Understanding Cancer Cell Behavior Through 3D Printed Bone Microenvironments

  • Yangyang Luo
  • Anusha Elumalai
  • Ahmed Humayun
  • David K. MillsEmail author


Cancer is a significant health problem worldwide and forms through orchestrated and highly complex biological processes. This process is mediated through biophysical and biochemical signals that develop from within the tumor microenvironment. Although two-dimensional culture systems of established breast cancer cell lines are the most widely used model for cancer biology and preclinical drug assessments, it poorly mimics the behavior of cancer cells in vivo and fails to reproduce the in vivo tumor microenvironment, and accordingly, the data it produces is not always predictive. Effective therapeutic strategies require a cost-efficient in vitro model that can more accurately resemble the in vivo tumor microenvironment, thus permitting a variety of in vitro studies. Rapid prototyping (RP) is one of the most promising techniques for designing and producing three-dimensional (3D) systems (hydrogels, scaffolds) for drug efficacy analysis, developing drug delivery systems, and tissue engineering applications. The application of 3D bioprinting in engineering a cancer cell microenvironment will be the focus of this chapter. We will describe previous model systems used to understand cancer cell behavior. In particular, bioprinting methods and strategies that emphasize recreation of a cancer microenvironment that promotes cultured cancer cells to express a more relevant phenotype will be examined. Our focus will be on the 3D bioprinted models that serve as a predictive model for understanding mechanisms leading to cancer cell metastasis, permit real-time study of cell–cell interactions, enable the analysis of growth factors and cytokine expression that supports tumor cell growth or survival, and the molecular cross-talk between tumor and stromal cells. The chapter will conclude with an assessment of the current state-of-the-art and future prospects.


Cancer Culture models Drug delivery 3D bioprinting Hydrogels Metastasis Microenvironment Rapid prototyping Nanoparticles 



Support for this work was provided by the Center for Dental, Oral & Craniofacial Tissue & Organ Regeneration (C-DOCTOR) with the support of NIH NIDCR (U24DE026914).


  1. 1.
    Siegel RL, Miller KD, Jemal A (2017) Cancer statistics. CA Cancer J Clin 67:7–30Google Scholar
  2. 2.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90. [PubMed: 21296855]Google Scholar
  3. 3.
    Luengo-Fernandez R, Leal J, Gray A et al (2013) Economic burden of cancer across the European Union: a population-based cost analysis. Lancet Oncol 14:1165–1174PubMedGoogle Scholar
  4. 4.
    Mariotto AB, Yabroff KR, Shao Y et al (2011) Projections of the cost of cancer care in the United States: 2010–2020. J Natl Cancer Inst 103:117–128PubMedPubMedCentralGoogle Scholar
  5. 5.
  6. 6.
    DeSantis C, Siegel R, Bandi P, Jemal A (2011) Breast cancer statistics. CA Cancer J Clin 61:409–418. [PubMed: 21969133]PubMedGoogle Scholar
  7. 7.
    O’Shaughnessy J (2005) Extending survival with chemotherapy in metastatic breast cancer. Oncologist 10(Suppl 3):20–29. [PubMed: 16368868]PubMedGoogle Scholar
  8. 8.
    DePalma M, Hanahan D (2012) The biology of personalized cancer medicine: facing individual complexities underlying hallmark capabilities. Mol Oncol 6(2):111–127Google Scholar
  9. 9.
    Lawler M, Alsina D, Adams RA (2018) Critical research gaps and recommendations to inform research prioritization for more effective prevention and improved outcomes in colorectal cancer. Gut 67:179–193PubMedGoogle Scholar
  10. 10.
    Lord CJ, Ashworth A (2010) Biology-driven cancer drug development: back to the future. BMC Biol 8:38PubMedPubMedCentralGoogle Scholar
  11. 11.
    Ghosh S, Ghosh S (2004) Recent research and development in synthetic polymer-based drug delivery systems. J Chem Res 4:241–246Google Scholar
  12. 12.
    Apicella A, Cappello B, Delnobile MA et al (1994) Poly(ethylene oxide)-based delivery systems. Polym Drugs Drug Adm 545:111–125Google Scholar
  13. 13.
    Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173PubMedPubMedCentralGoogle Scholar
  14. 14.
    Han HD, Song CK, Park YS et al (2008) A chitosan hydrogel-based cancer drug delivery system exhibits synergistic antitumor effects by combining with a vaccinia viral vaccine. Int J Pharm 350:27–3415PubMedGoogle Scholar
  15. 15.
    Verma D, Gulati N, Kaul S, Mukherjee S, Nagaich U (2018) Protein based nanostructures for drug delivery. J Pharm (Cairo) 2018:9285854., 18 pagesCrossRefGoogle Scholar
  16. 16.
    Jao D, Xue Y, Medina J, Hu X (2017) Protein-based drug-delivery materials. Materials 10(5):517. Scholar
  17. 17.
    Fuchs S, Coester C (2010) Protein-based nanoparticles as a drug delivery system: chances, risks, perspectives. J Drug Deliv Sci Technol 20(5):331–342Google Scholar
  18. 18.
    Yamazoe H (2018) Multifunctional protein microparticles for medical applications. Biomaterials 155(1):1–12PubMedGoogle Scholar
  19. 19.
    MaHam A, Tang Z, Wu Z, Wang J, Lin Y (2009) Protein-based nanomedicine platforms for drug delivery. Small 5(15):1706–1721PubMedGoogle Scholar
  20. 20.
    Talebian S, Foroughi J, Wade SJ, Vine KL, Dolatshahi-Pirouz A, Mehrali M, Conde J, Wallace G (2018) Biopolymers for antitumor implantable drug delivery systems: recent advances and future outlook. Adv Mater 30(31):e1706665. Scholar
  21. 21.
    Kawaski ES, Player A (2005) Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine 1:101–109Google Scholar
  22. 22.
    Chakraborty C, Pal S, Doss GP, Wen ZH, Lin CS (2013) Nanoparticles as ‘smart’ pharmaceutical delivery. Front Biosci (Landmark Ed) 1(18):1030–1050Google Scholar
  23. 23.
    Fioramonti Calixto GM, Bernegossi J, Marise de Freitas L, Carla Raquel Fontana CR, Chorilli M (2016) Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules 21:342. Scholar
  24. 24.
    Wolinsky JB, Colson YL, Grinstaff MW (2012) Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J Control Release 159:14–26PubMedGoogle Scholar
  25. 25.
    Cafaggi S, Russo E, Stefani R, Leardi R, Caviglioli G, Parodi B et al (2007) Preparation and evaluation of nanoparticles made of chitosan or N-trimethyl chitosan and a cisplatin-alginate complex. J Control Release 121:110–123PubMedGoogle Scholar
  26. 26.
    Mishra N, Pant P, Porwal A, Jaiswal J, Samad M, Tiwari S (2016) Targeted drug delivery: a review. Am J PharmTech Res 6(1):1–24Google Scholar
  27. 27.
    Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 6(3):215–223Google Scholar
  28. 28.
    Ruiz ME, Gantner ME, Talevi A (2014) Applications of nanosystems to anticancer drug therapy (Part II. Dendrimers, micelles, lipid-based nanosystems). Recent Pat Anticancer Drug Discov 9(1):99–128PubMedGoogle Scholar
  29. 29.
    Katsogiannou M, Peng L, Catapano CV, Rocchi P (2011) Active-targeted nanotherapy strategies for prostate cancer. Curr Cancer Drug Targets 11(8):954–965PubMedGoogle Scholar
  30. 30.
    Aguilar ZP (2013) Targeted drug delivery, Chap. 5. In: Nanomaterials for medical applications. Elsevier, New York, pp 181–234, ISBN 9780123850898Google Scholar
  31. 31.
    Tang MF, Lei L, Guo SR, Huang WL (2010) Recent progress in nanotechnology for cancer therapy. Chin J Cancer 29(9):775–780PubMedGoogle Scholar
  32. 32.
    Grimes R, Luo YY, Mills DK (2018) Bifunctionalized clay nanoparticles for cancer therapy. Appl Sci 8:281. Scholar
  33. 33.
