Advertisement

Eco-Agri-Food Ecology and Human Health

  • Nadia El-Hage Scialabba
Chapter

Abstract

This chapter reviews epidemiological, toxicological and clinical trials literature to inform on the major disease groups that should be systematically researched in terms of eco-agri-food system risk factors. Disease groups covered include both nutrition-related diseases, as well as agriculture-related diseases linked to agricultural chemicals found in food and the environment, including: hunger-related morbidity, obesity and metabolic disorders; cardio-vascular diseases; food-borne-infections and zoonotic diseases; anti-microbial-resistant infections; chronic respiratory diseases; neoplasms; developmental and reproductive deficiencies (endocrine disruption); neuro-degenerative diseases; immune system disorders, food allergy and other food hypersensitivities; gastro-intestinal tract disorders; and poisoning, injury and certain other consequences of external causes. This paper highlights the need to consider the whole eco-agri-food system when considering the impact of the food system on human health, including overlapping pathways, from access to food and nutrition and dietary patterns, through food and environmental quality, to occupational hazards. In particular, it advocates for a system approach to scientific analysis, as a basis for decision-making to prevent chronic and non-communicable diseases related to eco-agri-food systems.

Keywords

Eco-agri-food system Human health Non-communicable diseases 

Notes

Acknowledgments

The author wishes to thank the following colleagues for having provided insights to an earlier version of this paper, including: Barbara Gemmill-Herren (Biovision Foundation), Bruce Hirsch (Clarence Heller Foundation), Bernhard Johannes Kahl (University of Copenhagen), Peter Kenmore (Santa Clara University), André Leu (International Federation of Organic Agriculture Movements), Alexander Mueller (TMG Think Tank on Sustainability), Nina Teicholz (New York Times), Domenico Scanu (International Society of Doctors for the Environment), Cristina Tirado (International Union for Nutritional Sciences) and Kevin Gallagher (Future of Agriculture Think Tank). Thanks are also due to Isabella and Daniele Scialabba for having checked and organized the list of references.

References

  1. Alavanja, M. C., Hofmann, J. N., Lynch, C. F., Hines, C. J., Barry, K. H., Barker, J., et al. (2014). Non-Hodgkin lymphoma risk and insecticide, fungicide and fumigant use in the agricultural health study. PLoS One, 9(10), e109332.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amato, D., Maravilla, A., Montoya, C., Gaja, O., Revilla, C., Guerra, R., et al. (1998). Acute effects of soft drink intake on calcium and phosphate metabolism in immature and adult rats. Revista de investigacion clinica, 50(3), 185–189.PubMedGoogle Scholar
  3. Ambühl, P. M. (2011). Protein intake in renal and hepatic disease. International Journal for Vitamin and Nutrition Research, 81(2), 162–172.CrossRefGoogle Scholar
  4. Attina, T. M., Hauser, R., Sathyanarayana, S., Hunt, P. A., Bourguignon, J.-P., Myers, J. P., et al. (2016). Exposure to endocrine-disrupting chemicals in the USA: A population-based disease burden and cost analysis. The Lancet Diabetes & Endocrinology, 4(12), 996–1003.CrossRefGoogle Scholar
  5. Barnard, N. D., Bush, A. I., Ceccarelli, A., Cooper, J., de Jager, C. A., Erickson, K. I., et al. (2014). Dietary and lifestyle guidelines for the prevention of Alzheimer’s disease. Neurobiology of Aging, 35, S74–S78.CrossRefGoogle Scholar
  6. Bolis, A. (2012). Le lien entre la maladie de Parkinson et les pesticides officiellement reconnus. Le Monde. Retrieved August 10, 2018, from https://www.lemonde.fr/planete/article/2012/05/09/le-lien-entre-la-maladie-de-parkinson-et-les-pesticides-officiellement-reconnu_1698543_3244.html
