Advertisement

Basic Mechanism of Lignocellulose Mycodegradation

  • Roshan Lal Gautam
  • Shweta Singh
  • Simpal Kumari
  • Archana Gupta
  • R. Naraian
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Lignocelluloses are highly composite polymeric material structurally and integrally composed with several repeating units of cellulose, hemicellulose, and lignin. These are abundant in nature particularly in wood, grass, agricultural, and forestry waste and have a potential of bioconversion into valuable metabolites. Sometimes, the vast amount of these lignocelluloses create big environmental issues when either thrown or burnt negligently. Thus, rather than throwing them uselessly in surrounding environment, they may be microbially processed for bioconversion into useful products. A broad group of microorganisms including fungi, bacteria, and algae have versatile skill to degrade lignocelluloses by yielding a variety of valuable products. The fungi are known to be most potent because of their excellent enzymatic system and ability to degrade lignocellulosic materials. The synergistic action of multiple enzymes such as laccase, peroxidase, endoxylanase, endoglucanase, exoglucanase, β-xylosidase, and β-glucosidases converts lignocellulosic complexes into monomer forms to avail nutrients towards fungal mycelia. These enzymes have distinct catalytic functions that attacks on the complex structure of lignocelluloses and consequently yields the simpler metabolites. In response, a variety of fungal species produce a cluster of metabolic products beneficial in human appliances. The present chapter summarizes the clear explanations focusing on the basic mechanism of lignocellulosic conversion into their monomeric forms. The present chapter mainly focus on various aspect of efficient biodegradation and bioconversion of lignocelluloses with a sustainable approach to proceed lignocellulose material into value added forms. The important multi events during the mycodegradation of lignocelluloses including hemicellulolysis, cellulolysis, and ligninolysis are elaborated in detail in separate sections.

Keywords

Lignocellulose Mycodegradation Cellulolysis Hemicellulolysis Ligninolysis Lignocellulolytic enzymes 

References

  1. Aehle W (2007) Enzymes in industry: production and applications, 3th edn. Wiley, Hoboken, NJ, pp 314–320CrossRefGoogle Scholar
  2. Akhtar M, Attridge MC, Myers GC, Kirk TK, Blanchette RA (1992) Biomechanical pulping of loblolly pine with different strains of the white rot fungus Ceriporiopsis subvermispora. Tech Asso Pulp Pap Ind 75:105–109Google Scholar
  3. Akhtar M, Blanchette RA, Kirk TK (1997) Fungal delignification and biomechanical pulping of wood. In: Scheper T (ed) Advances in biochemical engineering/biotechnology, vol 57. Springer, Berlin, pp 160–193Google Scholar
  4. Anand D, Yadav S, Yadav D (2018) Screening of potential xylanase producing fungal strains under solid state fermentation condition. Int J Biol Res 3:348–354Google Scholar
  5. Bajpai P (2014) Microbial xylanolytic systems and their properties. In: Xylanolytic enzymes, pp 19–36Google Scholar
  6. Bajpai P (2016) Structure of lignocellulosic biomass. In: Pretreatment of lignocellulosic biomass for biofuel production. Springer Briefs in Green Chem Sustain, pp 7–12Google Scholar
  7. Baldrian P (2006) Fungal laccases occurence and properties. FEMS Microbiol Rev 30:215–242CrossRefPubMedGoogle Scholar
  8. Bandara AR, Karunarathna SC, Mortimer PE, Hyde KD, Khan S, Kakumyan P, Xu J (2017) First successful domestication and determination of nutritional and antioxidant properties of the red ear mushroom Auricularia thailandica (Auriculariales, Basidiomycota). Mycol Prog 16:1029–1039CrossRefGoogle Scholar
  9. Behrendt CJ, Blanchette RA (1997) Biological processing of pine logs for pulp and paper production with Phlebiopsis gigantean. Appl Environ Microbiol 63:1995–2000PubMedPubMedCentralGoogle Scholar
  10. Berlin A, Maximenko V, Gilkes N, Saddler J (2007) Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol Bioeng 97:287–296CrossRefPubMedGoogle Scholar
  11. Bertonha LC, Neto ML, Garcia JAA, Vieira TF, Castoldi R, Bracht A, Peralta RM (2018) Screening of Fusarium sp. for xylan and cellulose hydrolyzing enzymes and perspectives for the saccharification of delignified sugarcane bagasse. Biocatal Agric Biotechnol 16:385–389CrossRefGoogle Scholar
