Ovarian Stimulation in Women with Breast Cancer

  • Volkan Turan
  • Kutluk OktayEmail author


Breast cancer is the most common cancer type diagnosed among reproductive aged women. Every year, an increasing number of women with breast cancer is successfully treated with cytotoxic chemotherapy and/or radiotherapy. However, many of these patients suffer from infertility and gonadal failure as a result of these treatments. Fertility preservation options are considered in this population before treatment. Embryo and oocyte cryopreservation are effective fertility preservation options but they require ovarian stimulation. Exposure to high levels of estradiol during ovarian stimulation is generally considered contraindicated in women with estrogen-sensitive malignancies. In this chapter, we will be focusing on the feasibility and safety of ovarian stimulation in women with breast cancer.


Breast cancer Ovarian stimulation Letrozole Embryo Oocyte Cryopreservation 


  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.CrossRefGoogle Scholar
  2. 2.
    Turan V, Oktay K. Sexual and fertility adverse effects associated with chemotherapy treatment in women. Expert Opin Drug Saf. 2014;13:775–83.PubMedGoogle Scholar
  3. 3.
    Davies C, Pan H, Godwin J, et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet. 2013;381(9869):805–16.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bedoschi G, Oktay K. Current approach to fertility preservation by embryo cryopreservation. Fertil Steril. 2013;99:1496–502.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Pagani O, O’Neill A, Castiglione M, et al. Prognostic impact of amenorrhoea after adjuvant chemotherapy in premenopausal breast cancer patients with axillary node involvement: results of the International Breast Cancer Study Group (IBCSG) Trial VI. Eur J Cancer. 1998;34:632–40.PubMedCrossRefGoogle Scholar
  6. 6.
    Jonat W, Kaufmann M, Sauerbrei W, et al. Goserelin versus cyclophosphamide, methotrexate, and fluorouracil as adjuvant therapy in premenopausal patients with node-positive breast cancer: The Zoladex Early Breast Cancer Research Association Study. J Clin Oncol. 2002;20:4628–35.PubMedCrossRefGoogle Scholar
  7. 7.
    Goldhirsch A, Gelber RD, Castiglione M. The magnitude of endocrine effects of adjuvant chemotherapy for premenopausal breast cancer patients. The International Breast Cancer Study Group. Ann Oncol. 1990;1:183–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Tham YL, Sexton K, Weiss H, Elledge R, Friedman LC, Kramer R. The rates of chemotherapy-induced amenorrhea in patients treated with adjuvant doxorubicin and cyclophosphamide followed by a taxane. Am J Clin Oncol. 2007;30:126–32.PubMedCrossRefGoogle Scholar
  9. 9.
    Luporsi E, Weber B. The effects of breast cancer chemotherapy on menstrual function. Proc Am Soc Clin Oncol. 1998;17:155A.. [abstr 595]Google Scholar
  10. 10.
    Samuelkutty S, Gluz O, Mohrmann S. Chemotherapy-induced amenorrhea g(CIA) in patients treated with adjuvant CEF/CMF or EC/docetaxel: analysis from a phase III randomized EC/Doc trial. Breast Cancer Res Treat. 2005;94:S105.. [abstr 2063]CrossRefGoogle Scholar
  11. 11.
    Anderson RA, Cameron DA. Pretreatment serum anti-Müllerian hormone predicts long-term ovarian function and bone mass after chemotherapy for early breast cancer. J Clin Endocrinol Metab. 2011;96:1336–43.PubMedCrossRefGoogle Scholar
  12. 12.
    Oktay K, Harvey BE, Partridge AH, Quinn GP, Reinecke J, Taylor HS, Wallace WH, Wang ET, Loren AW. Fertility preservation in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol. 2018;36:1994–2001.PubMedCrossRefGoogle Scholar
  13. 13.
    Pacheco F, Oktay K. Current success and efficiency of autologous ovarian transplantation: a meta-analysis. Reprod Sci. 2017;24:1111–20.PubMedCrossRefGoogle Scholar
  14. 14.
    Oktay K, Karlikaya G. Ovarian function after transplantation of frozen, banked autologous ovarian tissue. N Engl J Med. 2000;342:1919 15 17.CrossRefGoogle Scholar
  15. 15.
    Redig AJ, McAllister SS. Breast cancer as a systemic disease: a view of metastasis. J Intern Med. 2013;274:113–26.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Rodriguez-Wallberg KA, Oktay K. Fertility preservation and pregnancy in women with and without BRCA mutation-positive breast cancer. Oncologist. 2012;17:1409–17.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Practice Committees of American Society for Reproductive Medicine, Society for Assisted Reproductive Technology. Mature oocyte cryopreservation: a guideline. Fertil Steril. 2013;99:37–43.CrossRefGoogle Scholar