  7. Bottemiller Evich, H. (2017) He great nutrient collapse. The atmosphere is literally changing the food we eat, for the worse. And almost nobody is paying attention. The Agenda 2020, Geoff Johnson for Politico. Retrieved from https://www.politico.com/agenda/story/2017/09/13/food-nutrients-carbon-dioxide-000511
  8. Bowe, B., Xie, Y., Li, T., Yan, Y., Xian, H., & Al-Aly, Z. (2018). The 2016 global and national burden of diabetes mellitus attributable to PM 2.5 air pollution. The Lancet Planetary Health, 2(7), e301–e312.CrossRefGoogle Scholar
  9. Brown, V. J. (2008). Dioxin exposure and cardiovascular disease: An analysis of association. Environmental Health Sciences, 116(11), A491.Google Scholar
  10. Calvert, G. M., Karnik, J., Mehler, L., Beckman, J., Morrissey, B., Sievert, J., et al. (2008). Acute pesticide poisoning among agricultural workers in the United States, 1998–2005. American Journal of Industrial Medicine, 51(12), 883–898.CrossRefGoogle Scholar
  11. Centers for Disease Control and Prevention Antibiotic/Antimicrobial Resistance. (2018). Retrieved November 2018, from https://www.cdc.gov/drugresistance/index.html
  12. Centre for Disease Control and Prevention Antibiotic Resistance, Food and Food-Producing Animals. (2018). Retrieved August 10, 2018, from https://www.cdc.gov/features/antibiotic-resistance-food/index.html
  13. Chassaing, B., Koren, O., Goodrich, J. K., Poole, A. C., Srinivasan, S., Ley, R. E., et al. (2015). Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature, 519(7541), 92–96.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chiu, Y.-H., Gaskins, A. J., Williams, P. L., Mendiola, J., Jørgensen, N., Levine, H., et al. (2016). Intake of fruits and vegetables with low-to-moderate pesticide residues is positively associated with semen-quality parameters among young healthy men–3. The Journal of Nutrition, 146(5), 1084–1092.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Clark, R., & Zeto, S. (2000). Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition, 23(7), 867–902.CrossRefGoogle Scholar
  16. Daley, C. A., Abbott, A., Doyle, P. S., Nader, G. A., & Larson, S. (2010). A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutrition Journal, 9(1), 10.CrossRefPubMedPubMedCentralGoogle Scholar
  17. De Roos, A. J., Blair, A., Rusiecki, J. A., Hoppin, J. A., Svec, M., Dosemeci, M., et al. (2004). Cancer incidence among glyphosate-exposed pesticide applicators in the Agricultural Health Study. Environmental Health Perspectives, 113(1), 49–54.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Decherf, S., & Demeneix, B. A. (2011). The obesogen hypothesis: A shift of focus from the periphery to the hypothalamus. Journal of Toxicology and Environmental Health, Part B, 14(5–7), 423–448.CrossRefGoogle Scholar
  19. Delia, G., Florence, M., Pamela, O., Russ, K., Kate, J., Liam, B., et al. (2012). Mapping of poverty and likely zoonoses hotspots. Zoonoses Project 4. Report to the UK Department for International Development. Nairobi: International Livestock Research Institute.Google Scholar
  20. EFSA. (2015). Acrylammids in food. European Food Safety Authority. Retrieved August 10, 2018, from www.efsa.europa.eu/it/corporate/doc/acrylamide150604it.pdf
  21. Etemadi, A., Sinha, R., Ward, M. H., Graubard, B. I., Inoue-Choi, M., Dawsey, S. M., et al. (2017). Mortality from different causes associated with meat, heme iron, nitrates, and nitrites in the NIH-AARP Diet and Health Study: Population based cohort study. British Medical Journal, 357, j1957.CrossRefGoogle Scholar
  22. European Food Safety Authority. (2014). Bisphenol A. Retrieved August 10, 2018, from https://www.efsa.europa.eu/en/topics/topic/bisphenol