  12. Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol 128:751–759CrossRefPubMedGoogle Scholar
  13. Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:286–290CrossRefGoogle Scholar
  14. Biely P (1993) Biochemical aspects of the production of microbial hemicellulases. In: Cougland MP, Hazlewood GP (eds) Hemicelluloses and hemicellulases. Portland Press, London, pp 29–52Google Scholar
  15. Binod P, Janu KU, Sindhu R, Pandey A (2011) Hydrolysis of lignocellulosic biomass for bioethanol production. In: Ashok P, Ricke LC, Steven C (eds) Biofuels: alternative feedstock’s and conversion processes. Elsevier Inc, Burlington, MA, pp 229–250CrossRefGoogle Scholar
  16. Bollag JM, Leonowicz A (1984) Comparative studies of extracellular fungal laccases. Appl Environ Microbiol 48:849–854PubMedPubMedCentralGoogle Scholar
  17. Bosetto A, Justo PI, Zanardi B, Venzon SS, Graciano L, Santos EL, Simao RCG (2016) Research progress concerning fungal and bacterial β-xylosidases. Appl Biochem Biotechnol 178:766–795CrossRefGoogle Scholar
  18. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:233–238CrossRefGoogle Scholar
  19. Champagne P (2007) Feasibility of producing bio-ethanol from waste residues: a Canadian perspective feasibility of producing bio-ethanol from waste residues in Canada. Resour Conserv Recycl 44:225–234Google Scholar
  20. Chen H (2014) Biological fundamentals for the biotechnology of lignocellulose. In: Biotechnology of lignocellulose: theory and practice, pp 73–141Google Scholar
  21. Chen W, Zhong L, Peng X, Lin J, Sun R (2014) Xylan-type hemicelluloses supported terpyridine-palladium (II) complex as an efficient and recyclable catalyst for Suzuki–Miyaura reaction. Cellulose 21:125–137CrossRefGoogle Scholar
  22. Chivero ET, Mutukumira AN, Zvauya R (2001) Partial purification and characterisation of a xylanase enzyme produced by a microorganism isolated from selected indigenous fruits of Zimbabwe. Food Chem 72:179–185CrossRefGoogle Scholar
  23. Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179:145–150CrossRefPubMedGoogle Scholar
  24. Clutterbuck AJ (1990) The genetics of conidiophore pigmentation in Aspergillus nidulans. J Gen Microbiol 136:1731–1738CrossRefPubMedGoogle Scholar
  25. Colavolpe MB, Alberto E (2014) Cultivation requirements and substrate degradation of the edible mushroom Gymnopilus pampeanus-A novel species for mushroom cultivation. Sci Hortic 180:161–166CrossRefGoogle Scholar
  26. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families an extremophilic xylanases. FEMS Microbiol Rev 29:3–23CrossRefPubMedGoogle Scholar
  27. Conejo-Saucedo U, Cano-Camacho H, Villa-Rivera MG, Lara-Marquez A, Lopez-Romero E, Zavala-Paramo MG (2017) Protein homology modeling, docking, and phylogenetic analyses of an endo-1,4-β-xylanase GH11 of Colletotrichum lindemuthianum. Mycol Prog 16:577–591CrossRefGoogle Scholar
  28. Coral G, Arikan B, Unaldi MN, Guvenmez H (2002) Some properties of crude carboxymethyl cellulase of Aspergillus niger Z10 wild-type strain. Turk J Biochem 26:209–213Google Scholar
  29. Correa RCG, da Silva BP, Castoldi R, Kato CG, de Sa-Nakanishi AB, Peralta RA, de Souza CGM, Bracht A, Peralta RM (2016) Spent mushroom substrate of Pleurotus pulmonarius: a source of easily hydrolyzable lignocellulose. Folia Microbiol 61:439–448CrossRefGoogle Scholar
  30. Cragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, McQueen-Mason SJ, Schnorr K, Walton PH, Watts JEM, Zimmer M (2015) Lignocellulose degradation mechanisms across the Tree of Life. Curr Opin Chem Biol 29:108–119CrossRefPubMedGoogle Scholar
  31. Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017) Enzymatic degradation of lignin in soil: a review. Sustainability 9:2–18Google Scholar
  32. de Almeida MN, Falkoski DL, Guimaraes VM, de Rezendea ST (2019) Study of gamba grass as carbon source for cellulase production by Fusarium verticillioides and its application on sugarcane bagasse saccharification. Ind Crop Prod 133:33–43CrossRefGoogle Scholar
  33. De Groot PWJ, Visser J, Griensven LJLD, Schaap PJ (1998) Biochemical and molecular aspects of growth and fruiting of the edible mushroom Agaricus bisporus. Mycol Res 102:1297–1308CrossRefGoogle Scholar
  34. Dincer A, Telefoncu A (2006) Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads. J Mol Catal B Enzym 45:10–14CrossRefGoogle Scholar
  35. Dix NJ, Webster J (1995) Fungal ecology. Chapman and Hall, London, p 549CrossRefGoogle Scholar