  18. 18.
    Rienzi L, Romano S, Albricci L, et al. Embryo development of fresh ‘versus’ vitrified metaphase II oocytes after ICSI: a prospective randomized sibling-oocyte study. Hum Reprod. 2010;25:66–73.PubMedCrossRefGoogle Scholar
  19. 19.
    Kushnir VA, Barad DH, Albertini DF, Darmon SK, Gleicher N. Outcomes of fresh and cryopreserved oocyte donation. JAMA. 2015;314:623–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Zheng S, Huang J, Zhou K, Zhang C, Xiang Q, Tan Z, Wang T, Fu X. 17β-Estradiol enhances breast cancer cell motility and invasion via extra-nuclear activation of actin-binding protein ezrin. PLoS One. 2011;6:e22439.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Oktay K, et al. Fertility preservation in breast cancer patients: IVF and embryo cryopreservation after ovarian stimulation with tamoxifen. Hum Reprod. 2003;18:90–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Oktay K, Hourvitz A, Sahin G, Oktem O, Safro B, Cil A, Bang H. Letrozole reduces estrogen and gonadotropin exposure in women with breast cancer undergoing ovarian stimulation before chemotherapy. J Clin Endocrinol Metab. 2006;91:3885–90.PubMedCrossRefGoogle Scholar
  23. 23.
    Garcia-Velasco JA, Moreno L, Pacheco A, Guillén A, Duque L, Requena A, Pellicer A. The aromatase inhibitor letrozole increases the concentration of intraovarian androgens and improves in vitro fertilization outcome in low responder patients: a pilot study. Fertil Steril. 2005;84:82–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Hu Y, Cortvrindt R, Smitz J. Effects of aromatase inhibition on in vitro follicle and oocyte development analyzed by early preantral mouse follicle culture. Mol Reprod Dev. 2002;61:549–59.PubMedCrossRefGoogle Scholar
  25. 25.
    Turan V, Bedoschi G, Emirdar V, Moy F, Oktay K. Ovarian stimulation in patients with cancer: Impact of letrozole and BRCA mutations on fertility preservation cycle outcomes. Reprod Sci. 2018;25:26–32.PubMedCrossRefGoogle Scholar
  26. 26.
    Oktay K, Türkçüoğlu I, Rodriguez-Wallberg KA. GnRH agonist trigger for women with breast cancer undergoing fertility preservation by aromatase inhibitor/FSH stimulation. Reprod Biomed Online. 2010;20:783–8.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Reddy J, Turan V, Bedoschi G, Moy F, Oktay K. Triggering final oocyte maturation with gonadotropin-releasing hormone agonist (GnRHa) versus human chorionic gonadotropin (hCG) in breast cancer patients undergoing fertility preservation: an extended experience. J Assist Reprod Genet. 2014;31:927–32.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Lee S, Ozkavukcu S, Heytens E, Moy F, Oktay K. Value of early referral to fertility preservation in young women with breast cancer. J Clin Oncol. 2010;28:4683–6.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Turan V, Bedoschi G, Moy F, Oktay K. Safety and feasibility of performing two consecutive ovarian stimulation cycles with the use of letrozole-gonadotropin protocol for fertility preservation in breast cancer patients. Fertil Steril. 2013;100:1681–5.e1.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Sönmezer M, Türkçüoğlu I, Coşkun U, Oktay K. Random-start controlled ovarian hyperstimulation for emergency fertility preservation in letrozole cycles. Fertil Steril. 2011;95:2125.e9–11.CrossRefGoogle Scholar
  31. 31.
    Oktay K, Demirtas E, Son WY, Lostritto K, Chian RC, Tan SL. In vitro maturation of germinal vesicle oocytes recovered after premature luteinizing hormone surge: description of a novel approach to fertility preservation. Fertil Steril. 2008;89:228.e19–22.CrossRefGoogle Scholar
  32. 32.
    Cakmak H, Katz A, Cedars MI, Rosen MP. Effective method for emergency fertility preservation: random-start controlled ovarian stimulation. Fertil Steril. 2013;100:1673–80.PubMedCrossRefGoogle Scholar
  33. 33.
    Domingo J, Guillen V, Ayllon Y, Martinez M, Munoz E, Pellicer A, GarciaVelasco JA. Ovarian response to controlled ovarian hyperstimulation in cancer patients is diminished even before oncological treatment. Fertil Steril. 2012;97:930–4.PubMedCrossRefGoogle Scholar
  34. 34.
    Klock SC, Zhang JX, Kazer RR. Fertility preservation for female cancer patients: early clinical experience. Fertil Steril. 2010;94:149–55.PubMedCrossRefGoogle Scholar