  23. Falk, R. T., Williams Pickle, L., Fontham, E. T., Correa, P., & Fraumeni, J. F., Jr. (1988). Life-style risk factors for pancreatic cancer in Louisiana: A case-control study. American Journal of Epidemiology, 128(2), 324–336.CrossRefGoogle Scholar
  24. FAO. (2013). The State of Food and Agriculture 2013: Food systems for better nutrition. Rome: Food Agriculture Organization (FAO).Google Scholar
  25. FAO, & WHO (2009). Environmental Health Criteria 240: Principles and methods for the risk assessment of chemicals in food. Retrieved August 10, 2018, from http://www.who.int/foodsafety/publications/chemical-food/en/
  26. FAO, IFAD, & UNICEF. (2018). The State of Food Security and Nutrition in the World 2017: Building Resilience for Peace and Food Security. FAO. Retrieved August 10, 2018Google Scholar
  27. Fewtrell, L. (2004). Drinking-water nitrate, methemoglobinemia, and global burden of disease: A discussion. Environmental Health Perspectives, 112(14), 1371–1374.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Goran, M. I., Ulijaszek, S. J., & Ventura, E. E. (2013). High fructose corn syrup and diabetes prevalence: A global perspective. Global Public Health, 8(1), 55–64.CrossRefGoogle Scholar
  29. Gottfried, O. (2016). Politics of poverty. Food, agriculture and livelihoods. Ideas and Analysis from Oxfam America’s policy experts. Retrieved August 10, 2018, from https://politicsofpoverty.oxfamamerica.org/category/food-agriculture-livelihoods/
  30. Grandi, M. (2008). Immunologia e fitoterapia. Medicina naturale.Google Scholar
  31. Green Templeton College. (2017). Symposium on Health and the Environment in Emerging Markets, 12–15 January 2017. Oxford: An Aide-Mémoire.Google Scholar
  32. Grosso, G., Marventano, S., Yang, J., Micek, A., Pajak, A., Scalfi, L., et al. (2017). A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: Are individual components equal? Critical Reviews in Food Science and Nutrition, 57(15), 3218–3232.CrossRefGoogle Scholar
  33. Gu, K., Cowie, C. C., & Harris, M. I. (1998). Mortality in adults with and without diabetes in a national cohort of the US population, 1971–1993. Diabetes Care, 21(7), 1138–1145. Retrieved from http://www.fao.org/docrep/018/i3300e/i3300e.pdf
  34. Gu, B., Sutton, M. A., Chang, S. X., Ge, Y., & Chang, J. (2014). Agricultural ammonia emissions contribute to China’s urban air pollution. Frontiers in Ecology and the Environment, 12(5), 265–266.CrossRefGoogle Scholar
  35. Guarner, F., Lazaro, S., Gascon, E., Royo, M., Eximan, & Herrero, E. (2009). Map of Digestive Disorders and Diseases. World Gastroenterology Organization. Retrieved August 10, 2018Google Scholar
  36. Guasch-Ferré, M., Babio, N., Martínez-González, M. A., Corella, D., Ros, E., Martín-Peláez, S., Estruch, R., Arós, F., Gómez-Gracia, E., Fiol, M., Santos-Lozano, J. M., Serra-Majem, L., Bulló, M., Toledo, E., Barragán, R., Fitó, M., Gea, A., & Salas-Salvadó, J. (2015). Dietary fat intake and risk of cardiovascular disease and all-cause mortality in a population at high risk of cardiovascular disease. The American Journal of Clinical Nutrition, 102(6), 1563–1573.CrossRefGoogle Scholar
  37. Guyton, K. Z., Loomis, D., Grosse, Y., El Ghissassi, F., Benbrahim-Tallaa, L., Guha, N., et al. (2015). Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. The Lancet Oncology, 16(5), 490–491.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hamley, S. (2017). The effect of replacing saturated fat with mostly n-6 polyunsaturated fat on coronary heart disease: A meta-analysis of randomised controlled trials. Nutrition Journal, 16(1), 30.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hartwig, A., Pelzer, A., Burnouf, D., Titéca, H., Delincée, H., Briviba, K., et al. (2007). Toxicological potential of 2-alkylcyclobutanones–specific radiolytic products in irradiated fat-containing food–in bacteria and human cell lines. Food and Chemical Toxicology, 45(12), 2581–2591.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hites, R. A., Foran, J. A., Carpenter, D. O., Hamilton, M. C., Knuth, B. A., & Schwager, S. J. (2004). Global assessment of organic contaminants in farmed salmon. Science, 303(5655), 226–229.CrossRefGoogle Scholar
