Multiple Factors Influencing the Strategy of Lignin Mycodegradation

  • Gautam Anand
  • Sangeeta Yadav
  • Dinesh Yadav
Part of the Fungal Biology book series (FUNGBIO)


Lignin is the most abundant aromatic compound and second to cellulose as the most abundant source of carbon on earth. It is synthesized in vascular plant cells by combination of three basic hydroxycinnamoyl alcohol or monolignols. Lignin degradation by microorganisms is restricted by the fact that the polymer is extremely large and highly branched, ligninolytic mechanisms must be extracellular. Also, its structure lacks any hydrolyzable linkage which indicates that degrading enzymes should be oxidative in nature. Wood-rot basidiomycetes are most efficient organisms for lignin degradation in nature. They secrete large number of extracellular enzymes such as laccases and peroxidases which can degrade lignin through low molecular weight-free radicals such as OH, depolymerize the phenolic and non-phenolic lignin polymer, and mineralize the insoluble lignin. Lignin degradation is not only an important part of carbon cycle but also has a potential application in environment friendly technologies for the pulp and paper industry and for the treatment of many xenobiotic compounds, stains, and dyes.


Fungi Lignin Laccase Peroxidase Mycodegradation 


  1. Abbas A, Koc H, Liu F, Tien M (2005) Fungal degradation of wood: initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Curr Genet 47(1):49–56CrossRefPubMedGoogle Scholar
  2. Adler E (1977) Lignin chemistry—past, present and future. Wood Sci Technol 11(3):169–218CrossRefGoogle Scholar
  3. Akhtar M, Blanchette RA, Myers GC, Kirk TK (1998) An overview of biomechanical pulping research. In: young RA, Akhtar M (eds.) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 309–419Google Scholar
  4. Ander P, Eriksson KE (1977) Selective degradation of wood components by white-rot fungi. Physiol Plant 41(4):239–248CrossRefGoogle Scholar
  5. Argyropoulos DS, Menachem SB (1997) Lignin. In: Biotechnology in the pulp and paper industry. Springer, Berlin, Heidelberg, pp 127–158CrossRefGoogle Scholar
  6. Asgher M, Bhatti HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19(6):771CrossRefPubMedGoogle Scholar
  7. Bayer EA, Chanzy H, Lamed R, Shoham Y (1998) Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8(5):548–557CrossRefPubMedGoogle Scholar
  8. Blanchette RA (1991) Delignification by wood-decay fungi. Annu Rev Phytopathol 29(1):381–403CrossRefGoogle Scholar
  9. Blanchette RA (1995) Degradation of the lignocellulose complex in wood. Can J Bot 73(S1):999–1010CrossRefGoogle Scholar
  10. Bollag JM, Leonowicz A (1984) Comparative studies of extracellular fungal laccases. Appl Environ Microbiol 48(4):849–854PubMedPubMedCentralGoogle Scholar
  11. Camarero S, Sarkar S, Ruiz-Dueñas FJ, Martı́nez MJ, Martı́nez ÁT (1999) Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J Biol Chem 274(15):10324–10330CrossRefPubMedGoogle Scholar
  12. Cohen R, Hadar Y, Yarden O (2001) Transcript and activity levels of different Pleurotus ostreatus peroxidases are differentially affected by Mn2+. Environ Microbiol 3(5):312–322Google Scholar
  13. de la Rubia T, Linares A, Pérez J, Muñoz-Dorado J, Romera J, Martı́nez J (2002) Characterization of manganese-dependent peroxidase isoenzymes from the ligninolytic fungus Phanerochaete flavido-alba. Res Microbiol 153(8):547–554CrossRefPubMedGoogle Scholar
  14. Eriksson KEL, Blanchette RA, Ander P (1990) Morphological aspects of wood degradation by fungi and bacteria. In: Microbial and enzymatic degradation of wood and wood components. Springer, Berlin, Heidelberg, pp 1–87CrossRefGoogle Scholar
  15. Ferraroni M, Myasoedova NM, Schmatchenko V, Leontievsky AA, Golovleva LA, Scozzafava A, Briganti F (2007) Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. BMC Struct Biol 7(1):60CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gao J, Tang LG (1996) Cellulose science. Science Press, BeijingGoogle Scholar
