Advertisement

3D Bioprinting in Clinical Cardiovascular Medicine

  • Alexander Cetnar
  • Martin Tomov
  • Andrea Theus
  • Bryanna Lima
  • Agastya Vaidya
  • Vahid SerpooshanEmail author
Chapter

Abstract

3D bioprinting is a form of additive manufacturing tailored toward creating biological constructs with precise spatial control. As an extension of conventional 3D printing with a variety of materials such as polymers, ceramics, and metals, 3D bioprinting focuses on building viable, biomimetic products that can be used to replicate, improve, or substitute functional tissues. Driven by the field of tissue engineering, advancements in 3D bioprinting have enabled greater print resolutions, more customizable bioinks, and faster biomanufacturing speeds, which are critical when handling delicate biological substances. To date, researchers and engineers have creatively employed 3D bioprinting to combat cardiovascular disease, the most prevalent cause of death in the Western world. In the realm of cardiovascular medicine, 3D bioprinting has seen manifold applications including surgical models, cardiac patches, computational and theoretical models, heart valves, and stents. These technologies vary in terms of their extent of development, ranging from in vitro modeling to clinical therapies. While surgical models are most widely used in a clinical setting, other bioprinted models are rapidly developing with promising results. Overall, this chapter focuses on the clinical applications of 3D bioprinting aimed toward understanding, augmenting, or replacing cardiovascular tissues and organs.

Keywords

3D bioprinting Additive manufacturing Cardiovascular tissue engineering Stents Cardiac valve Computational modeling Surgical model 

References

  1. 1.
    Nakada T, Akiba T, Inagaki T, Morikawa T (2014) Thoracoscopic anatomical subsegmentectomy of the right S2b + S3 using a 3D printing model with rapid prototyping. Interact Cardiovasc Thorac Surg 19(4):696–698PubMedGoogle Scholar
  2. 2.
    Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785Google Scholar
  3. 3.
    Wang Z, Lee SJ, Cheng HJ, Yoo JJ, Atala A (2018) 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomater 70:48–56PubMedPubMedCentralGoogle Scholar
  4. 4.
    Cheung DYC, Duan B, Butcher JT (2015) Chapter 21—Bioprinting of cardiac tissues. In: Atala A, Yoo JJ (eds) Essentials of 3D biofabrication and translation. Academic, Boston, pp 351–370Google Scholar
  5. 5.
    Jang J (2017) 3D Bioprinting and in vitro cardiovascular tissue modeling. Bioengineering (Basel) 4(3):E71Google Scholar
  6. 6.
    Duan B (2017) State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Ann Biomed Eng 45(1):195–209PubMedGoogle Scholar
  7. 7.
    Elshazly MB, Hoosien M (2018) Chapter 13—The future of 3D printing in cardiovascular disease. In: Al’Aref SJ, Mosadegh B, Dunham S, Min JK (eds) 3D printing applications in cardiovascular medicine. Academic, Boston, pp 243–253Google Scholar
  8. 8.
    Dunham S, Mosadegh B, Romito EA, Zgaren M (2018) Chapter 4—Applications of 3D printing. In: Al’Aref SJ, Mosadegh B, Dunham S, Min JK (eds) 3D printing applications in cardiovascular medicine. Academic, Boston, pp 61–78Google Scholar
  9. 9.
    Giannopoulos AA, Mitsouras D, Yoo S-J, Liu PP, Chatzizisis YS, Rybicki FJ (2016) Applications of 3D printing in cardiovascular diseases. Nat Rev Cardiol 13:701PubMedGoogle Scholar
  10. 10.
    Ozbolat IT, Peng W, Ozbolat V (2016) Application areas of 3D bioprinting. Drug Discov Today 21(8):1257–1271PubMedGoogle Scholar
  11. 11.
    Shafiee A, Atala A (2016) Printing technologies for medical applications. Trends Mol Med 22(3):254–265PubMedGoogle Scholar
  12. 12.
    Seol Y-J, Kang H-W, Lee SJ, Atala A, Yoo JJ (2014) Bioprinting technology and its applications. Eur J Cardiothorac Surg 46(3):342–348PubMedGoogle Scholar
  13. 13.
