodies in Behcet’s disease: a reassessment. Rheumatology (Oxford). 2001;40(2):192–5.CrossRefGoogle Scholar
  103. 103.
    Haznedaroglu IC, Celik I, Buyukasik Y, Kosar A, Kirazli S, Dundar SV. Haemostasis, thrombosis, and endothelium in Behcet’s disease. Acta Haematol. 1998;99(4):236–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Becatti M, Emmi G, Silvestri E, Bruschi G, Ciucciarelli L, Squatrito D, et al. Neutrophil activation promotes fibrinogen oxidation and thrombus formation in Behcet disease. Circulation. 2016;133(3):302–11.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Yazici H, Mat C, Deniz S, Iscimen A, Yurdakul S, Tuzun Y, et al. Sebum production is increased in Behcet’s syndrome and even more so in rheumatoid arthritis. Clin Exp Rheumatol. 1987;5(4):371–4.Google Scholar
  106. 106.
    Buyon JP, Korchak HM, Rutherford LE, Ganguly M, Weissmann G. Female hormones reduce neutrophil responsiveness in vitro. Arthritis Rheum. 1984;27(6):623–30.PubMedCrossRefGoogle Scholar
  107. 107.
    Yavuz S, Ozilhan G, Elbir Y, Tolunay A, Eksioglu-Demiralp E, Direskeneli H. Activation of neutrophils by testosterone in Behcet’s disease. Clin Exp Rheumatol. 2007;25(4 Suppl 45):S46–51.PubMedGoogle Scholar
  108. 108.
    Yavuz S, Akdeniz T, Hancer V, Bicakcigil M, Can M, Yanikkaya-Demirel G. Dual effects of testosterone in Behcet’s disease: implications for a role in disease pathogenesis. Genes Immun. 2016;17(6):335–41.PubMedCrossRefGoogle Scholar
  109. 109.
    Coit P, Direskeneli H, Sawalha AH. An update on the role of epigenetics in systemic vasculitis. Curr Opin Rheumatol. 2018;30(1):4–15.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Hughes T, Ture-Ozdemir F, Alibaz-Oner F, Coit P, Direskeneli H, Sawalha AH. Epigenome-wide scan identifies a treatment-responsive pattern of altered DNA methylation among cytoskeletal remodeling genes in monocytes and CD4+ T cells from patients with Behcet’s disease. Arthritis Rheumatol. 2014;66(6):1648–58.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Zhu Y, Qiu Y, Yu H, Yi S, Su W, Kijlstra A, et al. Aberrant DNA methylation of GATA binding protein 3 (GATA3), interleukin-4 (IL-4), and transforming growth factor-beta (TGF-beta) promoters in Behcet’s disease. Oncotarget. 2017;8(38):64263–72.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Alipour S, Nouri M, Khabbazi A, Samadi N, Babaloo Z, Abolhasani S, et al. Hypermethylation of IL-10 gene is responsible for its low mRNA expression in Behcet’s disease. J Cell Biochem. 2018;119(8):6614–22.CrossRefGoogle Scholar
  113. 113.
    ABSi A, Khabazi A, Sakhinia E, Alipour S, Talei M, Babaloo Z. Evaluation of SOCS1 methylation in patients with Behcet’s disease. Immunol Lett. 2018;203:15–20.CrossRefGoogle Scholar
  114. 114.
    Alipour S, Sakhinia E, Khabbazi A, Samadi N, Babaloo Z, Azad M, et al. Methylation status of Interleukin-6 gene promoter in patients with Behcet’s disease. Reumatol Clin. 2018. pii:S1699–258X(18)30124–4.Google Scholar
  115. 115.
    Sawalha AH, Dozmorov MG. Epigenomic functional characterization of genetic susceptibility variants in systemic vasculitis. J Autoimmun. 2016;67:76–81.PubMedCrossRefGoogle Scholar
  116. 116.
    Renauer P, Coit P, Sawalha AH. Epigenetics and vasculitis: a comprehensive review. Clin Rev Allergy Immunol. 2016;50(3):357–66.PubMedCrossRefGoogle Scholar
  117. 117.
    Zhou Q, Xiao X, Wang C, Zhang X, Li F, Zhou Y, et al. Decreased microRNA-155 expression in ocular Behcet’s disease but not in Vogt Koyanagi Harada syndrome. Invest Ophthalmol Vis Sci. 2012;53(9):5665–74.PubMedCrossRefGoogle Scholar
  118. 118.
    Na SY, Park MJ, Park S, Lee ES. MicroRNA-155 regulates the Th17 immune response by targeting Ets-1 in Behcet’s disease. Clin Exp Rheumatol. 2016;34(6 Suppl 102):S56–63.PubMedGoogle Scholar
  119. 119.