  17. Geng S, Xu C, Li Y (2003) Advance in biosynthesis of lignin and its regulation. Acta Botan Boreali-Occiden Sin 23(1):171–181Google Scholar
  18. Germann UA, Müller G, Hunziker PE, Lerch K (1988) Characterization of two allelic forms of Neurospora crassa laccase. Amino-and carboxyl-terminal processing of a precursor. J Biol Chem 263(2):885–896Google Scholar
  19. Gilbertson RL (1980) Wood-rotting fungi of North America. Mycologia 72(1):1–49CrossRefGoogle Scholar
  20. Grzegorz J, Anna P, Justyna S, Urszula S-B, Anna J-W, Andrzej P (2017) Lignin degradation: microorganism, enzymes involved, genome analysis and evolution. FEMS Microbiol Rev 41(6):941–962CrossRefGoogle Scholar
  21. Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sust Energ Rev 41:550–567CrossRefGoogle Scholar
  22. Gupta VK, Kubicek CP, Berrin JG, Wilson DW, Couturier M, Berlin A, Edivaldo Filho XF, Ezeji T (2016) Fungal enzymes for bio-products from sustainable and waste biomass. Trends Biochem Sci 41(7):633–645CrossRefPubMedGoogle Scholar
  23. Hakulinen N, Kruus K, Koivula A, Rouvinen J (2006) A crystallographic and spectroscopic study on the effect of X-ray radiation on the crystal structure of Melanocarpus albomyces laccase. Biochem Biophys Res Commun 350(4):929–934CrossRefPubMedGoogle Scholar
  24. Hamed SAM (2013) In-vitro studies on wood degradation in soil by soft-rot fungi: Aspergillus niger and Penicillium chrysogenum. Int Biodeter Biodegrad 78:98–102Google Scholar
  25. Hatakka A (2005) Biodegradation of lignin. Biopolym Online 15:1Google Scholar
  26. Hatakka A, Hammel KE (2011) Fungal biodegradation of lignocelluloses. In: Industrial applications. Springer, Berlin, Heidelberg, pp 319–340CrossRefGoogle Scholar
  27. Heinfling A, Ruiz-Dueñas FJ, Martı́nez MJ, Bergbauer M, Szewzyk U, Martı́nez AT (1998) A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett 428(3):141–146CrossRefPubMedGoogle Scholar
  28. Higuchi T (1990) Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol 24(1):23–63CrossRefGoogle Scholar
  29. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hoshino F, Kajino T, Sugiyama H, Asami O, Takahashi H (2002) Thermally stable and hydrogen peroxide tolerant manganese peroxidase (MnP) from Lenzites betulinus. FEBS Lett 530(1–3):249–252CrossRefPubMedGoogle Scholar
  31. Hudson HJ (1992) Fungal biology. Cambridge University Press, Cambridge, pp 106–170Google Scholar
  32. Iyer G, Chattoo BB (2003) Purification and characterization of laccase from the rice blast fungus, Magnaporthe grisea. FEMS Microbiol Lett 227(1):121–126CrossRefPubMedGoogle Scholar
  33. Jeffries TW (1991) Biodegradation of lignin-carbohydrate complexes. In: Physiology of biodegradative microorganisms. Springer, Dordrecht, pp 163–176CrossRefGoogle Scholar
  34. Kaal EE, de Jong ED, Field JA (1993) Stimulation of ligninolytic peroxidase activity by nitrogen nutrients in the white rot fungus Bjerkandera sp. strain BOS55. Appl Environ Microbiol 59(12):4031–4036Google Scholar
  35. Kang S, Li X, Fan J, Chang J (2013) Hydrothermal conversion of lignin: a review. Renew Sust Energ Rev 27:546–558CrossRefGoogle Scholar
  36. Kerem Z, Bao W, Hammel KE (1998) Rapid polyether cleavage via extracellular one-electron oxidation by a brown-rot basidiomycete. Proc Natl Acad Sci 95(18):10373–10377CrossRefPubMedGoogle Scholar
  37. Kerem Z, Jensen KA, Hammel KE (1999) Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven fenton reaction. FEBS Lett 446(1):49–54CrossRefPubMedGoogle Scholar
  38. Kirk TK (1975) Effects of a brown-rot fungus, Lenzites trabea, on lignin in spruce wood. Holzforschung Int J Biol Chem Phys Technol Wood 29(3):99–107Google Scholar
  39. Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505CrossRefPubMedGoogle Scholar
  40. Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117(3):277–285Google Scholar
  41. Kirk TK, Ibach R, Mozuch MD, Conner AH, Highley L (1991) Characteristics of cotton cellulose depolymerized by a brown-rot fungus, by acid, or by chemical oxidants. Holzforschung-Int J Biol Chem Phys Technol Wood 45(4):239–244Google Scholar