    Kalepu S, Manthina M, Padavala V (2013) Oral lipid-based drug delivery systems—an overview. Acta Pharm Sin B 3(6):361–372Google Scholar
  34. 34.
    Yingchoncharoen P, Kalinowski DS, Richardson DR (2016) Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev 68(3):701–787PubMedPubMedCentralGoogle Scholar
  35. 35.
    Porter CJ, Trevaskis NL, Charman WN (2007) Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 6(3):231PubMedGoogle Scholar
  36. 36.
    Shrestha H, Bala R, Arora S (2014) Lipid-based drug delivery systems. J Pharm (Cairo) 2014:801820Google Scholar
  37. 37.
    Porter CJ, Pouton CW, Cuine JF, Charman WN (2008) Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev 60(6):673–691PubMedGoogle Scholar
  38. 38.
    Jannin V, Musakhanian J, Marchaud D (2008) Approaches for the development of solid and semi-solid lipid-based formulations. Adv Drug Deliv Rev 60(6):734–746PubMedGoogle Scholar
  39. 39.
    Savla R, Browne J, Plassat V, Wasan KM, Wasan EK (2017) Review and analysis of FDA approved drugs using lipid-based formulations. Drug Dev Ind Pharm 43(11):1743–1758PubMedGoogle Scholar
  40. 40.
    Lu C, Perez-Soler R, Piperdi B, Walsh GL, Swisher SG, Smythe WR, Shin HJ, Ro JY, Feng L, Truong M et al (2005) Phase II study of a liposome-entrapped cis-platin analog (L-NDDP) administered intrapleurally and pathologic response rates in patients with malignant pleural mesothelioma. J Clin Oncol 23:3495–3501PubMedGoogle Scholar
  41. 41.
    Lemke A, Kiderlen AF, Kayser O (2005) Amphotericin B. Appl Microbiol Biotechnol 68:151–162PubMedGoogle Scholar
  42. 42.
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1–2):1–20PubMedGoogle Scholar
  43. 43.
    Mauro FM (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev 5:151–171Google Scholar
  44. 44.
    Bamrungsap S, Zilong Z, Chen T, Wang L, Li C, Fu T, Tan W (2012) A focus on nanoparticles as a drug delivery system. Nanomedicine 7(8):1253–1271PubMedGoogle Scholar
  45. 45.
    Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941PubMedPubMedCentralGoogle Scholar
  46. 46.
    Pérez-Herrero E, Fernández-Medarde A (2015) Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79PubMedGoogle Scholar
  47. 47.
    Kalaydina RV, Bajwa K, Qorri B, Decarlo A, Szewczuk MR (2018) Recent advances in “smart” delivery systems for extended drug release in cancer therapy. Int J Nanomedicine 13:4727PubMedPubMedCentralGoogle Scholar
  48. 48.
    Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2(4):282–289PubMedPubMedCentralGoogle Scholar
  49. 49.
    Conde J, Doria G, Baptista P (2012) Noble metal nanoparticles applications in cancer. J Drug Deliv 2012:751075., 12 pagesCrossRefPubMedGoogle Scholar
  50. 50.
    Gerweck LE (1985) Hyperthermia in cancer therapy: the biological basis and unresolved questions. Cancer Res 45(8):3408–3414PubMedGoogle Scholar
  51. 51.
    Wust P et al (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3(8):487–497PubMedGoogle Scholar
  52. 52.
    Haranaka K, Sakurai A, Satomi N (1987) Antitumor activity of recombinant human tumor necrosis factor in combination with hyperthermia, chemotherapy, or immunotherapy. J Biol Response Mod 6(4):379–391PubMedGoogle Scholar
  53. 53.
    Chen J et al (2007) Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 7(5):1318–1322PubMedPubMedCentralGoogle Scholar
  54. 54.
    Tietze R, Lyer S, Dürr S et al (2013) Efficient drug-delivery using magnetic nanoparticles—biodistribution and therapeutic effects in tumour bearing rabbits. Nanomedicine 9:961–971PubMedGoogle Scholar
  55. 55.
    Evans ER et al (2018) Metallic nanoparticles for cancer immunotherapy. Mater Today 21(6):673–685Google Scholar
  56. 56.