  41. Hribar, C. (2010). Understanding concentrated animal feeding operations and their impact on communities.Google Scholar
  42. IARC, & WHO. (2009). IARC monographs on the evaluation of carcinogenic risks to humans. International Agency for Research on Cancer. Retrieved August 10, 2018, from https://monographs.iarc.fr/wp-content/uploads/2018/06/Suppl7.pdf
  43. IARC, & WHO. (2018). European Prospective Investigation into Cancer and Nutrition (EPIC). Retrieved August 10, 2018, from http://epic.iarc.fr/
  44. IFPRI. (2016). Global nutrition report 2016: From promise to impact: Ending malnutrition by 2030. Retrieved August 10, 2018, from http://www.ifpri.org/cdmref/p15738coll2/id/130354/filename/130565.pdf
  45. Institute for Neurodegenerative Diseases. (2018). Retrieved August 10, 2018, from https://ind.ucsf.edu/
  46. IPES-Food/Global Alliance for the Future of Food. (2017). Unravelling the Food-Health Nexus. Addressing practices, political economy, and power relations to build healthier food systems. International panel of experts on sustainable food systems. IPES-food. Retrieved August 10, 2018, from http://www.ipes-food.org/images/Reports/Health_FullReport.pdf
  47. JPND Research. (2018). Why choose neurodegenerative research? Retrieved August 10, 2018, from http://www.neurodegenerationresearch.eu/about/why/
  48. Kucek, L. K., Veenstra, L. D., Amnuaycheewa, P., & Sorrells, M. E. (2015). A grounded guide to gluten: How modern genotypes and processing impact wheat sensitivity. Comprehensive Reviews in Food Science and Food Safety, 14(3), 285–302.CrossRefGoogle Scholar
  49. Kuipers, R., De Graaf, D., Luxwolda, M., Muskiet, M., Dijck-Brouwer, D., & Muskiet, F. (2011). Saturated fat, carbohydrates and cardiovascular. Complex Acute Medicine, 353, 372.Google Scholar
  50. Lars, N. (2016). The EU Pesticide Blacklist. Greenpeace. Retrieved August 10, 2018, from https://www.greenpeace.org/slovakia/PageFiles/736013/EU%20Pesticide%20Blacklist%202016.pdf
  51. Lau, A., & Tymianski, M. (2010). Glutamate receptors, neurotoxicity and neurodegeneration. Pflügers Archiv-European Journal of Physiology, 460(2), 525–542.CrossRefGoogle Scholar
  52. Lebov, J. F., Engel, L. S., Richardson, D., Hogan, S. L., Hoppin, J. A., & Sandler, D. P. (2016). Pesticide use and risk of end-stage renal disease among licensed pesticide applicators in the Agricultural Health Study. Occupational and Environmental Medicine, 73(1), 3–12.CrossRefGoogle Scholar
  53. Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., & Pozzer, A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569), 367–371.CrossRefGoogle Scholar
  54. Li, L., & Hölscher, C. (2007). Common pathological processes in Alzheimer disease and type 2 diabetes: A review. Brain Research Reviews, 56(2), 384–402.CrossRefGoogle Scholar
  55. Litchfield, M. H. (1999). Agricultural work related injury and ill-health and the economic cost. Environmental Science and Pollution Research, 6(3), 175.CrossRefGoogle Scholar
  56. Loladze, I. (2014). Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife, 3, e02245.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mariotto, A. B., Robin Yabroff, K., Shao, Y., Feuer, E. J., & Brown, M. L. (2011). Projections of the cost of cancer care in the United States: 2010–2020. Journal of the National Cancer Institute, 103(2), 117–128.CrossRefPubMedPubMedCentralGoogle Scholar
  58. May, S., Romberger, D. J., & Poole, J. A. (2012). Respiratory health effects of large animal farming environments. Journal of Toxicology and Environmental Health, Part B, 15(8), 524–541.CrossRefGoogle Scholar