  42. Leisola MS, Ulmer DC, Fiechter A (1984) Factors affecting lignin degradation in lignocellulose by Phanerochaete chrysosporium. Arch Microbiol 137(2):171–175Google Scholar
  43. Lin Z, Ma Q, Xu Y (2003) Lignin biosynthesis and its molecular regulation. Prog Nat Sci 13(5):321–328Google Scholar
  44. Lisov AV, Leontievsky AA, Golovleva LA (2003) Hybrid Mn-peroxidase from the ligninolytic fungus Panus tigrinus 8/18. Isolation, substrate specificity, and catalytic cycle. Biochemistry (Moscow) 68(9):1027–1035CrossRefGoogle Scholar
  45. Ljungdahl LG (2008) The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Ann N Y Acad Sci 1125(1):308–321Google Scholar
  46. Martinez D, Larrondo LF, Putnam N, Gelpke MDS, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22(6):695CrossRefPubMedGoogle Scholar
  47. Martínez ÁT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez Suárez A, Río Andrade JCD (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204PubMedGoogle Scholar
  48. Messerschmidt A, Huber R (1990) The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin modelling and structural relationships. Eur J Biochem 187(2):341–352CrossRefPubMedGoogle Scholar
  49. Michniewicz A, Ullrich R, Ledakowicz S, Hofrichter M (2006) The white-rot fungus Cerrena unicolor strain 137 produces two laccase isoforms with different physico-chemical and catalytic properties. Appl Microbiol Biotechnol 69(6):682–688CrossRefPubMedGoogle Scholar
  50. Moreira PR, Almeida-Vara E, Malcata FX, Duarte JC (2007) Lignin transformation by a versatile peroxidase from a novel Bjerkandera sp. strain. Int Biodeter Biodegrad 59(3):234–238CrossRefGoogle Scholar
  51. Orth AB, Royse DJ, Tien MING (1993) Ubiquity of lignin-degrading peroxidases among various wood-degrading fungi. Appl Environ Microbiol 59(12):4017–4023PubMedPubMedCentralGoogle Scholar
  52. Otjen L, Blanchette R, Effland M, Leatham G (1987) Assessment of 30 white rot basidiomycetes for selective lignin degradation. Holzforschung 41(6):343–349CrossRefGoogle Scholar
  53. Patel H, Gupte A (2016) Optimization of different culture conditions for enhanced laccase production and its purification from Tricholoma giganteum AGHP. Bioresour Bioprocess 3(1):11Google Scholar
  54. Perez J, Jeffries TW (1990) Mineralization of 14C-ring-labeled synthetic lignin correlates with the production of lignin peroxidase, not of manganese peroxidase or laccase. Appl Environ Microbiol 56(6):1806–1812PubMedPubMedCentralGoogle Scholar
  55. Perez-Boada M, Ruiz-Duenas FJ, Pogni R, Basosi R, Choinowski T, Martínez MJ, Piontek K, Martínez AT (2005) Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol 354(2):385–402CrossRefPubMedGoogle Scholar
  56. Piontek K, Smith AT, Blodig W (2001) Lignin peroxidase structure and function. Biochem Soc Trans 29:111–116CrossRefPubMedGoogle Scholar
  57. Pozdnyakova NN, Turkovskaya OV, Yudina EN, Rodakiewicz-Nowak Y (2006) Yellow laccase from the fungus Pleurotus ostreatus D1: purification and characterization. Appl Biochem Microbiol 42(1):56–61Google Scholar
  58. Rouches E, Herpoël-Gimbert I, Steyer JP, Carrere H (2016) Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: a review. Renew Sust Energ Rev 59:179–198Google Scholar
  59. Ruiz-Dueñas FJ, Martínez ÁT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2(2):164–177CrossRefPubMedPubMedCentralGoogle Scholar
  60. Salony, Mishra S, Bisaria VS (2006) Production and characterization of laccase from Cyathus bulleri and its use in decolourization of recalcitrant textile dyes. Appl Microbiol Biotechnol 71(5):646–653Google Scholar
  61. Salvachua D, Prieto A, Lopez-Abelairas M, Lu-Chau T, Martinez AT, Martinez MJ. (2011) Fungal pretreatment: An alternative in second-generation ethanol from wheat straw. Bioresour Technol. 102(16):7500–7506Google Scholar
  62. Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194CrossRefPubMedGoogle Scholar