    Bakhtiar SM, Butt HA, Zeb S, Quddusi DM, Gul S, Dilshad E (2018) Chapter 10—3D printing technologies and their applications in biomedical science. In: Barh D, Azevedo V (eds) Omics technologies and bio-engineering. Academic, New York, pp 167–189Google Scholar
  14. 14.
    Lueders C, Jastram B, Hetzer R, Schwandt H (2014) Rapid manufacturing techniques for the tissue engineering of human heart valves. Eur J Cardiothorac Surg 46(4):593–601PubMedGoogle Scholar
  15. 15.
    Vunjak-Novakovic G, Tandon N, Godier A, Maidhof R, Marsano A, Martens TP, Radisic M (2009) Challenges in cardiac tissue engineering. Tissue Eng Part B Rev 16(2):169–187PubMedCentralGoogle Scholar
  16. 16.
    Biglino G, Moharem-Elgamal S, Lee M, Tulloh R, Caputo M (2017) The perception of a three-dimensional-printed heart model from the perspective of different stakeholders: a complex case of truncus arteriosus. Front Pediatr 5:209PubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhang YS, Arneri A, Bersini S, Shin S-R, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell’Erba V, Bishop C, Shupe T, Demarchi D, Moretti M, Rasponi M, Dokmeci MR, Atala A, Khademhosseini A (2016) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59PubMedPubMedCentralGoogle Scholar
  18. 18.
    Holzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8(3):032002PubMedGoogle Scholar
  19. 19.
    Gopinathan J, Noh I (2018) Recent trends in bioinks for 3D printing. Biomater Res 22:11PubMedPubMedCentralGoogle Scholar
  20. 20.
    Serpooshan V, Zokaei S, Bagheri R (2007) Effect of rubber particle cavitation on the mechanical properties and deformation behavior of high-impact polystyrene. J Appl Polym Sci 104(2):1110–1117Google Scholar
  21. 21.
    Parikh NI, Gona P, Larson MG, Fox CS, Benjamin EJ, Murabito JM, O'Donnell CJ, Vasan RS, Levy D (2009) Long-term trends in myocardial infarction incidence and case fatality in the National Heart, Lung, and Blood Institute’s Framingham Heart Study. Circulation 119(9):1203–1210PubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang JY, Zhu WQ, Radisic M, Vunjak-Novakovic G (2018) Can we engineer a human cardiac patch for therapy? Circ Res 123(2):244–265PubMedGoogle Scholar
  23. 23.
    Serpooshan V, Hu JB, Chirikian O, Hu DA, Mahmoudi M, Wu SM (2018) Chapter 8—4D printing of actuating cardiac tissue. In: Al’Aref SJ, Mosadegh B, Dunham S, Min JK (eds) 3D printing applications in cardiovascular medicine. Academic, Boston, pp 153–162Google Scholar
  24. 24.
    Serpooshan V, Mahmoudi M, Hu DA, Hu JB, Wu SM (2017) Bioengineering cardiac constructs using 3D printing. J 3D Print Med 1(2):123–139Google Scholar
  25. 25.
    Mahmoudi M, Yu M, Serpooshan V, Wu JC, Langer R, Lee RT, Karp JM, Farokhzad OC (2017) Multiscale technologies for treatment of ischemic cardiomyopathy. Nat Nanotechnol 12(9):845–855PubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhu Y, Serpooshan V, Wu S, Demirci U, Chen P, Guven S (2017) TISSUE engineering of 3D organotypic microtissues by acoustic assembly. Methods Mol Biol https://www.ncbi.nlm.nih.gov/pubmed/28921421
  27. 27.
    Martins AM, Vunjak-Novakovic G, Reis RL (2014) The current status of IPS cells in cardiac research and their potential for tissue engineering and regenerative medicine. Stem Cell Rev Rep 10(2):177–190PubMedGoogle Scholar
  28. 28.