  59. Mayer, A.-M. (1997). Historical changes in the mineral content of fruits and vegetables. British Food Journal, 99(6), 207–211.CrossRefGoogle Scholar
  60. McCann, D., Barrett, A., Cooper, A., Crumpler, D., Dalen, L., Grimshaw, K., et al. (2007). Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: A randomised, double-blinded, placebo-controlled trial. The Lancet, 370(9598), 1560–1567.CrossRefGoogle Scholar
  61. Meinert, R., Schüz, J., Kaletsch, U., Kaatsch, P., & Michaelis, J. (2000). Leukemia and non-Hodgkin’s lymphoma in childhood and exposure to pesticides: Results of a register-based case-control study in Germany. American Journal of Epidemiology, 151(7), 639–646.CrossRefGoogle Scholar
  62. Menegaux, F., Baruchel, A., Bertrand, Y., Lescoeur, B., Leverger, G., Nelken, B., et al. (2006). Household exposure to pesticides and risk of childhood acute leukaemia. Occupational and Environmental Medicine, 63(2), 131–134.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Mesnage, R., Renney, G., Séralini, G.-E., Ward, M., & Antoniou, M. N. (2017). Multiomics reveal non-alcoholic fatty liver disease in rats following chronic exposure to an ultra-low dose of roundup herbicide. Scientific Reports, 7, 39328.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Migaleddu, V. (1952-2017). International Society of Doctors for the Environment. Italy: Sardegna.Google Scholar
  65. Monge, P., Wesseling, C., Guardado, J., Lundberg, I., Ahlbom, A., Cantor, K. P., et al. (2007). Parental occupational exposure to pesticides and the risk of childhood leukemia in Costa Rica. Scandinavian Journal of Work, Environment & Health, 33, 293–303.CrossRefGoogle Scholar
  66. Neel, B. A., & Sargis, R. M. (2011). The paradox of progress: Environmental disruption of metabolism and the diabetes epidemic. Diabetes, 60(7), 1838–1848.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Newman, K. L., Leon, J. S., & Newman, L. S. (2015). Estimating occupational illness, injury, and mortality in food production in the United States: A farm-to-table analysis. Journal of Occupational and Environmental Medicine/American College of Occupational and Environmental Medicine, 57(7), 718–725.CrossRefPubMedPubMedCentralGoogle Scholar
  68. NRC Committee on Comparative Toxicity of Naturally Occurring Carcinogens. (1996). Carcinogens and anti-carcinogens in the human diet: A comparison of naturally occurring and synthetic substances. Washington, DC: National Academies Press.Google Scholar
  69. O’Connor, L. E., Kim, J. E., & Campbell, W. W. (2016). Total red meat intake of ≥0.5 servings/d does not negatively influence cardiovascular disease risk factors: A systemically searched meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition, 105(1), 57–69.CrossRefPubMedPubMedCentralGoogle Scholar
  70. O’Neill, J. (2014). Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. Review on Antimicrobial Resistance, 20, 1–16. Retrieved from https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf
  71. Parisani, V. (2018) Grano Creso, sensibilità al glutine e celiachia: esiste una correlazione? Retrieved August 10, 2018, from http://www.laprovinciamarche.it/index.php?option=com_content&view=article&id=30972:grano-creso-sensibilita-al-glutine-e-celachia-esiste-una-correlazione&catid=4:salute-marche&Itemid=3
  72. Plassman, B. L., Hayden, K. M., Potter, G. G., Chen, H., Kamel, F., Burke, J. R., et al. (2016). Design of the agricultural health study of memory in aging. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 12(7), P990–P991.CrossRefGoogle Scholar
  73. Ponnampalam, E., Mann, N., & Sinclair, A. (2006). Effect of feeding systems on omega-3 fatty acids, conjugated linoleic acid and trans fatty acids in Australian beef cuts: Potential impact on human health. Asia Pacific Journal of Clinical Nutrition, 15(1), 21–29.PubMedGoogle Scholar