    Guan X (2015) Cancer metastases: challenges and opportunities. Acta Pharm Sin B 5(5):402–418PubMedPubMedCentralGoogle Scholar
  57. 57.
    Jiang WG, Sanders AJ, Katoh M, Ungefroren U, Gieseler F, Prince M, Thompson SK, Zollo M, Spano D (2015) Tissue invasion and metastasis: molecular, biological and clinical perspectives. Semin Cancer Biol 35:S244–S275PubMedGoogle Scholar
  58. 58.
    Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L, Goncalves F (2017) Bone metastases: an overview. Oncol Rev 11(1):321. Scholar
  59. 59.
    Croucher PI, McDonald MM, Martin TJ (2016) Bone metastasis: the importance of the neighbourhood. Nat Rev Cancer 16:373–386PubMedGoogle Scholar
  60. 60.
    Gdowski AS, Ranjan A, Vishwanatha JK (2017) Current concepts in bone metastasis, contemporary therapeutic strategies and ongoing clinical trials. J Exp Clin Cancer Res 36:108. Scholar
  61. 61.
    Smith MA, Gurney JG et al (2017) Malignant bone tumors. Cancer incidence and survival among children and adolescents: United States SEER Program 1975-1995. National Cancer Institute, SEER Program, Bethesda.: NIH Pub No. 99-4649, pp 99–110Google Scholar
  62. 62.
    Steeg PS (2016) Targeting metastasis. Nat Rev Cancer 16:201–218PubMedGoogle Scholar
  63. 63.
    Redig AJ, McAllister SS (2013) Breast cancer as a systemic disease: a view of metastasis. J Intern Med 274(2):113–126. Scholar
  64. 64.
    Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:46–54PubMedPubMedCentralGoogle Scholar
  65. 65.
    Massagué J, Obenauf AC (2016) Metastatic colonization by circulating tumour cells. Nature 529:298–306PubMedPubMedCentralGoogle Scholar
  66. 66.
  67. 67.
    Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130(4):601–610Google Scholar
  68. 68.
    Kimlin LC, Casagrande G, Virador VM (2013) In vitro three-dimensional (3D) models in cancer research: an update. Mol Carcinog 52(3):167–182. Epub 2011 Dec 7CrossRefPubMedGoogle Scholar
  69. 69.
    Alemany-Ribes M, Semino CE (2014) Bioengineering 3D environments for cancer models. Adv Drug Deliv Rev 79–80:40–49PubMedGoogle Scholar
  70. 70.
    Friedrich J, Ebner R, Kunz-Schughart L (2007) Experimental anti-tumor therapy in 3-D: spheroids--old hat or new challenge? Int J Radiat Biol 83:849–871PubMedGoogle Scholar
  71. 71.
    Fessart D, Begueret H et al (2013) Three-dimensional culture model to distinguish normal from malignant human bronchial epithelial cells. Eur Respir J 42(5):1345–1356. Epub 2013 Jan 24CrossRefPubMedGoogle Scholar
  72. 72.
    Luca AC, Mersch S et al (2013) Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS One 8(3):e59689PubMedPubMedCentralGoogle Scholar
  73. 73.
    Cosson S, Otte EA, Hezaveh H, Cooper-White JJ (2015) Concise review: tailoring bioengineered scaffolds for stem cell applications in issue engineering and regenerative medicine. Stem Cells Transl Med 4:156–164PubMedPubMedCentralGoogle Scholar
  74. 74.
    Knowlton S et al (2015) Bioprinting for cancer research. Trends Biotechnol 33:504–513PubMedGoogle Scholar
  75. 75.
    Baker BM, Chen CS (2012) Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci 125(Pt 13):3015–3024PubMedPubMedCentralGoogle Scholar
  76. 76.
    Zhou X, Zhu W, Nowicki M, Miao S, Cui H, Holmes B, Glazer RJ, Zhang LG (2016) 3D bioprinting a cell-laden bone matrix for breast cancer metastasis study. ACS Appl Mater Interfaces 844:30017–30026. Scholar
  77. 77.