    Lee S, Serpooshan V, Tong X, Venkatraman S, Lee M, Lee J, Chirikian O, Wu JC, Wu SM, Yang F (2017) Contractile force generation by 3D hiPSC-derived cardiac tissues is enhanced by rapid establishment of cellular interconnection in matrix with muscle-mimicking stiffness. Biomaterials 131:111–120PubMedPubMedCentralGoogle Scholar
  29. 29.
    Serpooshan V, Chen P, Wu H, Lee S, Sharma A, Hu DA, Venkatraman S, Ganesan AV, Usta OB, Yarmush M, Yang F, Wu JC, Demirci U, Wu SM (2017) Bioacoustic-enabled patterning of human iPSC-derived cardiomyocytes into 3D cardiac tissue. Biomaterials 131:47–57PubMedPubMedCentralGoogle Scholar
  30. 30.
    Serpooshan V, Mahmoudi M (2015) Micropatterned nanostructures: a bioengineered approach to mass-produce functional myocardial grafts. Nanotechnology 26(6):060501PubMedGoogle Scholar
  31. 31.
    Wang QL, Wang HJ, Li ZH, Wang YL, Wu XP, Tan YZ (2017) Mesenchymal stem cell-loaded cardiac patch promotes epicardial activation and repair of the infarcted myocardium. J Cell Mol Med 21(9):1751–1766PubMedPubMedCentralGoogle Scholar
  32. 32.
    Le Bras A (2018) Exosome-based therapy to repair the injured heart. Nat Rev Cardiol 15(7):382PubMedGoogle Scholar
  33. 33.
    Wang B, Borazjani A, Tahai M, Curry ALD, Simionescu DT, Guan JJ, To F, Elder SH, Liao J (2010) Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. J Biomed Mater Res A 94a(4):1100–1110Google Scholar
  34. 34.
    Zhang J (2015) Engineered tissue patch for cardiac cell therapy. Curr Treat Options Cardiovasc Med 17(8):399PubMedPubMedCentralGoogle Scholar
  35. 35.
    Serpooshan V, Wu SM (2014) Patching up broken hearts: cardiac cell therapy gets a bioengineered boost. Cell Stem Cell 15(6):671–673PubMedGoogle Scholar
  36. 36.
    Xin M, Olson EN, Bassel-Duby R (2013) Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol 14(8):529–541PubMedPubMedCentralGoogle Scholar
  37. 37.
    Ong CS, Fukunishi T, Zhang HT, Huang CY, Nashed A, Blazeski A, DiSilvestre D, Vricella L, Conte J, Tung L, Tomaselli GF, Hibino N (2017) Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived cardiomyocytes. Sci Rep 7:4566PubMedPubMedCentralGoogle Scholar
  38. 38.
    Wang Q, Yang H, Bai A, Jiang W, Li X, Wang X, Mao Y, Lu C, Qian R, Guo F, Ding T, Chen H, Chen S, Zhang J, Liu C, Sun N (2016) Functional engineered human cardiac patches prepared from nature’s platform improve heart function after acute myocardial infarction. Biomaterials 105:52–65PubMedGoogle Scholar
  39. 39.
    Maiullari F, Costantini M, Milan M, Pace V, Chirivì M, Maiullari S, Rainer A, Baci D, Marei HE-S, Seliktar D, Gargioli C, Bearzi C, Rizzi R (2018) A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes. Sci Rep 8(1):13532PubMedPubMedCentralGoogle Scholar
  40. 40.
    Hu JB, Hu DA, Buikema JW, Chirikian O, Venkatraman S, Serpooshan V, Wu SM (2017) Bioengineering of vascular myocardial tissue; a 3D bioprinting approach. Tissue Eng Part A 23:S158–S159Google Scholar
  41. 41.
    Hu JB, Tomov ML, Buikema JW, Chen C, Mahmoudi M, Wu SM, Serpooshan V (2018) Cardiovascular tissue bioprinting: physical and chemical processes. Appl Phys Rev 5(4):041106Google Scholar
  42. 42.
    Ong CS, Nam L, Ong K, Krishnan A, Huang CY, Fukunishi T, Hibino N (2018) 3D and 4D bioprinting of the myocardium: current approaches, challenges, and future prospects. Biomed Res Int 2018:11Google Scholar
  43. 43.