  36. Dwivedi UN, Singh P, Pandey VP, Kumar A (2011) Structure–function relationship among bacterial, fungal and plant laccases. J Mol Catal B Enzym 68:117–128CrossRefGoogle Scholar
  37. Ebringerova A, Hromadkova Z, Heinze T (2005) Hemicellulose. Adv Polym Sci 186:1–67CrossRefGoogle Scholar
  38. Elisashvili V, Kachlishvili E, Penninckx M (2008) Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. J Ind Microbiol Biotechnol 35:1531–1538CrossRefPubMedGoogle Scholar
  39. El-Zawawy WK, Ibrahim MM, Abdel-Fattah YR, Soliman NA, Mahmoud MM (2011) Acid and enzyme hydrolysis to convert pretreated lignocellulosic materials into glucose for ethanol production. Carbohydr Polym 84:865–871CrossRefGoogle Scholar
  40. Falade AO, Nwodo UU, Iweriebor BC, Green E, Mabinya LV, Okoh AI (2017) Lignin peroxidase functionalities and prospective applications. Microbiologyopen 6:1–14CrossRefGoogle Scholar
  41. Fan L, Gharpuray MM, Lee YH (1987) Cellulose hydrolysis. Springer, BerlinCrossRefGoogle Scholar
  42. Fang GR, Li JJ, Cheng X, Cui ZJ (2012) Performance and spatial succession of a full-scale anaerobic plant treating high-concentration cassava bioethanol wastewater. J Microbiol Biotechnol 22:1148–1154CrossRefGoogle Scholar
  43. Faten MA, Abeer AE (2012) Enzyme activities of the marine-derived fungus Alternaria alternata cultivated on selected agricultural wastes. J Appl Biol Sci 7:39–46Google Scholar
  44. Fatokun EN, Nwodo UU, Okoh AI (2016) Classical optimization of cellulase and xylanase production by a marine Streptomyces species. Appl Sci 6:286CrossRefGoogle Scholar
  45. Ferraroni M, Myasoedova NM, Schmatchenko V, Leontievsky AA, Golovleva LA, Scozzafava A, Briganti F (2007) Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. BMC Struct Biol 7:60CrossRefPubMedPubMedCentralGoogle Scholar
  46. Festucci-Buselli RA, Otoni WC, Joshi CP (2007) Structure, organization, and functions of cellulose synthase complexes in higher plants. Braz J Plant Physiol 19:1–13CrossRefGoogle Scholar
  47. Fujii T, Fang X, Inoue H, Murakami K (2009) Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials. Biotechnol Biofuels 2:24CrossRefPubMedPubMedCentralGoogle Scholar
  48. Gianfreda L, Xu F, Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Biorem J 3:1–25CrossRefGoogle Scholar
  49. Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9:2749–2766CrossRefPubMedPubMedCentralGoogle Scholar
  50. Glenn JK, Gold MH (1985) Purification and characterization of an extracellular Mn (II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 242:329–341CrossRefPubMedGoogle Scholar
  51. Golan G, Shallom D, Teplitsky A, Zaide G, Shulami S, Baasov T (2004) Crystal structures of Geobacillus stearothermophilus α-glucuronidase complexed with its substrate and products: mechanistic implications. J Biol Chem 279:3014–3024CrossRefPubMedGoogle Scholar
  52. Gold MH, Youngs HL, Gelpke MD (2000) Manganese peroxidase. Met Ions Biol Syst 37:559–586PubMedGoogle Scholar
  53. Goldbeck R, Ramos MM, Pereira GAG, Maugeri-Filho F (2013) Cellulase production from a new strain Acremonium strictum isolated from the Brazilian biome using different substrates. Bioresour Technol 128:797–803CrossRefPubMedGoogle Scholar
  54. Graciano L, Correa JM, Gandra RF, Seixas FAV, Kadowaki MK, Sampaio SC, Silva JLC, Osaku CA, Simao RCG (2012) The cloning, expression, purification, characterization and modeled structure of Caulobacter crescentus b-Xylosidase I. World J Microbiol Biotechnol 28:2879–2888CrossRefPubMedGoogle Scholar
  55. Guais O, Tourrasse O, Dourdoigne M, Parrou JL, Francois JM (2010) Characterization of the family GH54 α-L-arabinofuranosidases in Penicillium funiculosum, including a novel protein bearing a cellulose-binding domain. Appl Microbiol Biotechnol 87:1007–1021CrossRefPubMedGoogle Scholar
  56. Guan GQ, Zhao PX, Zhao J, Wang MJ, Huo SH, Cui FJ, Jiang JX (2016) Production and partial characterization of an alkaline xylanase from a novel fungus Cladosporium oxysporum. Biomed Res Int 2016:1–7Google Scholar
  57. Gubernatorova TN, Dolgonosov BM (2010) Modeling the biodegradation of multicomponent organic matterin an aquatic environment: 3. Analysis of lignin degradation mechanisms. Water Resour 37:332–346CrossRefGoogle Scholar
  58. Halis R, Tan HR, Ashaari Z, Mohamad R (2012) Biomodification of kenaf chip using white rot fungi. Bioresources 7:984–987Google Scholar