    Sitarski AM, Fairfield H, Falank C, Reagan MR (2018) 3D tissue engineered in vitro models of cancer in bone. ACS Biomater Sci Eng 4(2):324–336. Scholar
  78. 78.
    Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21:157–161PubMedPubMedCentralGoogle Scholar
  79. 79.
    Mironov V, Kasyanov V, Drake C, Markwald RR (2008) Organ printing: promises and challenges. Regen Med 3:93–103PubMedGoogle Scholar
  80. 80.
    Busse A, Letsch A et al (2013) Characterization of small spheres derived from various solid tumor cell lines: are they suitable targets for T cells? Clin Exp Metastasis 30(6):781–791. Epub 2013 Mar 22CrossRefPubMedGoogle Scholar
  81. 81.
    Perche F, Torchilin VP (2012) Cancer cell spheroids as a model to evaluate chemotherapy protocols. Cancer Bio Ther 13(12):1205–1213Google Scholar
  82. 82.
    Ingram M et al (2010) Tissue engineered tumor models. Biotech Histochem 85:213–229. Scholar
  83. 83.
    Upreti M et al (2011) Tumorendothelial cell threedimensional spheroids: new aspects to enhance radiation and drug therapeutics. Transl Oncol 4:365–376PubMedPubMedCentralGoogle Scholar
  84. 84.
    Chang R, Emami K, Hand W, Sun W (2010) Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication 2:045004PubMedGoogle Scholar
  85. 85.
    Mengus C, Manuele G, Muraro MG, Mele V, Amicarella F, Manfredonia C, Muenst S et al (2018) In vitro modeling of tumor–immune system interaction. ACS Biomater Sci Eng 4(2):314–323. Scholar
  86. 86.
    Li XJ, Valadez AV, Zuo P, Nie Z (2102) Microfluidic 3D cell culture: potential application for tissue-based bioassays. Bioanalysis 4(12):1509–1525Google Scholar
  87. 87.
    Ghaemmaghami AM, Hancock MJ, Harrington H et al (2012) Biomimetic tissues on a chip for drug discovery. Drug Discov Today 17(3–4):173–181PubMedGoogle Scholar
  88. 88.
    Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T (2015) Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol 35:118–126Google Scholar
  89. 89.
    Mills DK (2015) Future medicine: the impact of 3D printing. J Nanomater Mol Nanotechnol 4(3):1–3. Scholar
  90. 90.
    Ventola CL (2014) Medical applications for 3D printing: current and projected uses. Pharm Ther 39(10):704–711Google Scholar
  91. 91.
    Mironov V, Derby B (2006) Bioprinting: a beginning. Tissue Eng 12(4):631–639PubMedPubMedCentralGoogle Scholar
  92. 92.
    Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala AA (2016) 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34:312PubMedPubMedCentralGoogle Scholar
  93. 93.
    Hung BP, Naved BA, Nyberg EL, Dias M, Holmes CA, Elisseeff JJ et al (2016) Three-dimensional printing of bone extracellular matrix for craniofacial regeneration. ACS Biomater Sci Eng 2:1806–1804PubMedPubMedCentralGoogle Scholar
  94. 94.
    Ji S, Guvendiren M (2017) Recent advances in bioink design for 3D bioprinting of tissues and organs. Front Bioeng Biotechnol 5:23–31PubMedPubMedCentralGoogle Scholar
  95. 95.
    Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785Google Scholar
  96. 96.
    Khatiwala C, Law R, Shepard B, Dorfman S, Ceste M (2012) 3D cell bioprinting for regenerative medicine research and therapies. Gene Ther Regul 7(1):1230004. (19 pages). Scholar
  97. 97.
    Schubert C, van Langeveld MC, Donoso LA (2012) Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol 98(2):159–161Google Scholar
  98. 98.
    Ozbolat IT, Yu Y (2013) Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng 60:691–699PubMedGoogle Scholar
  99. 99.
    Cu X, Boland T, D’Lima DD, Lotz MK (2012) Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 6(2):149–155Google Scholar
  100. 100.
    O’Brien CM, Holmes B, Faucett S, Zhang LG (2015) Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration. Tissue Eng Part B Rev 21:103PubMedGoogle Scholar
  101. 101.