    Lux M, Andrée B, Horvath T, Nosko A, Manikowski D, Hilfiker-Kleiner D, Haverich A, Hilfiker A (2016) In vitro maturation of large-scale cardiac patches based on a perfusable starter matrix by cyclic mechanical stimulation. Acta Biomater 30:177–187PubMedGoogle Scholar
  44. 44.
    Gao L, Gregorich ZR, Zhu W, Mattapally S, Oduk Y, Lou X, Kannappan R, Borovjagin AV, Walcott GP, Pollard AE, Fast VG, Hu X, Lloyd SG, Ge Y, Zhang J (2018) Large cardiac muscle patches engineered from human induced-pluripotent stem cell-derived cardiac cells improve recovery from myocardial infarction in swine. Circulation 137(16):1712–1730PubMedGoogle Scholar
  45. 45.
    Randles A, Frakes DH, Leopold JA (2017) Computational fluid dynamics and additive manufacturing to diagnose and treat cardiovascular disease. Trends Biotechnol 35(11):1049–1061PubMedPubMedCentralGoogle Scholar
  46. 46.
    Morris PD, Narracott A, von Tengg-Kobligk H, Silva Soto DA, Hsiao S, Lungu A, Evans P, Bressloff NW, Lawford PV, Hose DR, Gunn JP (2016) Computational fluid dynamics modelling in cardiovascular medicine. Heart 102(1):18–28PubMedGoogle Scholar
  47. 47.
    Sun Q, Groth A, Aach T (2012) Comprehensive validation of computational fluid dynamics simulations of in-vivo blood flow in patient-specific cerebral aneurysms. Med Phys 39(2):742–754PubMedGoogle Scholar
  48. 48.
    Ionita CN, Mokin M, Varble N, Bednarek DR, Xiang J, Snyder KV, Siddiqui AH, Levy EI, Meng H, Rudin S (2014) Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing. Proc SPIE Int Soc Opt Eng 9038:90380mPubMedPubMedCentralGoogle Scholar
  49. 49.
    Maragiannis D, Jackson MS, Igo SR, Schutt RC, Connell P, Grande-Allen J, Barker CM, Chang SM, Reardon MJ, Zoghbi WA, Little SH (2015) Replicating patient-specific severe aortic valve stenosis with functional 3D modeling. Circ Cardiovasc Imaging 8(10):e003626PubMedGoogle Scholar
  50. 50.
    Gounley J, Chaudhury R, Vardhan M, Driscoll M, Pathangey G, Winarta K, Ryan J, Frakes D, Randles A (2016) Does the degree of coarctation of the aorta influence wall shear stress focal heterogeneity? In: 2016 38th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3429–3432Google Scholar
  51. 51.
    Rutkowski DR, Reeder SB, Fernandez LA, Roldán-Alzate A (2018) Surgical planning for living donor liver transplant using 4D flow MRI, computational fluid dynamics and in vitro experiments. Comput Methods Biomech Biomed Eng Imaging Vis 6(5):545–555PubMedGoogle Scholar
  52. 52.
    Bulusu KV, Plesniak MW (2013) Secondary flow morphologies due to model stent-induced perturbations in a 180° curved tube during systolic deceleration. Exp Fluids 54(3):1493Google Scholar
  53. 53.
    Nair P, Chong BW, Indahlastari A, Ryan J, Workman C, Haithem Babiker M, Yadollahi Farsani H, Baccin CE, Frakes D (2016) Hemodynamic characterization of geometric cerebral aneurysm templates treated with embolic coils. J Biomech Eng 138(2):021011-1–021011-8Google Scholar
  54. 54.
    de Zélicourt D, Pekkan K, Kitajima H, Frakes D, Yoganathan AP (2005) Single-step stereolithography of complex anatomical models for optical flow measurements. J Biomech Eng 127(1):204–207PubMedGoogle Scholar
  55. 55.
    Saugel B, Holzapfel K, Stollfuss J, Schuster T, Phillip V, Schultheiss C, Schmid RM, Huber W (2011) Computed tomography to estimate cardiac preload and extravascular lung water. A retrospective analysis in critically ill patients. Scand J Trauma Resusc Emerg Med 19:31PubMedPubMedCentralGoogle Scholar
  56. 56.
