Topological Superconductors

  • Laura Ortiz MartínEmail author
Part of the Springer Theses book series (Springer Theses)


The idea of a fermionic particle being precisely its own antiparticle has puzzled physicists for generations. These exotic particles were hypothesised by Majorana and named after him [1]. They have been thoroughly studied in high energy physics as a possible solution to the intriguing nature of neutrinos and dark matter [2]. However, the detection of Majorana fermions remained elusive until they were introduced as quasiparticles in certain condensed matter systems. A series of experiments has claimed the observation of signatures of Majorana states [3, 4, 5, 6, 7, 8].


  1. 1.
    Majorana E (1937) Teoria simmetrica dell’elettrone e del positrone. Il Nuovo Cimento (1924–1942) 14(4):171ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Wilczek F (2009) Majorana returns. Nat Phys 5:614CrossRefGoogle Scholar
  3. 3.
    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H (2012) Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions. Nat Phys 8(12):887–895CrossRefGoogle Scholar
  4. 4.
    Mourik V, Zuo K, Frolov SM, Plissard SR, Bakkers EPAM, Kouwenhoven LP (2012) Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336(6084):1003–1007ADSCrossRefGoogle Scholar
  5. 5.
    Deng MT, Yu CL, Huang GY, Larsson M, Caroff P, Xu HQ (2012) Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device. Nano Lett 12(12):6414–6419ADSCrossRefGoogle Scholar
  6. 6.
    Albrecht SM, Higginbotham AP, Madsen M, Kuemmeth F, Jespersen TS, Nygård J, Krogstrup P, Marcus CM (2016) Exponential protection of zero modes in majorana islands. Nature 531(7593):206–209ADSCrossRefGoogle Scholar
  7. 7.
    He QL, Pan L, Stern AL, Burks EC, Che X, Yin G, Wang J, Lian B, Zhou Q, Choi ES, Murata K, Kou X, Chen Z, Nie T, Shao Q, Fan Y, Zhang S-C, Liu K, Xia J, Wang KL (2017) Chiral Majorana fermion modes in a quantum anomalous Hall insulator-superconductor structure. Science 357(6348):294–299ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Sun H-H, Zhang K-W, Hu L-H, Li C, Wang G-Y, Ma H-Y, Xu Z-A, Gao C-L, Guan D-D, Li Y-Y, Liu C, Qian D, Zhou Y, Fu L, Li S-C, Zhang F-C, Jia J-F (2016) Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor. Phys Rev Lett 116:257003ADSCrossRefGoogle Scholar
  9. 9.
    Kitaev AY (2003) Fault-tolerant quantum computation by anyons. Ann Phys 303(1):2–30ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bravyi S, Terhal BM, Leemhuis B (2010) Majorana fermion codes. New J Phys 12(8):083039CrossRefGoogle Scholar
  11. 11.
    Alicea J, Oreg Y, Refael G, von Oppen F, Fisher MPA (2011) Non-abelian statistics and topological quantum information processing in 1d wire networks. Nat Phys 7:412CrossRefGoogle Scholar
  12. 12.
    Nayak C, Simon SH, Stern A, Freedman M, Sarma SD (2008) Non-Abelian anyons and topological quantum computation. Rev Mod Phys 80:1083–1159ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Litinski D, Kesselring MS, Eisert J, von Oppen F (2017) Combining topological hardware and topological software: color-code quantum computing with topological superconductor networks. Phys Rev X 7:031048Google Scholar
  14. 14.
    Litinski D, von Oppen F (2017) Braiding by Majorana tracking and long-range CNOT gates with color codes. Phys Rev B 96:205413ADSCrossRefGoogle Scholar
  15. 15.
    Litinski D, von Oppen F (2018) Lattice surgery with a twist: simplifying Clifford gates of surface codes. Quantum 2:62CrossRefGoogle Scholar
  16. 16.
    Bombin H, Martin-Delgado MA (2006) Topological quantum distillation. Phys Rev Lett 97:180501ADSCrossRefGoogle Scholar
  17. 17.