  59. Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11:349–355CrossRefPubMedGoogle Scholar
  60. Harley BS, Brodo PMA, Senior PJ (1988) Proceeding of royal society discussion meeting on utilisation of lignocellulosic wastes. Cambridge University Press, CambridgeGoogle Scholar
  61. Hasunuma T, Okazaki F, Okai N, Hara KY, Ishii J, Kondo A (2013) A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour Technol 135:513–522CrossRefPubMedGoogle Scholar
  62. Henriksson G, Nutt A, Henriksson H, Pettersson B, Stahlberg J, Johansson G, Pettersson G (1999) Endoglucanase 28 (Cel12A), a new Phanerochaete chrysosporium cellulase. Eur J Biochem 259:88–95CrossRefPubMedGoogle Scholar
  63. Hoegger PJ, Kilaru S, James TY, Thacker JR, Kues U (2006) Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 273:2308–2326CrossRefPubMedGoogle Scholar
  64. Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30:454–466CrossRefGoogle Scholar
  65. Hori C, Cullen D (2016) Prospects for bioprocess development basedon recent genome advances in lignocellulose degrading basidiomycetes. In: Schmoll M, Dattenbock C (eds) Gene expression systems in fungi: advancements and applications. Fungal Biol USA. Springer, Berlin, pp 161–181CrossRefGoogle Scholar
  66. Howard RR, Abotsi E, Renshurg JEL, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2:602–619CrossRefGoogle Scholar
  67. Hu J, Arantes V, Saddler JN (2011) The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect. Biotechnol Biofuels 4:36CrossRefPubMedPubMedCentralGoogle Scholar
  68. Iqbal HMN, Asgher M, Ahmed I, Hussain S (2013) Media optimization for hyper-production of carboxymethyl cellulase using proximally analyzed agro-industrial residue with Trichoderma harzianum under SSF. Int J Agric Vet Med Sci 4:47–55Google Scholar
  69. Isroi, Millati R, Syamsiah S, Niklasson C, Cahyanto MN, Lundquist K (2011) Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. Bioresources 6:5224–5259Google Scholar
  70. Jacobsen SE, Wyman CE (2000) Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. Appl Biochem Biotechnol 84:81–96CrossRefPubMedGoogle Scholar
  71. Jeffries TW (1990) Biodegradation of lignin–carbohydrate complexes. Biodegradation 1:163–176CrossRefGoogle Scholar
  72. Jeffries TW (1994) Biodegradation of lignin and hemicelluloses. In: Ratledge C (ed) Biochemistry of microbial degradation. Kluwer, Dordrecht, pp 233–277CrossRefGoogle Scholar
  73. Jolivalt C, Raynal A, Caminade E, Kokel B, Le Goffic F, Mougin C (1999) Transformation of N′, N′-dimethyl-N-(hydroxyphenyl) ureas by laccase from the white rot fungus Trametes versicolor. Appl Microbiol Biotechnol 51:676–681CrossRefGoogle Scholar
  74. Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sust Energ Rev 33:188–203CrossRefGoogle Scholar
  75. Kaarik A (1965) The identification of the mycelia of wood decay fungi by their oxidation reactions with phenolic compounds. Stud For Suec 31:1–79Google Scholar
  76. Kabel MA, Jurak E, Makela MR, de Vries RP (2017) Occurrence and function of enzymes for lignocelluloses degradation in commercial Agaricus bisporus cultivation. Appl Microbiol Biotechnol 101:4363–4369CrossRefPubMedPubMedCentralGoogle Scholar
  77. Kameshwar AKS, Qin W (2016) Lignin degrading fungal enzymes. In: Fang Z, Smith RL (eds) Production of biofuels and chemicals from lignin. Biofuels and biorefineries, vol 6. Springer, Singapore, pp 81–130CrossRefGoogle Scholar
  78. Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci U S A 81:2280–2284CrossRefPubMedPubMedCentralGoogle Scholar
  79. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chemie Int Eds 44:3358–3393CrossRefGoogle Scholar
  80. Knob A, Terrasan CRF, Carmona EC (2010) β-Xylosidases from filamentous fungi: an overview. World J Microbiol Biotechnol 26:389–407CrossRefGoogle Scholar
  81. Kogo T, Yoshida Y, Kogane K, Matsumoto H, Watanabe T, Ogihara J, Kasum T (2017) Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicola insolens using rice straw as a carbon source. Bioresour Technol 233:67–73CrossRefPubMedGoogle Scholar
  82. Kozlova LV, Gorshkov OV, Mokshina NE, Gorshkova TA (2015) Differential expression of a-L-arabinofuranosidases during maize (Zea mays L.) root elongation. Planta 241:1159–1172CrossRefPubMedGoogle Scholar
  83. Kubicek CP (2012a) Fungi and lignocellulosic biomass. Wiley, Ames, IACrossRefGoogle Scholar
