Fungal Diversity and Enzymes Involved in Lignin Degradation

  • Harit Jha
Part of the Fungal Biology book series (FUNGBIO)


Lignin is a polyphenolic compound found in the plant secondary cell wall. It provides mechanical strength and protection from pathogens. Lignin is an abundant organic compound, and it is, however, an impediment in carbon cycle. Lignin is also an unwanted byproduct in pulp and paper industry. It may be degraded under specific conditions by certain microorganisms including fungi and some bacteria. The biodegradation of lignin is mostly in aerobic conditions and is performed by a consortium of enzymes, mostly monooxygenase and dioxygenases. The well-known enzymes include lignin peroxidase, manganese peroxidase and laccase involved in direct degradation and glucose oxidase, glyoxal oxidase, catalase, superoxide dismutase, etc. as supportive enzymes. The biodegradation of lignin removes lignin from plant providing cellulose for paper industry. Lignin biodegradation generates several value-added products, viz. vanillin, catechol, etc. Lignin and its products also have various industrial and therapeutic applications. The understanding, optimization and scale-up of the ligninolytic enzyme system may provide new vistas for optimal utilization of the lignin to create desirable value-added products.


Lignin Biodegradation Lignin peroxidase Manganese peroxidase Laccase 


  1. Balaes TP, Ungureanu CV, Mardari C, Tănase C (2017) Ligninolytic enzyme system in ecological adaptation of lignicolous macrofungi. Appl Ecol Environ Res 15(1):207–224CrossRefGoogle Scholar
  2. Blanchette RA (1995) Delignification by wood-decay fungi. Annu Rev Phytopathol 29:381–398CrossRefGoogle Scholar
  3. Bonnen AM, Anton LH, Orth AB (1994) Lignin-degrading enzymes of the commercial button mushroom, Agaricus bisporus. Appl Environ Microbiol 3:960–965Google Scholar
  4. Boominathan K, Reddy CA (1992) Fungal degradation of lignin. In: Arora DK, Elander RP, Mukerji KG (eds) Handbook of applied mycology, vol 4: Fungal Biotechnology. Marcel Dekker, NewYork, pp 763–822Google Scholar
  5. Buswell JA, Odier E (1987) Lignin biodegradation. CRC Crit Rev Biotechnol 6:1–60CrossRefGoogle Scholar
  6. Cardona CA, Sánchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98(12):2415–2457CrossRefPubMedGoogle Scholar
  7. Chefetz B, Chen Y, Hadar Y (1998) Purification and characterization of laccase from Chaetomium thermophilium and its role in humification. Appl Environ Microbiol 64(9):3175–3179PubMedPubMedCentralGoogle Scholar
  8. Claus H (2004) Laccases: structure, reactions, distribution. Micron 35:93–96CrossRefPubMedGoogle Scholar
  9. Colpa DI, Fraaije MW, Van Bloois E (2014) DyP-type peroxidases: a promising and versatile class of enzymes. J Ind Microbiol Biotechnol 41:1–7CrossRefPubMedGoogle Scholar
  10. Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1(1):36–50PubMedPubMedCentralGoogle Scholar
  11. Dedeyan B, Klonowska A, Tagger S, Tron T, Iacazio G, Gil G, Le Petit J (2000) Biochemical and molecular characterization of a laccase from Marasmius quercophilus. Appl Environ Microbiol 66(3):925–929CrossRefPubMedPubMedCentralGoogle Scholar
  12. Eggert C, Temp U, Eriksson KE (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62(4):1151–1158PubMedPubMedCentralGoogle Scholar
  13. Farnet AM, Criquet S, Cigna M, Gil G, Ferre E (2004) Purification of a laccase from Marasmius quercophilus induced with ferulic acid: reactivity towards natural and xenobiotic aromatic compounds. Enzym Microb Technol 34(6):549–554CrossRefGoogle Scholar