    Bombin H, Martin-Delgado MA (2007) Topological computation without braiding. Phys Rev Lett 98:160502ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Benito M, Gómez-León A, Bastidas VM, Brandes T, Platero G (2014) Floquet engineering of long-range \(p\)-wave superconductivity. Phys Rev B 90:205127ADSGoogle Scholar
  19. 19.
    Kitaev AY (2001) Unpaired Majorana fermions in quantum wires. Physics-Uspekhi 44(10S):131ADSCrossRefGoogle Scholar
  20. 20.
    Fu L, Kane CL (2008) Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys Rev Lett 100:096407ADSCrossRefGoogle Scholar
  21. 21.
    Xu J-P, Wang M-X, Liu ZL, Ge J-F, Yang X, Liu C, Xu ZA, Guan D, Gao CL, Qian D, Liu Y, Wang Q-H, Zhang F-C, Xue Q-K, Jia J-F (2015) Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor \({\rm bi }_{2}{\rm te }_{3}/{\rm nbse }_{2}\) heterostructure. Phys Rev Lett 114:017001ADSGoogle Scholar
  22. 22.
    Nadj-Perge S, Drozdov IK, Li J, Chen H, Jeon S, Seo J, MacDonald AH, Bernevig BA, Yazdani A (2014) Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346(6209):602–607ADSCrossRefGoogle Scholar
  23. 23.
    Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H, Gao H-J (2017) Evidence for Majorana bound state in an iron-based superconductor. arXiv:1706.06074
  24. 24.
    He QL, Pan L, Stern AL, Burks EC, Che X, Yin G, Wang J, Lian B, Zhou Q, Choi ES, Murata K, Kou X, Chen Z, Nie T, Shao Q, Fan Y, Zhang SC, Liu K, Xia J, Wang KL (2017) Chiral Majorana fermion modes in a quantum anomalous Hall insulator-superconductor structure. Science 357(6348):294–299ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Lutchyn RM, Sau JD, Das Sarma S (2010) Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys Rev Lett 105:077001ADSCrossRefGoogle Scholar
  26. 26.
    Zareapour P, Hayat A, Zhao SYF, Kreshchuk M, Jain A, Kwok DC, Lee N, Cheong S-W, Xu Z, Yang A, Gu GD, Jia S, Cava RJ, Burch KS (2012) Proximity-induced high-temperature superconductivity in the topological insulators Bi2Se3 and Bi2Te3. Nat Commun 3:1056ADSCrossRefGoogle Scholar
  27. 27.
    Trani F, Campagnano G, Tagliacozzo A, Lucignano P (2016) High critical temperature nodal superconductors as building block for time-reversal invariant topological superconductivity. Phys Rev B 94:134518ADSCrossRefGoogle Scholar
  28. 28.
    Li Z-X, Chan C, Yao H (2015) Realizing majorana zero modes by proximity effect between topological insulators and \(d\)-wave high-temperature superconductors. Phys Rev B 91:235143ADSGoogle Scholar
  29. 29.
    Bednorz JG, Müller KA (1986) Possible high-\(t_c\) superconductivity in the \(balacuo\) system. Z Phys B Condens Matter 64(2):189–193ADSGoogle Scholar
  30. 30.
    Schilling A, Cantoni M, Guo JD, Ott HR (1993) Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature 363:56ADSCrossRefGoogle Scholar
  31. 31.
    Dai P, Chakoumakos BC, Sun GF, Wong KW, Xin Y, Lu DF (1995) Synthesis and neutron powder diffraction study of the superconductor \(HgBa_{2}Ca_{2}Cu_{3}O_{8+\delta }\) by Tl substitution. Phys C Supercond 243(3):201–206ADSGoogle Scholar
  32. 32.
    Takahashi H, Igawa K, Arii K, Kamihara Y, Hirano M, Hosono H (2008) Superconductivity at 43 k in an iron-based layered compound LaO\({_{1-x}}\)F\(_x\)FeAs. Nature 453:376ADSGoogle Scholar
  33. 33.
    Ren Z-A, Che G-C, Dong X-L, Yang J, Lu W, Yi W, Shen X-L, Li Z-C, Sun L-L, Zhou F, Zhao Z-X (2008) Superconductivity and phase diagram in iron-based arsenic-oxides \(refeaso_{1+\delta }\) (re = rare-earth metal) without fluorine doping. EPL (Europhys Lett) 83(1):17002ADSGoogle Scholar
  34. 34.