  84. Kubicek CP (2012b) The plant biomass. In: Kubicek CP (ed) Fungi and lignocellulosic biomass. Wiley-Blackwell, Oxford, pp 1–28CrossRefGoogle Scholar
  85. Kuhad RC, Singh A, Eriksson KEL (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv Biochem Eng Biotechnol 57:45–125PubMedGoogle Scholar
  86. Kuila A, Sharma V, Garlapati VK, Singh A, Roy L (2016) Present status on enzymatic hydrolysis of lignocellulosic biomass for bioethanol production. Adv Biofeedstocks Biofuels 1:85Google Scholar
  87. Kulasinski K, Salmen L, Derome D, Carmeliet J (2016) Moisture adsorption of glucomannan and xylan hemicelluloses. Cellulose 23:1629–1637CrossRefGoogle Scholar
  88. Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456CrossRefPubMedGoogle Scholar
  89. Kumar R, Wyman CE (2009) Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 25:302–314CrossRefPubMedGoogle Scholar
  90. Kumar G, Bakonyi P, Periyasamy S, Kim SH, Nemestothy N (2015) Lignocellulose biohydrogen: practical challenges and recent progress. Renew Sust Energ Rev 44:728–737CrossRefGoogle Scholar
  91. Lam KL, Kaiwei S, Xiyang W, Shuze T, Xiaohui S, Kwan HS, Cheunga PCK (2018) The diploid genome of the only sclerotia-forming wild-type species in the genus Pleurotus-Pleurotus tuber-regium—provides insights into the mechanism of its biomass conversion from lignocellulose substrates. J Biotechnol 283:22–27CrossRefPubMedGoogle Scholar
  92. Latha GM, Srinivas P, Muralikrishna G (2007) Purification and characterization of ferulic acid esterase from malted finger millet (Eleusine coracana, Indaf-15). J Agric Food Chem 55:9704–9712CrossRefPubMedGoogle Scholar
  93. Lavanya D, Kulkarni PK, Dixit M, Raavi PK, Krishna LNV (2011) Sources of cellulose and their applications-a review. Int J Drug Formul Res 2:19–38Google Scholar
  94. Leonowicz A, Szklarz G, Wojtas WM (1985) The effect of fungal laccase on fractionated lignosylphonates (Peritan Na). Phytochemistry 24:393–396CrossRefGoogle Scholar
  95. Leschine SB (1995) Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49:399–426CrossRefPubMedGoogle Scholar
  96. Li PP, Wang XJ, Cui ZJ (2012) Survival and performance of two cellulose-degrading microbial systems inoculated into wheat straw-amended soil. J Microbiol Biotechnol 22:126–132CrossRefPubMedGoogle Scholar
  97. Liao H, Li S, Wei Z, Shen O, Xu Y (2014) Insights into high-efficiency lignocellulolytic enzyme production by Penicillium oxalicum GZ-2 induced by a complex substrate. Biotechnol Biofuels 7:162Google Scholar
  98. Lombard V, Ramulu GH, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:490–495CrossRefGoogle Scholar
  99. Maayer PD, Brumm PJ, Mead DA, Cowan DA (2014) Comparative analysis of the Geobacillus hemicellulose utilization locus reveals a highly variable target for improved hemicellulolysis. BMC Genomics 15:836CrossRefPubMedPubMedCentralGoogle Scholar
  100. MacDonald J, Suzuki H, Master ER (2012) Expression and regulation of genes encoding lignocellulose-degrading activity in the genus Phanerochaete. Appl Microbiol Biotechnol 94:339–351CrossRefPubMedGoogle Scholar
  101. Madadi M, Abbas A (2017) Lignin degradation by fungal pretreatment: a review. J Plant Pathol Microbiol 8:2Google Scholar
  102. Mai C, Kues U, Militz H (2004) Biotechnology in the wood industry. Appl Microbiol Biotechnol 63:477–494CrossRefPubMedGoogle Scholar
  103. Malayil S, Chanakya HN, Ashwath R (2016) Biogas digester liquid—a nutrient supplement for mushroom cultivation. Environ Nanotechnol Monit Manage 6:24–31Google Scholar
  104. Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Rev Environ Sci Biotechnol 1:105–114CrossRefGoogle Scholar
  105. Martinez AT (2002) Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzym Microb Technol 30:425–432CrossRefGoogle Scholar
  106. Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J (2004) Genome sequence of the lignocellulose degradingfungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700CrossRefPubMedGoogle Scholar
  107. Mayer AM, Staples RC (2002) Laccase: new function for an old enzyme. Phytochemistry 60:551–565CrossRefPubMedGoogle Scholar
  108. Mehrotra R, Aneja K (1990) An introduction to mycology. New Age International, New DelhiGoogle Scholar
  109. Menezes DB, Brazil OAV, Romanholo-Ferreira LF, Polizeli MLTM, Ruzene DS, Silva DP, Costa LP, Hernandez-Macedo ML (2017) Prospecting fungal ligninases using corncob lignocellulosic fractions. Cellulose 24:4355–4365CrossRefGoogle Scholar