  14. Fritsche W, Hofrichter M (2000) Aerobic degradation by microorganisms biotechnology. In: Klein J (ed) Environment processes II, vol 11b. Wiley-VCH, Weinheim, pp 145–155Google Scholar
  15. Glenn JK, Gold MH (1983) Decolorization of several polymeric dyes by the lignin degrading basidiomycetes Phanerochaete chryosporium. Appl Environ Microbiol 45:1741–1747PubMedPubMedCentralGoogle Scholar
  16. Gold MH, Youngs HL, Gelpke MDS (2000) Manganese peroxidase. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol 37. Marcel Dekker, Inc, New York, pp 559–586Google Scholar
  17. Gonzalo GD, Colpa DI, Habibb MHM, Fraaij MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119CrossRefPubMedGoogle Scholar
  18. Hakulinen N, Kiiskinen LL, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen (2002) Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat Struct Biol 9(8):601–605PubMedGoogle Scholar
  19. Hariharan S, Nambisan P (2013) Optimization of lignin peroxidase, manganese peroxidase, and lac production from Ganoderma lucidum under solid state fermentation of pineapple leaf. BioResources 8(1):250–271Google Scholar
  20. Hatakka A (1994) Lignin modifying enzymes from selected white rot fungi production and role in lignin degradation. FEMS Microbiol Rev 13:120–135CrossRefGoogle Scholar
  21. He J, Ye X, Ling Q, Dong L (2014) Enhanced production of an acid-tolerant laccase by cultivation of Armillariella tabescens. J Chem Pharm Res 6(1):240–245Google Scholar
  22. Jager A, Croan S, Kirk TK (1985) Production of ligninases and degradation of lignin in agitated submerged cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 50(5):1274–1278PubMedPubMedCentralGoogle Scholar
  23. Kalmi E, Ya H, Kalyoncu F, Pazarba B, Koçyi A (2008) Ligninolytic enzyme activities in mycelium of some wild and commercial mushrooms. Afr J Biotechnol 7(23):4314–4320Google Scholar
  24. Kent T, Kirk TK, Farell RL (1987) “Enzymatic combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505CrossRefGoogle Scholar
  25. Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44(2):77–87CrossRefPubMedGoogle Scholar
  26. Kuhad RC, Singh A, Ericsson KEL (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv Biochem Eng Biotechnol 57:45125Google Scholar
  27. Kukkola EM, Koutaniemi S, Gustafsson EPM, Karhunen P, Lundell TK, Saranpaa P, Kilpela I, Teeri TH, Fagerstedt CV (2004) The dibenzodioxocin lignin substructure is abundant in the inner part of the secondary wall in Norway spruce and silver birch xylem. Planta 218:497–500CrossRefPubMedGoogle Scholar
  28. Kuwahara M, Glenn JK, Morganm MA, Gold MH (1984) Separation and characterization of two extracellular H2O2 dependant oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS lett 169:47–250CrossRefGoogle Scholar
  29. Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtas-Wasilewska M, Cho NS, Hofrichter M, Rogalski J (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27(2–3):175–185CrossRefPubMedGoogle Scholar
  30. Leonowicz A, Cho NM, Luterek J, Wilkolaza A, Wojtas–Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Royalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41:185–227CrossRefPubMedGoogle Scholar
  31. Ma J, Yang HY, Kun W, Liu X (2016) Structural modification of hemicelluloses and lignin based on the biorefinery process with white-rot fungal. Carbohydr Polym 153:7–13CrossRefPubMedGoogle Scholar
  32. Maciel MM, Castro Silva A, Ribeiro CTH (2010) Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: a review. Electron J Biotechnol 13(6):14–15Google Scholar
  33. Madhavi V, Lele SS (2009) Laccase: properties and applications. BioResources 4(4):1694–1717Google Scholar
