Comments on an Orthogonal Family of Monogenic Functions on Spheroidal Domains

  • Joaõ MoraisEmail author
Part of the Trends in Mathematics book series (TM)


The problem of building an orthogonal basis for the space of square-integrable harmonic functions defined in a spheroidal (either oblate or prolate) domain leads to special functions, which provide an elegant analysis of a variety of physical problems. Many generalizations of these ideas in the context of Quaternionic Analysis possess a similar elegant mathematical structure. A brief descriptive review is given of these developments.


Quaternionic analysis Spherical harmonics Spheroidal harmonics Monogenic functions 

Mathematics Subject Classification (2010)

Primary 30G35 Secondary 30C65 



The author’s work is supported by the Asociación Mexicana de Cultura, A. C.


  1. 1.
    S. Bock, Über funktionentheoretische Methoden in der räumlichen Elastizitätstheorie, Ph.D. thesis, Bauhaus-University Weimar (2009)Google Scholar
  2. 2.
    S. Bock, On a three dimensional analogue to the holomorphic z-powers: Laurent series expansions. Complex Var. Elliptic Equ. 57(12), 1271–1287 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Bock, On a three dimensional analogue to the holomorphic z-powers: power series and recurrence formulae. Complex Var. Elliptic Equ. 57(12), 1349–1370 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    S. Bock, K. Gürlebeck, On a generalized Appell system and monogenic power series. Math. Methods Appl. Sci. 33(4), 394–411 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    S. Bock, K. Gürlebeck, R. Lávička, V. Souček, The Gel’fand-Tsetlin bases for spherical monogenics in dimension 3. Rev. Mat. Iberoam. 28(4), 1165–1192 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    W.E. Byerly, An Elementary Treatise on Fourier’s Series, and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (Dover, New York, 1959), pp. 251–258zbMATHGoogle Scholar
  7. 7.
    I. Cação, Constructive approximation by monogenic polynomials, Ph.D. dissertation, Universidade de Aveiro (2004)zbMATHGoogle Scholar
  8. 8.
    I. Cação, Complete orthonormal sets of polynomial solutions of the Riesz and Moisil-Teodorescu systems in \(\mathbb {R}^3\). Numer. Algorithms 55(2–3), 191–203 (2010)Google Scholar
  9. 9.
    I. Cação, K. Gürlebeck, S. Bock, Complete orthonormal systems of spherical monogenics – a constructive approach, in Methods of Complex and Clifford Analysis, ed. by L.H. Son, et al. (SAS International Publications, Delhi, 2005), pp. 241–260Google Scholar
  10. 10.
    I. Cação, K. Gürlebeck, B. Bock, On derivatives of spherical monogenics. Complex Var. Elliptic Equ. 51(8–11), 847–869 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    G. Darwin, Ellipsoidal harmonic analysis. Philos. Trans. R. Soc. A 197, 461–557 (1902)CrossRefGoogle Scholar
  12. 12.
    G. Dassios, Ellipsoidal Harmonics, Theory and Applications (Cambridge University Press, Cambridge, 2012)CrossRefGoogle Scholar
  13. 13.
    R. Delanghe, On homogeneous polynomial solutions of the Riesz system and their harmonic potentials. Complex Var. Elliptic Equ. 52(10–11), 1047–1062 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    L. Fejér, Über die Laplacesche Reihe. Math. Ann. 67, 76–109 (1909)Google Scholar