  110. Meng X, Liu B, Xi C, Luo X, Yuan X, Wang X, Zhu W, Wang H, Cui Z (2018) Effect of pig manure on the chemical composition and microbial diversity during co-composting with spent mushroom substrate and rice husks. Bioresour Technol 251:22–30CrossRefPubMedGoogle Scholar
  111. More SS, Renuka PS, Pruthvi K, Swetha M, Malini S, Veena SM (2011) Isolation, purification, and characterization of fungal laccase from Pleurotus sp. Enzyme Res 2011:1–7CrossRefGoogle Scholar
  112. Mrudula S, Murugammal R (2011) Production of cellulase by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz J Microbiol 42:1119–1127CrossRefPubMedPubMedCentralGoogle Scholar
  113. Mussatto SI, Teixeira JA (2010) Lignocellulose as raw material in fermentation processes. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex Research Center, Spain, pp 897–903Google Scholar
  114. Naika GS, Kaul P, Prakash VJ (2007) Purification and characterization of a new endoglucanase from Aspergillus aculeatus. Agric Food Chem 55:7566–7572CrossRefGoogle Scholar
  115. Nam KH, Sung MW, Hwang KY (2010) Structural insights into the substrate recognition properties of b-glucosidase. Biochem Biophys Res Commun 391:1131–1135CrossRefPubMedGoogle Scholar
  116. Naraian R, Singh D, Verma A, Garg SK (2010) Studies on in vitro degradability of mixed crude enzyme extracts produced from Pleurotus sp. J Environ Biol 31:945–951PubMedGoogle Scholar
  117. Numan MT, Bhosle NB (2006) a-L-Arabinofuranosidases: the potential applications in biotechnology. J Ind Microbiol Biotechnol 33:247–260CrossRefPubMedGoogle Scholar
  118. Nurizzo D, Nagy T, Gilbert HJ, Davies GJ (2002) The structural basis for catalysis and specificity of the Pseudomonas cellulosa α-glucuronidase, GlcA67A. Structure 10:547–556CrossRefPubMedGoogle Scholar
  119. Okeke BC, Lu J (2011) Characterization of a defined cellulolytic and xylanolytic bacterial consortium for bioprocessing of cellulose and hemicelluloses. Appl Biochem Biotechnol 163:869–881CrossRefPubMedGoogle Scholar
  120. Parani K, Eyini M (2010) Effect of co-fungal treatment on biodegradation of coffee pulp waste in solid state fermentation. Asian J Exp Biol Sci 1:352–359Google Scholar
  121. Paszczynski A, Huynh VB, Crawford R (1985) Enzymatic activities of an extracellular, manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol Lett 29:37–41CrossRefGoogle Scholar
  122. Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591CrossRefPubMedGoogle Scholar
  123. Pramanik K, Sahu S (2017) Biological treatment of lignocellulosic biomass to bioethanol. Adv Biotechnol Microbiol 5:1–3Google Scholar
  124. Qi M, Wang P, Selinger LB, Yanke LJ, Forster RJ, McAllister TA (2011) Isolation and characterization of a ferulic acid esterase (Fae1A) from the rumen fungus Anaeromyces mucronatus. J Appl Microbiol 110:1341–1350CrossRefPubMedGoogle Scholar
  125. Rashad FM, El-Kattan MH, Fathy HM, El-Fattah ABD, El-Tohamy DA, Farahat MAA (2019) Recycling of agro-wastes for Ganoderma lucidum mushroom production and Ganoderma post mushroom substrate as soil amendment. Waste Manag 88:147–159CrossRefPubMedGoogle Scholar
  126. Rennie EA, Scheller HV (2014) Xylan biosynthesis. Curr Opin Biotechnol 26:100–107CrossRefPubMedGoogle Scholar
  127. Rodrigo de Souza W (2013) Chapter 9: microbial degradation of lignocellulosic biomass. In: Sustainable degradation of lignocellulosic biomass-techniques, applications and commercialization. pp 207–247Google Scholar
  128. Rothschild N, Levkowitz A, Hadar Y, Dosoretz CG (1999) Manganese deficiency can replace high oxygen levels needed for lignin peroxidase formation by Phanerochaete chrysosporium. Appl Environ Microbiol 65:483–488PubMedPubMedCentralGoogle Scholar
  129. Ryden P, Efthymiou MN, Tindyebwa TAM, Elliston A, Wilson DR, Waldron KW, Malakar PK (2017) Bioethanol production from spent mushroom compost derived from chaff of millet and sorghum. Biotechnol Biofuels 10:195CrossRefPubMedPubMedCentralGoogle Scholar
  130. Sadhu S, Maiti TK (2013) Cellulase production by bacteria: a review. Br Microbiol Res J 3:235–258CrossRefGoogle Scholar
  131. Saha BC (2004) Production, purification and properties of endoglucanase from a newly isolated strain of Mucor circinelloides. Process Biochem 39:1871–1876CrossRefGoogle Scholar
  132. Sajith S, Priji P, Sreedevi S, Benjamin S (2016) An overview on fungal cellulases with an industrial perspective. J Nutr Food Sci 6:1–10Google Scholar