    Gurkan UA et al (2014) Engineering anisotropic biomimetic fibrocartilage microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets. Mol Pharm 11(7):2151–2159PubMedPubMedCentralGoogle Scholar
  102. 102.
    Xu F, Sridharan B, Wang S, Gurkan UA, Syverud B, Demirci U (2011) Embryonic stem cell bioprinting for uniform and controlled size embryoid body formation. Biomicrofluidics 5(2):22207PubMedGoogle Scholar
  103. 103.
    Gudapati H, Dey M, Ozbolat I (2016) A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials 102:20–42PubMedPubMedCentralGoogle Scholar
  104. 104.
    Wijshoff H (2010) The dynamics of the piezo inkjet printhead operation. Phys Rep 491(4):77–177Google Scholar
  105. 105.
    Tasoglu S, Demirci U (2013) Bioprinting for stem cell research. Trends Biotechnol 31(1):10–19PubMedPubMedCentralGoogle Scholar
  106. 106.
    Kamisuki S, Hagata T, Tezuka C, Nose Y, Fujii M, Atobe M (1998) A low power, small, electrostatically-driven commercial inkjet head. In: Proceedings of the eleventh annual international workshop on Micro Electro Mechanical Systems, 1998. MEMS 98, pp 63–68Google Scholar
  107. 107.
    Guillotin B, Guillemot F (2011) Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol 29(4):183–190PubMedPubMedCentralGoogle Scholar
  108. 108.
    Guillotin B et al (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31:7250–7256PubMedPubMedCentralGoogle Scholar
  109. 109.
    Sears NA, Seshadri DR, Dhavalikar PS, Cosgriff-Hernandez E (2016) A review of three-dimensional printing in tissue engineering. Tissue Eng Part B Rev 22(4):298–310PubMedGoogle Scholar
  110. 110.
    Sears NA, NA SDR, Dhavalikar PS, Cosgriff-Hernandez E (2016) A review of three-dimensional printing in tissue engineering. Tissue Eng Part B Rev 22(4):298–310PubMedGoogle Scholar
  111. 111.
    Nahmias Y, Odde DJ (2006) Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic-endothelial sinusoid-like structures. Nat Protoc 1(5):2288PubMedGoogle Scholar
  112. 112.
    Koch L, Gruene M, Unger C, Chichkov B (2011) Laser assisted cell printing. Curr Pharm Biotechnol 14(1):91–97Google Scholar
  113. 113.
    Saunders R, Bosworth L, Gough J, Derby B, Reis N (2004) Selective cell delivery for 3D tissue culture and engineering. Eur Cell Mater 7(Suppl 1):84–85Google Scholar
  114. 114.
    Demirci U, Montesano G (2007) Single cell epitaxy by acoustic picolitre droplets. Lab Chip 7(9):1139–1145PubMedPubMedCentralGoogle Scholar
  115. 115.
    Guillemot F, Souquet A, Catros S, Guillotin B (2010) Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine 5(3):507–515PubMedGoogle Scholar
  116. 116.
    Mir TA, Nakamura M (2017) Three-dimensional bioprinting: toward the era of manufacturing human organs as spare parts for healthcare and medicine. Tissue Eng Part B Rev 23(3):245–256. Epub 2017 Mar 21CrossRefPubMedGoogle Scholar
  117. 117.
    Ferris CJ, Gilmore KG, Wallace GG (2013) Biofabrication: an overview of the approaches used for printing of living cells. Appl Microbiol Biotechnol 97(10):4243–4258PubMedGoogle Scholar
  118. 118.
    Arslan-Yildiz A, El Assal R, Chen P, Guven S, Inci F, Demirci U (2016) Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication 8(1):14103Google Scholar
  119. 119.
    Chartrain NA, Williams CB, Whittington AR (2016) Engineering tissues with bioprinting. BioProcess Int 14(10):2016Google Scholar
  120. 120.
    Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35(2):217–239PubMedPubMedCentralGoogle Scholar
  121. 121.