  15. 15.
    N.M. Ferrers, On the potentials of ellipsoids, ellipsoidal shells, elliptic laminae, and elliptic rings, of variable densities. Q. J. Pure Appl. Math. 14, 1–22 (1897)zbMATHGoogle Scholar
  16. 16.
    P. Garabedian, Orthogonal harmonic polynomials. Pacific J. Math. 3(3), 585–603 (1953)MathSciNetCrossRefGoogle Scholar
  17. 17.
    R. García, A.J. Morais, R.M. Porter, Contragenic functions on spheroidal domains. Math. Methods Appl. Sci. (2017).
  18. 18.
    K. Gürlebeck, H. Malonek, A hypercomplex derivative of monogenic functions in \(\mathbb {R}^{n+1}\) and its applications. Complex Var. Elliptic Equ. 39(3), 199–228 (1999)Google Scholar
  19. 19.
    K. Gürlebeck, J. Morais, Bohr type theorems for monogenic power series. Comput. Methods Funct. Theory 9(2), 633–651 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    K. Gürlebeck, J. Morais, On Bohr’s phenomenon in the context of quaternionic analysis and related problems, in Algebraic Structures in Partial Differential Equations Related to Complex and Clifford Analysis, ed. by L.H. Son, T. Wolfgang (University of Education Press, Ho Chi Minh City, 2010), pp. 9–24zbMATHGoogle Scholar
  21. 21.
    K. Gürlebeck, K. Habetha, W. Sprössig, Holomorphic Functions in the Plane and n-Dimensional Space. Contemporary Mathematics, vol. 212 (Birkhäuser Verlag, Basel, 2008), pp. 95–107Google Scholar
  22. 22.
    K. Gürlebeck, J. Morais, P. Cerejeiras, Borel-Carathéodory type theorem for monogenic functions. Complex Anal. Oper. Theory 3(1), 99–112 (2009)MathSciNetCrossRefGoogle Scholar
  23. 23.
    E. Heine, Handbuch der Kugelfunktionen (Verlag G. Reimer, Berlin, 1878)zbMATHGoogle Scholar
  24. 24.
    D. Hilbert, Eigenschaften spezieller binärer Formen, insbesondere der Kugelfunktionen Drck Leupold (1885), p. 30Google Scholar
  25. 25.
    E. Hobson, The Theory of Spherical and Ellipsoidal Harmonics (Cambridge Universtiy Press, Cambridge, 1931)zbMATHGoogle Scholar
  26. 26.
    F. Klein, Über Lamé’sche Functionen. Math. Ann. 18, 237–246 (1881)MathSciNetCrossRefGoogle Scholar
  27. 27.
    G. Lamé, Mémoire sur l’équilibre des températures dans un ellipsoïde à trois axes inégaux. J. Math. Pure Appl. 4, 126–163 (1839)Google Scholar
  28. 28.
    P.S. Laplace, Théorie des Attractions des Sphéroïdes et de la Figure des Planètes, vol. III (Mechanique Celeste, Paris, 1785)Google Scholar
  29. 29.
    R. Lávička, Canonical bases for \(sl(2,\mathbb {C})\)-modules of spherical monogenics in dimension 3, Arch. Math. (Brno) 46(5), 339–349 (2010)Google Scholar
  30. 30.
    R. Lávička, Complete orthogonal appell systems for spherical monogenics. Complex Anal. Oper. Theory 6(2), 477–489 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    N. Lebedev, Special Functions and their Applications (Dover, New York, 1972), Chaps. 7, 8Google Scholar
  32. 32.
    H. Leutwiler, Quaternionic analysis in \(\mathbb {R}^3\) versus its hyperbolic modification, in Proceedings of the NATO Advanced Research Workshop held in Prague, October 30–November 3, 2000, ed. by F. Brackx, J.S.R. Chisholm, V. Soucek, vol. 25 (Kluwer Academic Publishers, Dordrecht, 2001)Google Scholar
  33. 33.
    F. Lindemann, Entwicklung der Functionen einer complexen Variabeln nach Lamé’shen Functionen und nach Zugeordneten der Kugelfunctionen. Math. Ann. 19, 323–386 (1882)CrossRefGoogle Scholar