  74. Robson, S. (2018). Beyond gluten intolerance. Radiation mutated wheat. Retrieved August 10, 2018, from https://diagnosticdetectives.com/beyond-gluten-intolerance/
  75. Schafer, K. S., Reeves, M., Spitzer, S., & Kegley, S. E. (2004). Chemical trespass: Pesticides in our bodies and corporate accountability. Pesticide Action Network North America. PANNA. Retrieved August 10, 2018, from https://www.panna.org/sites/default/files/ChemTres2004Eng.pdf
  76. Schernhammer, E. S., Bertrand, K. A., Birmann, B. M., Sampson, L., Willett, W. C., & Feskanich, D. (2012). Consumption of artificial sweetener–and sugar-containing soda and risk of lymphoma and leukemia in men and women. The American Journal of Clinical Nutrition, 96(6), 1419–1428.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Schinasi, L., & Leon, M. (2014). Non-Hodgkin lymphoma and occupational exposure to agricultural pesticide chemical groups and active ingredients: A systematic review and meta-analysis. International Journal of Environmental Research and Public Health, 11(4), 4449–4527.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Schwalfenberg, G. K. (2012). The alkaline diet: Is there evidence that an alkaline pH diet benefits health? Journal of Environmental and Public Health, 2012, 1–7.Google Scholar
  79. Sprong, R. C., Hulstein, M. F., & Van der Meer, R. (2002). Dietary calcium phosphate promotes Listeria monocytogenes colonization and translocation in rats fed diets containing corn oil but not milk fat. The Journal of Nutrition, 132(6), 1269–1274.CrossRefGoogle Scholar
  80. Stenius, F., Swartz, J., Lilja, G., Borres, M., Bottai, M., Pershagen, G., et al. (2011). Lifestyle factors and sensitization in children—The ALADDIN birth cohort. Allergy, 66(10), 1330–1338.CrossRefGoogle Scholar
  81. Stevenson, M. (1994). Nutritional and other implications of irradiating meat. Proceedings of the Nutrition Society, 53(2), 317–325. Retrieved from https://www.cambridge.org/core/services/aop-cambridge-core/content/view/C59B410975BFF9B6AC547EE0C7FB4679/S0029665194000418a.pdf/div-class-title-nutritional-and-other-implications-of-irradiating-meat-div.pdf
  82. Street, M., Angelini, S., Bernasconi, S., Burgio, E., Cassio, A., Catellani, C., et al. (2018). Current knowledge on endocrine disrupting chemicals (EDCs) from animal biology to humans, from pregnancy to adulthood: Highlights from a national Italian meeting. International Journal of Molecular Sciences, 19(6), 1647.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Tanner, C. M., Ross, G. W., Jewell, S. A., Hauser, R. A., Jankovic, J., Factor, S. A., et al. (2009). Occupation and risk of parkinsonism: A multicenter case-control study. Archives of Neurology, 66(9), 1106–1113.CrossRefGoogle Scholar
  84. Trasande, L., Zoeller, R. T., Hass, U., Kortenkamp, A., Grandjean, P., Myers, J. P., et al. (2015). Estimating burden and disease costs of exposure to endocrine-disrupting chemicals in the European Union. The Journal of Clinical Endocrinology & Metabolism, 100(4), 1245–1255.CrossRefGoogle Scholar
  85. Uribarri, J., Woodruff, S., Goodman, S., Cai, W., Chen, X., Pyzik, R., et al. (2010). Advanced glycation end products in foods and a practical guide to their reduction in the diet. Journal of the American Dietetic Association, 110(6), 911–916.e12.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Van Bruggen, A., He, M., Shin, K., Mai, V., Jeong, K., Finckh, M., et al. (2018). Environmental and health effects of the herbicide glyphosate. Science of the Total Environment, 616, 255–268.CrossRefGoogle Scholar
  87. Wallace-Wells, D. (2017). The Uninhabitable Earth: Famine, economic collapse, a sun that cooks us: What climate change could wreak—Sooner than you think. New York Magazine, 9.Google Scholar