  133. Salmen L, Burgert I (2009) Cell wall features with regard to mechanical performance. A review cost action E35 2004–2008: wood machining-micromechanics and fracture. Holzforschung 63:121–129CrossRefGoogle Scholar
  134. Salvachua D, Prieto A, Lopez-Abelairas M, Lu-Chau T, Martınez A, Martınez AJ (2011) Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol 102:7500–7506CrossRefPubMedGoogle Scholar
  135. Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194CrossRefPubMedGoogle Scholar
  136. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289CrossRefPubMedGoogle Scholar
  137. Sedlmeyer FB (2011) Xylan as by-product of biorefineries: characteristics and potential use for food applications. Food Hydrocoll 25:1891–1898CrossRefGoogle Scholar
  138. Segato F, Damasio ARL, de Lucas RC (2014) Genome analyses highlight the different biological roles of cellulases. Microbiol Mol Biol Rev 78:588–613CrossRefPubMedPubMedCentralGoogle Scholar
  139. Shahzadi T, Anwar Z, Iqbal Z, Anjum A, Aqil T, Bakhtawar, Afzal A, Kamran M, Mehmood S, Irshad M (2014) Induced production of exoglucanase, and β-glucosidase from fungal co-culture of T. viride and G. lucidum. Adv Biosci Biotechnol 5:426–433CrossRefGoogle Scholar
  140. Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228CrossRefPubMedGoogle Scholar
  141. Shruti, Sharma A, Malik DK (2015) Lignocellulose biomass degradation by microbial consortium isolated from harvested rice field. Int J Curr Microbiol App Sci 4:274–280Google Scholar
  142. Singh S, Harms H, Schlosser D (2014) Screening of ecologically diverse fungi for their potential to pretreat lignocellulosic bioenergy feedstock. Appl Microbiol Biotechnol 98:3355–3370CrossRefPubMedGoogle Scholar
  143. Sjostrom E (1993) The structure of wood. In: Wood chem, pp 1–20Google Scholar
  144. Sohpal VK, Dey A, Singh A (2010) Investigate of process parameters on xylanase enzyme activity in Melanocarpus albomyces batch culture. In: Proc World Congr Eng London, UKGoogle Scholar
  145. Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2605CrossRefPubMedGoogle Scholar
  146. Sorensen HR, Jorgensen CT, Hansen CH, Jorgensen CI, Pedersen S, Meyer AS (2006) A novel GH43 α-L-arabinofuranosidase from Humicola insolens: mode of action and synergy with GH51 α-L-arabinofuranosidases on wheat arabinoxylan. Appl Microbiol Biotechnol 73:850–861CrossRefPubMedGoogle Scholar
  147. Srebotnik E, Messner KA (1994) Simple method that uses differential staining and light microscopy to assess the selectivity of wood delignification by white rot fungi. Appl Environ Microbiol 60:1383–1386PubMedPubMedCentralGoogle Scholar
  148. Steffen KT, Hatakka A, Hofrichter M (2002) Degradation of humic acids by the litter decomposing basidiomycete Collybia dryophila. Appl Environ Microbiol 68:3442–3448CrossRefPubMedPubMedCentralGoogle Scholar
  149. Steinbach D, Kruse A, Sauer J (2017) Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production—a review. Biomass Convers Biorefin 7:247–274CrossRefGoogle Scholar
  150. Sternberg D, Vijayakumar P, Reese ET (1977) β-Glucosidase-microbial production and effect on enzymatic hydrolysis of cellulose. Can J Microbiol 23:139–147CrossRefPubMedGoogle Scholar
  151. Taherzadeh-Ghahfarokhi MPR, Mokhtarani B (2019) Optimizing the combination of conventional carbonaceous additives of culture media to produce lignocellulose-degrading enzymes by Trichoderma reesei in solid state fermentation of agricultural residues. Renew Energy 131:946–955CrossRefGoogle Scholar
  152. Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26CrossRefGoogle Scholar
  153. Till M, Goldstone DC, Attwood GT, Moon CD, Kelly WJ, Arcus VL (2013) Structure and function of an acetyl xylan esterase (Est2A) from the rumen bacterium Butyrivibrio proteoclasticus. Proteins 81:911–917CrossRefPubMedGoogle Scholar
  154. Tuomela M, Vikman M, Hatakka A, Itavaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72:169–183CrossRefGoogle Scholar
  155. Valaskova V, Snajdr J, Bittner B, Hofrichter M (2007) Production of lignocellulose-degrading enzymes and degradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraea forest. Soil Biol Biochem 39:2651–2660CrossRefGoogle Scholar
  156. Verma D, Satyanarayana T (2012) Cloning, expression and applicability of thermo-alkali-stable xylanase of Geobacillus thermoleovorans in generating xylooligosaccharides from agro-residues. Bioresour Technol 107:333–338CrossRefPubMedGoogle Scholar