  34. 34.
    J. Liouville, Sur diverses questions d’analyse et de Physique mathématique concernant L’ellipsoïde. J. Math. Pures Appl. 11, 217–236 (1846)Google Scholar
  35. 35.
    J. Morais, Approximation by homogeneous polynomial solutions of the Riesz system in \(\mathbb {R}^3\), Ph.D. thesis, Bauhaus-Universität Weimar (2009)Google Scholar
  36. 36.
    J. Morais, A complete orthogonal system of spheroidal monogenics. J. Numer. Anal. Ind. Appl. Math. 6(3–4), 105–119 (2011)MathSciNetzbMATHGoogle Scholar
  37. 37.
    J. Morais, An orthogonal system of monogenic polynomials over prolate spheroids in \(\mathbb {R}^3\). Math. Comput. Model. 57, 425–434 (2013)Google Scholar
  38. 38.
    J. Morais, A quaternionic version of a standard theory related to spheroidal functions, Habilitation thesis. Preprint (2019)Google Scholar
  39. 39.
    J. Morais, K. Gürlebeck, Real-part estimates for solutions of the Riesz system in \(\mathbb {R}^3\). Complex Var. Elliptic Equ. 57(5), 505–522 (2012)Google Scholar
  40. 40.
    J. Morais, K. Gürlebeck, Bloch’s theorem in the context of quaternion analysis. Comput. Methods Funct. Theory 12(2), 541–558 (2012)MathSciNetCrossRefGoogle Scholar
  41. 41.
    J. Morais, H.T. Le, Orthogonal appell systems of monogenic functions in the cylinder. Math. Methods Appl. Sci. 34(12), 1472–1486 (2011)MathSciNetCrossRefGoogle Scholar
  42. 42.
    J. Morais, K. Avetisyan, K. Gürlebeck, On Riesz systems of harmonic conjugates in \(\mathbb {R}^3\). Math. Methods Appl. Sci. 36(12), 1598–1614 (2013)Google Scholar
  43. 43.
    J. Morais, K.I. Kou, W. Sprössig, Generalized holomorphic Szegö kernel in 3D spheroids. Comput. Math. Appl. 65, 576–588 (2013)MathSciNetCrossRefGoogle Scholar
  44. 44.
    J. Morais, M.H. Nguyen, K.I. Kou, On 3D orthogonal prolate spheroidal monogenics. Math. Methods Appl. Sci. 39(4), 635–648 (2016)MathSciNetCrossRefGoogle Scholar
  45. 45.
    C. Müller, Spherical Harmonics. Lectures Notes in Mathematics, vol. 17 (Springer, Berlin, 1966)Google Scholar
  46. 46.
    H.M. Nguyen, K. Gürlebeck, J. Morais, S. Bock, On orthogonal monogenics in oblate spheroidal domains and recurrence formulae. Integral Transforms Spec. Funct. 25(7), 513–527 (2014)MathSciNetCrossRefGoogle Scholar
  47. 47.
    C. Niven, On the conduction of heat in ellipsoids of revolution. Philos. Trans. R. Soc. Lond. 171, 117 (1880)CrossRefGoogle Scholar
  48. 48.
    G. Sansone. Orthogonal Functions. Pure and Applied Mathematics, vol. IX (Interscience Publishers, New York, 1959)Google Scholar
  49. 49.
    T.J. Stieltjes, Sur certains polynômes qui vérifient une équation différentielle linéaire du second ordre et sur la théorie des fonctions de Lamé. Acta Math. 6, 321–326 (1885)MathSciNetCrossRefGoogle Scholar
  50. 50.
    G. Szegö, A problem concerning orthogonal polynomials. Trans. Am. Math. Soc. 37, 196–206 (1935)MathSciNetCrossRefGoogle Scholar
  51. 51.
    W. Thomson, P.G. Tait Oxford, Treatise on Natural Philosophy (Clarendon Press, Oxford, 1867)zbMATHGoogle Scholar
  52. 52.
    E.T. Whittaker, G.N. Watson, A Course in Modern Analysis (Cambridge University Press, Cambridge, 1927)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsITAMMexico CityMexico

Personalised recommendations