  35. 35.
    Almog B, Azem F, Gordon D, Pauzner D, Amit A, Barkan G, Levin I. Effects of cancer on ovarian response in controlled ovarian stimulation for fertility preservation. Fertil Steril. 2012;98:957–60.PubMedCrossRefGoogle Scholar
  36. 36.
    Robertson AD, Missmer SA, Ginsbug ES. Embryo yield after in vitro fertilization in women undergoing embryo banking for fertility preservation before chemotherapy. Fertil Steril. 2011;95:588–91.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Turan V, Quinn MM, Dayioglu N, Rosen MP, Oktay K. The impact of malignancy on response to ovarian stimulation for fertility preservation: a metaanalysis. Fertil Steril. 2018;110:1347–55. Scholar
  38. 38.
    Oktay K, Turan V, Bedoschi G, Pacheco FS, Moy F. Fertility preservation success subsequent to concurrent aromatase inhibitor treatment and ovarian stimulation in women with breast cancer. J Clin Oncol. 2015;33:2424–9.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Tulandi T, Martin J, Al-Fadhli R, Kabli N, Forman R, Hitkari J, et al. Congenital malformations among 911 newborns conceived after infertility treatment with letrozole or clomiphene citrate. Fertil Steril. 2006;85:1761–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Azim AA, Costantini-Ferrando M, Oktay K. Safety of fertility preservation by ovarian stimulation with letrozole and gonadotropins in patients with breast cancer: a prospective controlled study. J Clin Oncol. 2008;26:2630–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Kim J, Turan V, Oktay K. Long-term safety of letrozole and gonadotropin stimulation for fertility preservation in women with breast cancer. J Clin Endocrinol Metab. 2016;101:1364–71.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Oktay K, Turan V, Titus S, Stobezki R, Liu L. BRCA mutations, dna repair deficiency, and ovarian aging. Biol Reprod. 2015;93:67.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Oktay K, Kim JY, Barad D, Babayev SN. Association of BRCA1 mutations with occult primary ovarian insufficiency: a possible explanation for the link between infertility and breast/ovarian cancer risks. J Clin Oncol. 2010;28:240–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Titus S, Li F, Stobezki R, Akula K, Unsal E, Jeong K, Dickler M, Robson M, Moy F, Goswami S, Oktay K. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci Transl Med. 2013;5:172ra21.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Rzepka-Górska I, Tarnowski B, Chudecka-Głaz A, Górski B, Zielińska D, Tołoczko-Grabarek A. Premature menopause in patients with BRCA1 gene mutation. Breast Cancer Res Treat. 2006;100:59–63.PubMedCrossRefGoogle Scholar
  46. 46.
    Wang ET, Pisarska MD, Bresee C, Chen YD, Lester J, Afshar Y, Alexander C, Karlan BY. BRCA1 germline mutations may be associated with reduced ovarian reserve. Fertil Steril. 2014;102:1723–8.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Lin WT, Beattie M, Chen LM, Oktay K, Crawford SL, Gold EB, Cedars M, Rosen M. Comparison of age at natural menopause in BRCA1/2 mutation carriers with a non-clinic-based sample of women in northern California. Cancer. 2013;119:1652–9.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Lin W, Titus S, Moy F, Ginsburg ES, Oktay K. Ovarian aging in women with BRCA germline mutations. J Clin Endocrinol Metab. 2017;102:3839–47.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Soleimani R, Heytens E, Darzynkiewicz Z, Oktay K. Mechanisms of chemotherapy-induced human ovarian aging: double strand DNA breaks and microvascular compromise. Aging (Albany NY). 2011;3:782–93.CrossRefGoogle Scholar
  50. 50.
    Oktay K, Moy F, Titus S, Stobezki R, Turan V, Dickler M, Goswami S. Age-related decline in DNA repair function explains diminished ovarian reserve, earlier menopause, and possible oocyte vulnerability to chemotherapy in women with BRCA mutations. J Clin Oncol. 2014;32:1093–4.PubMedCrossRefGoogle Scholar
  51. 51.
    Frey JD, Salibian AA, Schnabel FR, Choi M, Karp NS. Non-BRCA1/2 breast cancer susceptibility genes: a new frontier with clinical consequences for plastic surgeons. Plast Reconstr Surg Glob Open. 2017;5:e1564.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and GynecologyYeni Yuzyil University School of MedicineIstanbulTurkey
  2. 2.Department of Obstetrics, Gynecology and Reproductive SciencesYale University School of MedicineNew HavenUSA

Personalised recommendations