    Zhou Q, Hou S, Liang L, Li X, Tan X, Wei L, et al. MicroRNA-146a and Ets-1 gene polymorphisms in ocular Behcet’s disease and Vogt-Koyanagi-Harada syndrome. Ann Rheum Dis. 2014;73(1):170–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Oner T, Yenmis G, Tombulturk K, Cam C, Kucuk OS, Yakicier MC, et al. Association of pre-miRNA-499 rs3746444 and pre-miRNA-146a rs2910164 polymorphisms and susceptibility to Behcet’s disease. Genet Test Mol Biomarkers. 2015;19(8):424–30.PubMedCrossRefGoogle Scholar
  121. 121.
    Ugurel E, Sehitoglu E, Tuzun E, Kurtuncu M, Coban A, Vural B. Increased complexin-1 and decreased miR-185 expression levels in Behcet’s disease with and without neurological involvement. Neurol Sci. 2016;37(3):411–6.PubMedCrossRefGoogle Scholar
  122. 122.
    Woo MY, Yun SJ, Cho O, Kim K, Lee ES, Park S. MicroRNAs differentially expressed in Behcet disease are involved in interleukin-6 production. J Inflamm (Lond). 2016;13:22.CrossRefGoogle Scholar
  123. 123.
    Zou J, Ji DN, Shen Y, Guan JL, Zheng SB. Association of reduced heme oxygenase-1 with decreased microRNA-196a2 expression in peripheral blood mononuclear cells of patients with intestinal Behcet’s disease. Ann Clin Lab Sci. 2016;46(6):675–9.PubMedGoogle Scholar
  124. 124.
    Puccetti A, Pelosi A, Fiore PF, Patuzzo G, Lunardi C, Dolcino M. MicroRNA expression profiling in Behcet’s disease. J Immunol Res. 2018;2018:2405150.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Tulunay A, Dozmorov MG, Ture-Ozdemir F, Yilmaz V, Eksioglu-Demiralp E, Alibaz-Oner F, et al. Activation of the JAK/STAT pathway in Behcet’s disease. Genes Immun. 2015;16(2):170–5.PubMedCrossRefGoogle Scholar
  126. 126.
    Xavier JM, Krug T, Davatchi F, Shahram F, Fonseca BV, Jesus G, et al. Gene expression profiling and association studies implicate the neuregulin signaling pathway in Behcet’s disease susceptibility. J Mol Med. 2013;91(8):1013–23.PubMedCrossRefGoogle Scholar
  127. 127.
    Puccetti A, Fiore PF, Pelosi A, Tinazzi E, Patuzzo G, Argentino G, et al. Gene expression profiling in Behcet’s disease indicates an autoimmune component in the pathogenesis of the disease and opens new avenues for targeted therapy. J Immunol Res. 2018;2018:4246965.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Bakir-Gungor B, Remmers EF, Meguro A, Mizuki N, Kastner DL, Gul A, et al. Identification of possible pathogenic pathways in Behcet’s disease using genome-wide association study data from two different populations. Eur J Hum Genet. 2015;23(5):678–87.PubMedCrossRefGoogle Scholar
  129. 129.
    Hu CJ, Pan JB, Song G, Wen XT, Wu ZY, Chen S, et al. Identification of novel biomarkers for Behcet disease diagnosis using human proteome microarray approach. Mol Cell Proteomics. 2017;16(2):147–56.PubMedCrossRefGoogle Scholar
  130. 130.
    Yoshioka T, Kurokawa MS, Sato T, Nagai K, Iizuka N, Arito M, et al. Protein profiles of peripheral blood mononuclear cells as a candidate biomarker for Behcet’s disease. Clin Exp Rheumatol. 2014;32(4 Suppl 84):S9–19.PubMedGoogle Scholar
  131. 131.
    Sherlock JP, Joyce-Shaikh B, Turner SP, Chao CC, Sathe M, Grein J, et al. IL-23 induces spondyloarthropathy by acting on ROR-gammat+ CD3+CD4-CD8- entheseal resident T cells. Nat Med. 2012;18(7):1069–76.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Matzinger P. The danger model: a renewed sense of self. Science. 2002;296(5566):301–5.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Medzhitov R, Janeway CA Jr. Decoding the patterns of self and nonself by the innate immune system. Science. 2002;296(5566):298–300.PubMedCrossRefGoogle Scholar
  134. 134.
    Torchinsky MB, Garaude J, Martin AP, Blander JM. Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation. Nature. 2009;458(7234):78–82.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Haner Direskeneli
    • 1
  • Güher Saruhan-Direskeneli
    • 2
  1. 1.Department of Internal Medicine, Division of RheumatologyMarmara University, School of MedicineIstanbulTurkey
  2. 2.Department of PhysiologyIstanbul University, Istanbul Medical FacultyIstanbulTurkey

Personalised recommendations