  34. Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, Río JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8(3):195–204PubMedGoogle Scholar
  35. Memić M, Vrtačnik M, Boh B, Pohleven F, Mahmutović O (2017) Biodegradation of PAHs by ligninolytic fungi Hypoxylon fragiforme and Coniophora puteana. Polycy Aroma Comp 2017.
  36. Papinutti L, Martınez MJ (2006) Production and characterization of laccase and manganese peroxidase from the ligninolytic fungus Fomes sclerodermeus. J Chem Technol Biotechnol 81:1064–1070CrossRefGoogle Scholar
  37. Pointing SB, Pelling AL, Smith GJD, Hyde KD, Reddy AC (2005) Screening of basidiomycetes and xylariaceous fungi for lignin peroxidase and laccase gene-specific sequences. Mycol Res 109(1):115–124CrossRefPubMedGoogle Scholar
  38. Ramasamy K (1993) Proceedings of a short term training course on ligninase and its biotechnological applications held at Department of Environmental Sciences, Tamilnadu Agricultural University, Coimbatore, IndiaGoogle Scholar
  39. Rana R, Nanda S, Meda V, Dalai AK, Kozinski JA (2018) A review of lignin chemistry and its biorefining conversion technologies. J Biochem Eng Bioprocess Technol 1:2Google Scholar
  40. Sack U, Hofrichter M, Fritsche W (1997) Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardii. FEMS Microbiol Lett 152(2):227–234CrossRefPubMedGoogle Scholar
  41. Shoemaker HE, Leisola MA (1990) Degradation of lignin by Phanerochaete chrysosporium. J Biotechnol 13:101–109CrossRefGoogle Scholar
  42. Sixta H, Süss HU, Potthast A, Schwanninger M, Krotscheck AW (2006) Pulp bleaching: sections 7.1–7.3. 5. Handbook of pulp. pp 609–708Google Scholar
  43. Snajdr J, Baldrian P (2007) Temperature affects the production, activity and stability of ligninolytic enzymes in Pleurotus ostreatus and Trametes versicolor. Folia Microbiol (Praha) 52(5):498–502CrossRefGoogle Scholar
  44. Su Y, Yu X, Sun Y, Wang G, Chen H, Chen G (2018) Evaluation of screened lignin-degrading fungi for the biological pretreatment of corn stover. Sci Rep 8:5385CrossRefPubMedPubMedCentralGoogle Scholar
  45. Uzan E, Nousiainen P, Balland V, Sipila J, Piumi F, Navarro D, Asther M, Record E, Lomascolo A (2010) Jun high redox potential laccases from the ligninolytic fungi Pycnoporus coccineus and Pycnoporus sanguineus suitable for white biotechnology: from gene cloning to enzyme characterization and applications. J Appl Microbiol 108(6):2199–2213PubMedGoogle Scholar
  46. Van Bloois E, Torres Pazmiño DE, Winter RT, Fraaije MW (2010) A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl Microbiol Biotechnol 86:1419–1430Google Scholar
  47. Voeller K, Kozliak E, Kubátová A, Yao B, Ji Y, Asina F, Brzonova I (2016) Biodegradation of lignin by fungi, bacteria and laccases. Bioresour Technol 220:414–424CrossRefPubMedGoogle Scholar
  48. Ward G, Hadar Y, Dosoretz CG (2004) The biodegradation of lignocellulose by white rot fungi. In: Arora DK (ed) Fungal biotechnology in agricultural, food and environmental application. Marcel Dekkar, Inc, New York, pp 393–406Google Scholar
  49. Zámocký M, Hofbauer S, Schaffner I, Gasselhuber B, Nicolussi A, Soudi M, Pirker KF, Furtmüller PG, Obinger C (2015) Independent evolution of four heme peroxidase superfamilies. Arch Biochem Biophys 574:108–119CrossRefPubMedPubMedCentralGoogle Scholar
  50. Znameroski EA, Coradetti ST, Roche CM, Tsai JC, Iavarone AT, Cate JHD, Glass NL (2012) Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins. PNAS 109(16):6012–6017CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Harit Jha
    • 1
  1. 1.Department of BiotechnologyGuru Ghasidas VishwavidyalayaBilaspurIndia

Personalised recommendations