    Rutz L, Lewis PL, Shah RN (2017) Toward next-generation bioinks: tuning material properties pre- and post-printing to optimize cell viability. MRS Bull 42(8):563–570Google Scholar
  122. 122.
    Yang E, Miao S, Zhong J, Zhang Z, Mills DK, Grace Zhang LG (2018) Bio-based polymers for 3D printing of bioscaffolds. Poly Rev (Phila Pa) 58(4):668–687. Scholar
  123. 123.
    Abdelaal OAM, Darwish SMH (2013) Review of rapid prototyping techniques for tissue engineering scaffolds fabrication. In: Öchsner A, da Silva L, Altenbach H (eds) Characterization and development of biosystems and biomaterials. Advanced structured materials. Springer, Berlin, pp 33–54. Scholar
  124. 124.
    Charbe N, McCarron PA, Tambuwala MM (2017) Three-dimensional bio-printing: a new frontier in oncology research. World J Clin Oncol 8(1):21–36PubMedPubMedCentralGoogle Scholar
  125. 125.
    Zhao Y, Yao R, Ouyang L et al (2014) Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 6(3):035001PubMedGoogle Scholar
  126. 126.
    Xu F, Celli J, Rizvi I, Moon S, Hasan T, Demirci U (2011) A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol J 6(2):204–212PubMedPubMedCentralGoogle Scholar
  127. 127.
    Kenny HA, Krausz T, Yamada SD, Lengyel E (2007) Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum. Int J Cancer 121:1463–1472. [PubMed: 17546601]PubMedGoogle Scholar
  128. 128.
    Serrano D, Terres MC, Lalatsa A (2018) Applications of 3D printing in cancer. J 3D Print Med 2(3):115–127Google Scholar
  129. 129.
    Albritton JL, Miller JS (2017) 3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments. Dis Model Mech 10(1):3–14PubMedPubMedCentralGoogle Scholar
  130. 130.
    Zhou X, Zhu W, Nowicki M, Miao S, Cui H, Holmes B, Glazer RI, Grace Zhang LG (2016) 3D bioprinting a cell-laden bone matrix for breast cancer metastasis study. ACS Appl Mater Interfaces 8(44):30017–30026. Scholar
  131. 131.
    Bray LJ, Binner M, Holzheu A, Friedrichs J, Freudenberg U, Hutmacher DW, Werner C (2015) Multi-parametric hydrogels support 3D in vitro bioengineered microenvironment models of tumour angiogenesis. Biomaterials 53:609–620. Scholar
  132. 132.
    Pathi SP, Kowalczewski C, Tadipatri R, Fischbach CA (2010) A novel 3-D mineralized tumor model to study breast cancer bone metastasis. PLoS One 5(1):e8849PubMedPubMedCentralGoogle Scholar
  133. 133.
    Arrigoni C, Bersini S, Gilardi M, Moretti M (2016) In vitro coculture models of breast cancer metastatic progression towards bone. Int J Mol Sci 17(9):1405PubMedCentralGoogle Scholar
  134. 134.
    Mironov V, Visconti RP, Kasyanov V, Forgacs G et al (2009) Organ printing: tissue spheroids as building blocks. Biomaterials:30, 2164–2174. [PubMed: 19176247]PubMedPubMedCentralGoogle Scholar
  135. 135.
    Young EW (2013) Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment. Integr Biol 5:1096–1109Google Scholar
  136. 136.
    Vidi PA, Maleki T, Ochoa M et al (2014) Disease-on-a-chip: mimicry of tumor growth in mammary ducts. Lab Chip 14(1):172–177PubMedGoogle Scholar
  137. 137.
    Guillemot F et al (2010) High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater 6:2494–2500PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yangyang Luo
    • 1
  • Anusha Elumalai
    • 1
    • 2
  • Ahmed Humayun
    • 1
  • David K. Mills
    • 2
    • 3
    Email author
  1. 1.Molecular Science and Nanotechnology ProgramLouisiana Tech UniversityRustonUSA
  2. 2.School of Biological SciencesLouisiana Tech UniversityRustonUSA
  3. 3.Center for Biomedical Engineering and Rehabilitation ScienceLouisiana Tech UniversityRustonUSA

Personalised recommendations