Simulation and Analysis of Different Designs of Escape Areas with the Insertion of Obstacles
Conference paper
First Online:
Abstract
Starting from Social Forces models, the homogenization of variables and fixed parameters, different architectural solutions were simulated and compared for emergency emptying of areas with large public. The results show that small adjustments in the input data generate divergent responses, indicating that the effectiveness of evacuations depends on multiple variables.
Keywords
Evacuation Social force model Design solutionsNotes
Acknowledgements
The authors would like to thank the Post-Graduation Program in Architecture and Urbanism of Universidade Federal de Santa Catarina, the Conselho Nacional de Desenvolvimento Científico e Tecnológico [CNPq] and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior [CAPES].
References
- 1.Duives, D., Daamen, W., Hoogendoorn, S.: State-of-the-art crowd motion simulation models. Transp. Res. Part C 37, 193–209 (2013)CrossRefGoogle Scholar
- 2.Escobar, R., De La Rosa, A.: Architectural design for the survival optimization of panicking fleeing victims. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, T. (eds.) Advances in Artificial Life. Proceedings of the 7th European Conference, ECAL. Lecture Notes in Computer Science, vol. 2801, pp. 97–106. Springer, Berlin, Heidelberg (2003)Google Scholar
- 3.Frank, G., Dorso, C.: Room evacuation in the presence of an obstacle. Phys. A Stat. Mech. Appl. (Amsterdam) 390(11), 213–2145 (2011)Google Scholar
- 4.Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-Organized Pedestrian crowd dynamics: experiments, simulations, and design solutions. Transp. Sci. 39(1), 1–24 (2005)CrossRefGoogle Scholar
- 5.Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)CrossRefGoogle Scholar
- 6.Helbing, D., Farkas, I., Vicsek, T.: Crowd disasters and simulation of panic situations. In: Bunde, A., Kropp, J., Schellnhuber, H. (eds.) Science of Disaster: Climate Disruptions, Heart Attacks and Market Crashes, pp. 331–350. Springer, Berlin (2001)Google Scholar
- 7.Helbing, D., Keltsch, J., Molnár, P.: Modelling the evolution of human trail systems. Nature 388, 47–50 (1997)CrossRefGoogle Scholar
- 8.Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995)Google Scholar
- 9.Helbing, D., Farkas, I., Molnár, P., Vicsek, T.: Simulation of Pedestrian crowds in normal and evacuation situations. In: Schreckenberg, M., Sharm, S. (eds.) Pedestrian and Evacuation Dynamics, pp. 21–58. Springer, Berlin, Germany (2002a)Google Scholar
- 10.Helbing, D., Farkas, I., Vicsek, T.: Crowd Disasters and Simulation of Panic Situations. The Science of Disasters, Springer, Berlin, Heidelberg (2002b)Google Scholar
- 11.Hoogendoorn, S., Bovy, P.: Pedestrian route-choice and activity scheduling theory and models. Transp. Res. Part B Methodol. 38, 169–190 (2004)CrossRefGoogle Scholar
- 12.Illera, C., Fink, M., Hinneberg, H., Kath, K., Waldau, N., Rosic, A., Wurzer, G.: No panic. Escape and panic in buildings–architectural basic research in the context of security and safety research. In: Klingsch, W., Rogsch, C., Schadschneider, A., Schreckenberg, M. (eds.) Pedestrian and Evacuation, Dynamics, pp. 733–742. Springer, Berlin, Heidelberg (2010)Google Scholar
- 13.Jiang, L., Li, J., Shen, C., Yang, S., Han, Z.: Obstacle optimization for panic flow—reducing the tangential momentum increases the escape speed. PLoS ONE 9(12), e115463 (2014)CrossRefGoogle Scholar
- 14.Lima, F., Oliveira, D., Samed, M.: Simulação e Cenáriros como Preparação para Desastres. In: Leiras, A., Yoshizaki, H., Samed, M., Gonçalves, M. (orgs.) Logística Humanitária, 1 edn, pp. 251–272. Elsevier, Rio de Janeiro (2017)Google Scholar
- 15.Moussaïd, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian behavior and crowd disasters. Proc. Natl. Acad. Sci. 108(17), 6884–6888 (2011)CrossRefGoogle Scholar
- 16.Shiwakoti, N., Sarvi, M.: Enhancing the panic escape of crowd through architectural design. Transp. Res. Part C Emerg. Technol. 37, 260–267 (2013)CrossRefGoogle Scholar
- 17.Shiwakoti, N., Sarvi, M., Burd, M.: Using non-human biological entities to understand pedestrian crowd behaviour under emergency conditions. Saf. Sci. 66, 1–8 (2014)CrossRefGoogle Scholar
- 18.Shukla, P.: Genetically optimized architectural designs for control of pedestrian crowds. In: Korb, K., Randall, M., Hendtlass, T. (eds.) Artificial Life: Borrowing from Biology. ACAL. Lecture Notes in Computer Science, vol. 5865, pp. 22–31. Springer, Berlin, Heidelberg (2009)Google Scholar
- 19.Yanagisawa, D., Nishi, R., Tomoeda, A., Ohtsuka, K., Kimura, A., Suma, Y., Nishinari, K.: Study on efficiency of evacuation with an obstacle on hexagonal cell space. SICE J. Control Meas. Syst. Integr. 3(6), 395–401 (2010)CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2020