  63. Shleev S, Nikitina O, Christenson A, Reimann CT, Yaropolov AI, Ruzgas T, Gorton L (2007) Characterization of two new multiforms of Trametes pubescens laccase. Bioorg Chem 35(1):35–49CrossRefPubMedGoogle Scholar
  64. Srebotnik E, Messner K (1994) A simple method that uses differential staining and light microscopy to assess the selectivity of wood delignification by white rot fungi. Appl Environ Microbiol 60(4):1383–1386PubMedPubMedCentralGoogle Scholar
  65. Srebotnik E, Messner K, Foisner R (1988) Penetrability of white rot-degraded pine wood by the lignin peroxidase of Phanerochaete chrysosporium. Appl Environ Microbiol 54(11):2608–2614PubMedPubMedCentralGoogle Scholar
  66. Sulistyaningdyah WT, Ogawa J, Tanaka H, Maeda C, Shimizu S (2004) Characterization of alkaliphilic laccase activity in the culture supernatant of Myrothecium verrucaria 24G-4 in comparison with bilirubin oxidase. FEMS Microbiol Lett 230(2):209–214CrossRefPubMedGoogle Scholar
  67. Tanaka H, Itakura S, Enoki A (1999) Hydroxyl radical generation by an extracellular low-molecular-weight substance and phenol oxidase activity during wood degradation by the white-rot basidiomycete Trametes versicolor. J Biotechnol 75(1):57–70CrossRefPubMedGoogle Scholar
  68. Ten Have R, Teunissen PJ (2001) Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem Rev 101(11):3397–3414CrossRefPubMedGoogle Scholar
  69. Theander O, Westerlund E (1993) Quantitative analysis of cell wall components. In: Forage cell wall structure and digestibility, (forage cell walls). ASA-CSSA-SSSA, 677 S. Segoe Rd., Madison, WI 53711, USA, 83–104Google Scholar
  70. Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140(1):19–26CrossRefGoogle Scholar
  71. Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11(3):278–285CrossRefPubMedGoogle Scholar
  72. Van Kuijk SJA, Sonnenberg ASM, Baars JJP, Hendriks WH, Cone JW (2015) Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review. Biotechnol Adv 33(1):191–202Google Scholar
  73. Wahleithner JA, Xu F, Brown KM, Brown SH, Golightly EJ, Halkier T, Kauppinen S, Pederson A, Schneider P (1996) The identification and characterization of four laccases from the plant pathogenic fungus Rhizoctonia solani. Curr Genet 29(4):395–403Google Scholar
  74. Wang L, Yan W, Chen J, Huang F, Gao P (2008) Function of the iron-binding chelator produced by Coriolus versicolor in lignin biodegradation. Sci China Ser C Life Sci 51(3):214CrossRefGoogle Scholar
  75. Wei J, Song Y (2001) Recent advances in study of lignin biosynthesis and manipulation. Acta Bot Sin 43(8):771–779Google Scholar
  76. Weng JK, Li X, Bonawitz ND, Chapple C (2008) Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 19(2):166–172CrossRefPubMedGoogle Scholar
  77. Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22(1–2):161–187CrossRefPubMedGoogle Scholar
  78. Wong DW (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157(2):174–209CrossRefPubMedGoogle Scholar
  79. Xiao Y, Tu X, Wang J, Zhang M, Cheng Q, Zeng W, Shi Y (2003) Purification, molecular characterization and reactivity with aromatic compounds of a laccase from basidiomycete Trametes sp. strain AH28-2. Appl Microbiol Biotechnol 60(6):700–707Google Scholar
  80. Yang HH, Effland MJ, Kirk TK (1980) Factors influencing fungal degradation of lignin in a representative lignocellulosic, thermomechanical pulp. Biotechnol Bioeng 22(1):65–77CrossRefGoogle Scholar
  81. Yao L, Yong-Chao L, Hong-Qin H, Feng-Jin X, Xian-Yong W, Xing F (2017) Structural characterization of lignin and its degradation products with spectroscopic methods. J Spectrosc.
  82. Yoon JJ, Cha CJ, Kim YS, Son DW, Kim YK (2007) The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. J Microbiol Biotechnol 17(5):800–805PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gautam Anand
    • 1
    • 2
  • Sangeeta Yadav
    • 2
  • Dinesh Yadav
    • 2
  1. 1.Department of Plant Pathology and MicrobiologyRobert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of JerusalemRehovotIsrael
  2. 2.Department of BiotechnologyD.D.U. Gorakhpur UniversityGorakhpurIndia

Personalised recommendations