    Bane O, Shah SJ, Cuttica MJ, Collins JD, Selvaraj S, Chatterjee NR, Guetter C, Carr JC, Carroll TJ (2015) A non-invasive assessment of cardiopulmonary hemodynamics with MRI in pulmonary hypertension. Magn Reson Imaging 33(10):1224–1235PubMedPubMedCentralGoogle Scholar
  57. 57.
    Rajiah P, Mak C, Dubinksy TJ, Dighe M (2011) Ultrasound of fetal cardiac anomalies. AJR Am J Roentgenol 197(4):W747–W760PubMedGoogle Scholar
  58. 58.
    Gindes L, Hegesh J, Weisz B, Gilboa Y, Achiron R (2009) Three and four dimensional ultrasound: a novel method for evaluating fetal cardiac anomalies. Prenat Diagn 29(7):645–653PubMedGoogle Scholar
  59. 59.
    Huang C, Zhou Y, Mao X, Tong J, Zhang L, Chen F, Hao Y (2017) Fusion of optical coherence tomography and angiography for numerical simulation of hemodynamics in bioresorbable stented coronary artery based on patient-specific model. Comput Assist Surg (Abingdon) 22(Suppl 1):127–134Google Scholar
  60. 60.
    Vukicevic M, Mosadegh B, Min JK, Little SH (2017) Cardiac 3D printing and its future directions. JACC Cardiovasc Imaging 10(2):171–184PubMedPubMedCentralGoogle Scholar
  61. 61.
    Ford MD, Nikolov HN, Milner JS, Lownie SP, DeMont EM, Kalata W, Loth F, Holdsworth DW, Steinman DA (2008) PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J Biomech Eng 130(2):021015-1–021015-9Google Scholar
  62. 62.
    Molony D, Park J, Zhou L, Fleischer C, Sun HY, Hu X, Oshinski J, Samady H, Giddens DP, Rezvan A (2018) Bulk flow and near wall hemodynamics of the rabbit aortic arch: a 4D PC-MRI derived CFD study. J Biomech Eng 141(1):011003-011014Google Scholar
  63. 63.
    Ruedinger KL, Zhou H, Trampe B, Heiser T, Srinivasan S, Iruretagoyena JI, Roldán-Alzate A (2018) Modeling fetal cardiac anomalies from prenatal echocardiography with 3-dimensional printing and 4-dimensional flow magnetic resonance imaging. Circ Cardiovasc Imaging 11(9):e007705PubMedGoogle Scholar
  64. 64.
    Serpooshan V, Quinn TM, Muja N, Nazhat SN (2011) Characterization and modelling of a dense lamella formed during self-compression of fibrillar collagen gels: implications for biomimetic scaffolds. Soft Matter 7(6):2918–2926Google Scholar
  65. 65.
    Cui H, Miao S, Esworthy T, Zhou X, Lee S-j, Liu C, Yu Z-x, Fisher JP, Mohiuddin M, Zhang LG (2018) 3D bioprinting for cardiovascular regeneration and pharmacology. Adv Drug Deliv Rev 132:252–269PubMedPubMedCentralGoogle Scholar
  66. 66.
    Cao Y, Gu C, Sun G, Yu S, Wang H, Yi D (2012) Quadruple valve replacement with mechanical valves: an 11-year follow-up study. Heart Surg Forum 15(3):E145–E149PubMedGoogle Scholar
  67. 67.
    Antoniou A, Harky A, Yap J, Lall K, Bashir M (2018) Bioprosthetic aortic valve replacement: a telltale from the young. Ann Transl Med 6(10):185PubMedPubMedCentralGoogle Scholar
  68. 68.
    Bowdish ME, Kumar SR, Starnes VA (2016) The Ross procedure: an excellent option in the right hands. Ann Transl Med 4(23):471PubMedPubMedCentralGoogle Scholar
  69. 69.