  88. Wang, Y., Beydoun, M. A., Liang, L., Caballero, B., & Kumanyika, S. K. (2008). Will all Americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic. Obesity, 16(10), 2323–2330.CrossRefGoogle Scholar
  89. Ward, M. H. (2009). Too much of a good thing? Nitrate from nitrogen fertilizers and cancer. Reviews on Environmental Health, 24(4), 357–363.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Weyer, P. J., Cerhan, J. R., Kross, B. C., Hallberg, G. R., Kantamneni, J., Breuer, G., et al. (2001). Municipal drinking water nitrate level and cancer risk in older women: The Iowa Women’s Health Study. Epidemiology, 12(3), 327–338.CrossRefGoogle Scholar
  91. WHO. (2009a). Global burden of disease. Retrieved August 10, 2018, from http://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_report_full.pdf
  92. WHO. (2009b). Global health risks.Google Scholar
  93. WHO. (2011). Environmental and occupational cancers. Retrieved August 10, 2018Google Scholar
  94. WHO. (2014). Antimicrobial resistance: Global report on surveillance.Google Scholar
  95. WHO. (2015a). Cancer. Retrieved August 10, 2018, from http://www.who.int/en/news-room/fact-sheets/detail/cancer
  96. WHO. (2015b). Global Health Observatory Data. Retrieved August 10, 2018, from http://www.who.int/gho/mortality_burden_disease/en/
  97. WHO. (2015c). Ibid. Retrieved August 10, 2018Google Scholar
  98. WHO. (2015d). WHO estimates of the global burden of foodborne diseases: Foodborne disease burden epidemiology reference group 2007–2015. Retrieved August 10, 2018, from https://www.paho.org/hq/dmdocuments/2015/2015-cha-who-estimates-global-foodborne-diseases.pdf
  99. WHO. (2016a). Pneumonia. Fact Sheet. Retrieved August 10, 2018, from http://www.who.int/news-room/fact-sheets/detail/pneumonia
  100. WHO. (2016b). Dioxins and their effects on human health. Retrieved August 10, 2018, from http://www.who.int/news-room/fact-sheets/detail/dioxins-and-their-effects-on-human-health
  101. WHO. (2018a). Antimicrobial resistance. Fact sheet. Retrived August 10, 2018, from https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.
  102. WHO. (2018b). Food safety. Retrieved August 10, 2018, from http://www.who.int/foodsafety/areas_work/zoonose/en/
  103. WHO, & FAO. (2003). Diet, nutrition and the prevention of chronic diseases. WHO Technical Report Series 916. Retrieved August 10, 2018, from http://apps.who.int/iris/bitstream/10665/42665/1/WHO_TRS_916.pdf?ua=1
  104. WHO Mortality and Global Health Estimates. (2018). Global health observatory data. Retrieved August 10, 2018, from www.who.int/gho/mortality_burden_diseases/en/
  105. WHO, & UNEP. (2013). State of the science of endocrine disrupting chemicals 2012. Retrieved August 10, 2018, http://www.who.int/iris/bitstream/10665/78101/1/9789241505031_eng.pdf
  106. WHO, WHS, & WSO. (2011). Global atlas on CVD prevention and control. Retrieved August 10, 2018, from http://apps.who.int/iris/bitstream/10665/44701/1/9789241564373_eng.pdf?ua=1
  107. WHO, WHF, & WSO. (2017). Cardiovascular diseases. WHO. Retrieved August 10, 2018, from http://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
  108. World Cancer Research Fund/American Institute for Cancer Research. (2007). Food, nutrition, physical activity, and the prevention of cancer: A global perspective. Washington, DC: American Institute for Cancer Research.Google Scholar
  109. World Heart Federation. (2018). The costs of cardio-vascular diseases. Retrieved August 10, 2018, from http://www.championadvocates.org/it/champion-advocates-programme/the-costs-of-cvd
  110. Zhu, C., Kobayashi, K., Loladze, I., Zhu, J., Jiang, Q., Xu, X., et al. (2018). Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Science Advances, 4(5), eaaq1012.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nadia El-Hage Scialabba
    • 1
  1. 1.Food and Agriculture Organization of the United NationsRomeItaly

Personalised recommendations