  157. Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32:1837–1846CrossRefGoogle Scholar
  158. Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30:1447–1457CrossRefPubMedGoogle Scholar
  159. Wang QF, Niua LL, Jiao J, Guo N, Zang YP, Gai QY, Fuab YJ (2017) Degradation of lignin in birch sawdust treated by a novel Myrothecium verrucaria coupled with ultrasound assistance. Bioresour Technol 244:969–974CrossRefPubMedGoogle Scholar
  160. Wanmolee W, Sornlake W, Rattanaphan N, Suwannarangsee S, Laosiripojana N, Champreda V (2016) Biochemical characterization and synergism of cellulolytic enzyme system from Chaetomium globosum on rice straw saccharification. BMC Biotechnol 16:82CrossRefPubMedPubMedCentralGoogle Scholar
  161. Wariishi H, Valli K, Gold MH (1989) Oxidative cleavage of a phenolic diarylpropane lignin model dimer by manganese peroxidase from Phanerochaete chrysosporium. Biochemist 28:6017–6023CrossRefGoogle Scholar
  162. Wen Z, Liao W, Chen S (2004) Hydrolysis of animal manure lignocellulosics for reducing sugar production. Bioresour Technol 91:31–39CrossRefPubMedGoogle Scholar
  163. Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7:1001–1013CrossRefPubMedPubMedCentralGoogle Scholar
  164. Wong DW (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209CrossRefPubMedGoogle Scholar
  165. Wood TM (1985) Properties of cellulolytic enzyme systems. Biochem Soc Trans 13:407–410CrossRefPubMedGoogle Scholar
  166. Wood TM (1989) Mechanisms of cellulose degradation by enzymes from aerobic and anaerobic fungi. In: Coughlan MP (ed) Enzyme systems for lignocellulose degradation. Elsevier Appl Sci, London, pp 17–35Google Scholar
  167. Xiao LP, Shi ZJ, Bai YY, Wang W, Zhang XM, Sun RC (2013) Biodegradation of lignocellulose by white-rot fungi: structural characterization of water-soluble hemicelluloses. Bioenergy Res 6:1154–1164CrossRefGoogle Scholar
  168. Xiao Q, Yu H, Zhang J, Lia F, Li C, Zhang X, Ma F (2019) The potential of cottonseed hull as biorefinery substrate after biopretreatment by Pleurotus ostreatus and the mechanism analysis based on comparative proteomics. Ind Crop Prod 130:151–161CrossRefGoogle Scholar
  169. Xie C, Gong W, Yan L, Zhu Z, Hu Z, Peng Y (2017) Biodegradation of ramie stalk by Flammulina velutipes: mushroom production and substrate utilization. AMB Express 7:171CrossRefPubMedPubMedCentralGoogle Scholar
  170. Xiong S, Martin C, Eilertsen L, Wei M, Myronycheva O, Larsson SH, Lestander TA, Atterhem L, Jonsson LJ (2019) Energy-efficient substrate pasteurisation for combined production of shiitake mushroom (Lentinula edodes) and bioethanol. Bioresour Technol 274:65–72CrossRefPubMedGoogle Scholar
  171. Xu F (1996) Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemist 35:7608–7614CrossRefGoogle Scholar
  172. Xu X, Hu Y, Quan L (2014) Production of bioactive polysaccharides by Inonotus obliquus under submerged fermentation supplemented with lignocellulosic biomass and their antioxidant activity. Bioprocess Biosyst Eng 37:2483–2492CrossRefPubMedGoogle Scholar
  173. Yang P, Zhang H, Cao L, Zheng Z, Mu D, Jiang S, Cheng J (2018) Combining sestc engineered A. niger with sestc engineered S. cerevisiae to produce rice straw ethanol via step-by-step and in situ saccharification and fermentation. 3 Biotech 8:12CrossRefPubMedGoogle Scholar
  174. Yoshida H (1883) Chemistry of lacquer (Urishi) part 1. J Chem Soc 43:472–486CrossRefGoogle Scholar
  175. Youn HD, Hah YC, Kang SO (1995) Role of laccase in lignin degradation by white-rot fungi. FEMS Microbiol Lett 132:183–188CrossRefGoogle Scholar
  176. Zhang X, Tu M, Paice MG (2011) Routes to potential bioproducts from lignocellulosic biomass lignin and hemicelluloses. Bioenergy Res 4:246–257CrossRefGoogle Scholar
  177. Zhao X, Huang X, Yao J, Zhou Y, Jia R (2015) Fungal growth and manganese peroxidase production in a deep tray solid-state bioreactor, and in vitro decolorization of poly r-478 by MnP. J Microbiol Biotechnol 25:803–813CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Roshan Lal Gautam
    • 1
  • Shweta Singh
    • 1
  • Simpal Kumari
    • 1
  • Archana Gupta
    • 2
  • R. Naraian
    • 1
  1. 1.Department of Biotechnology, Faculty of ScienceVeer Bahadur Singh Purvanchal UniversityJaunpurIndia
  2. 2.Department of BotanyC.M.P. Degree College, University of AllahabadPrayagrajIndia

Personalised recommendations