    Cheung DY, Duan B, Butcher JT (2015) Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions. Expert Opin Biol Ther 15(8):1155–1172PubMedPubMedCentralGoogle Scholar
  70. 70.
    van der Valk DC, van der Ven CFT, Blaser MC, Grolman JM, Wu PJ, Fenton OS, Lee LH, Tibbitt MW, Andresen JL, Wen JR, Ha AH, Buffolo F, van Mil A, Bouten CVC, Body SC, Mooney DJ, Sluijter JPG, Aikawa M, Hjortnaes J, Langer R, Aikawa E (2018) Engineering a 3D-bioprinted model of human heart valve disease using nanoindentation-based biomechanics. Nanomaterials (Basel) 8(5):E296Google Scholar
  71. 71.
    Jana S, Lerman A (2015) Bioprinting a cardiac valve. Biotechnol Adv 33(8):1503–1521PubMedGoogle Scholar
  72. 72.
    Mosadegh B, Xiong G, Dunham S, Min JK (2015) Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater 10(3):034002PubMedGoogle Scholar
  73. 73.
    Scanlan AB, Nguyen AV, Ilina A, Lasso A, Cripe L, Jegatheeswaran A, Silvestro E, McGowan FX, Mascio CE, Fuller S, Spray TL, Cohen MS, Fichtinger G, Jolley MA (2018) Comparison of 3D echocardiogram-derived 3D printed valve models to molded models for simulated repair of pediatric atrioventricular valves. Pediatr Cardiol 39(3):538–547PubMedGoogle Scholar
  74. 74.
    Duan B, Hockaday LA, Kang KH, Butcher JT (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 101(5):1255–1264PubMedGoogle Scholar
  75. 75.
    Hockaday LA, Kang KH, Colangelo NW, Cheung PY, Duan B, Malone E, Wu J, Girardi LN, Bonassar LJ, Lipson H, Chu CC, Butcher JT (2012) Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4(3):035005PubMedPubMedCentralGoogle Scholar
  76. 76.
    van Lith R, Baker E, Ware H, Yang J, Farsheed AC, Sun C, Ameer G (2016) 3D-printing strong high-resolution antioxidant bioresorbable vascular stents. Adv Mater Technol 1(9):1600138Google Scholar
  77. 77.
    Kandaswamy E, Zuo L (2018) Recent advances in treatment of coronary artery disease: role of science and technology. Int J Mol Sci 19(2):E424PubMedGoogle Scholar
  78. 78.
    Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jimenez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P (2017) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603PubMedPubMedCentralGoogle Scholar
  79. 79.
    Dundar Y, Hill RA, Bakhai A, Dickson R, Walley T (2004) Angioplasty and stents in coronary artery disease: a systematic review and meta-analysis. Scand Cardiovasc J 38(4):200–210PubMedGoogle Scholar
  80. 80.
    Tappa K, Jammalamadaka U (2018) Novel biomaterials used in medical 3D printing techniques. J Funct Biomater 9(1):17PubMedCentralGoogle Scholar
  81. 81.
    Guerra AJ, Cano P, Rabionet M, Puig T, Ciurana J (2018) 3D-printed PCL/PLA composite stents: towards a new solution to cardiovascular problems. Materials 11(9):E1679PubMedGoogle Scholar
  82. 82.
    Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4):1169–1185PubMedGoogle Scholar
  83. 83.
    Ziegelmueller JA, Zaenkert EK, Schams R, Lackermair S, Schmitz C, Reichart B, Sodian R (2010) Optical monitoring during bioreactor conditioning of tissue-engineered heart valves. ASAIO J 56(3):228–231PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexander Cetnar
    • 1
  • Martin Tomov
    • 1
    • 2
  • Andrea Theus
    • 1
    • 2
  • Bryanna Lima
    • 1
  • Agastya Vaidya
    • 3
    • 4
  • Vahid Serpooshan
    • 1
    • 2
    • 5
    Email author
  1. 1.Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaUSA
  2. 2.Department of PediatricsEmory University School of MedicineAtlantaUSA
  3. 3.Department of BiologyEmory UniversityAtlantaUSA
  4. 4.Emory University and Georgia Institute of TechnologyAtlantaUSA
  5. 5.Children’s Healthcare of AtlantaAtlantaUSA

Personalised recommendations