    Li Y, Hao J, Liu H, Li Y, Ma Y (2014) The metallization and superconductivity of dense hydrogen sulfide. J Chem Phys 140(17):174712ADSCrossRefGoogle Scholar
  35. 35.
    Tsuei CC, Kirtley JR (2000) Pairing symmetry in cuprate superconductors. Rev Mod Phys 72:969–1016ADSCrossRefGoogle Scholar
  36. 36.
    Cao Y, Fatemi V, Demir A, Fang S, Tomarken SL, Luo JY, Sanchez-Yamagishi JD, Watanabe K, Taniguchi T, Kaxiras E, Ashoori RC, Jarillo-Herrero P (2018) Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556(17):174712Google Scholar
  37. 37.
    Levine Y, Haim A, Oreg Y (2017) Realizing topological superconductivity with superlattices. Phys Rev B 96:165147ADSCrossRefGoogle Scholar
  38. 38.
    Sato M, Fujimoto S (2010) Existence of Majorana fermions and topological order in nodal superconductors with spin-orbit interactions in external magnetic fields. Phys Rev Lett 105:217001ADSCrossRefGoogle Scholar
  39. 39.
    Ortiz L, Varona S, Viyuela O, Martin-Delgado MA (2018) Localization and oscillations of Majorana fermions in a two-dimensional electron gas coupled with \(d\)-wave superconductors. Phys Rev B 97:064501ADSGoogle Scholar
  40. 40.
    Kiesel ML, Platt C, Hanke W, Thomale R (2013) Model evidence of an anisotropic chiral \(d\mathbf{+}id\)-wave pairing state for the water-intercalated \({\rm {na}}_{x}{\rm {coo}}_{2}\cdot {y}{\mathbf{h}}_{2}{\mathbf{O}}\) superconductor. Phys Rev Lett 111:097001ADSGoogle Scholar
  41. 41.
    Liu F, Liu C-C, Kehui W, Yang F, Yao Y (2013) \(d+i{d}^{^{\prime }}\). Phys Rev Lett 111:066804ADSCrossRefGoogle Scholar
  42. 42.
    Chern T (2016) d + id and d wave topological superconductors and new mechanisms for bulk boundary correspondence. AIP Adv 6(8):085211ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Lin S-Z, Maiti S, Chubukov A (2016) Distinguishing between \(s+id\) and \(s+is\) pairing symmetries in multiband superconductors through spontaneous magnetization pattern induced by a defect. Phys Rev B 94:064519ADSGoogle Scholar
  44. 44.
    Zhou S, Wang Z (2008) Nodal \(d+id\) pairing and topological phases on the triangular lattice of \({\rm na\rm _{x}{\rm coo}\rm _{2}\cdot {y}{\rm h}\rm _{2}\rm O}\): evidence for an unconventional superconducting state. Phys Rev Lett 100:217002Google Scholar
  45. 45.
    Wenger F, Östlund S (1993) Phys Rev B 47:5977–5983Google Scholar
  46. 46.
    Varona S, Ortiz L, Viyuela O, Martin-Delgado MA (2018) Topological phases in nodeless tetragonal superconductors. J Phys Condens Matter 30(39):395602CrossRefGoogle Scholar
  47. 47.
    Fukui T, Shiozaki K, Fujiwara T, Fujimoto S (2012) Bulk-edge correspondence for chern topological phases: a viewpoint from a generalized index theorem. J Phys Soc Jpn 81(11):114602ADSCrossRefGoogle Scholar
  48. 48.
    Chiu C-K, Teo JCY, Schnyder AP, Ryu S (2016) Classification of topological quantum matter with symmetries. Rev Mod Phys 88:035005ADSCrossRefGoogle Scholar
  49. 49.
    Sedlmayr N, Kaladzhyan V, Dutreix C, Bena C (2017) Bulk boundary correspondence and the existence of Majorana bound states on the edges of 2d topological superconductors. Phys Rev B 96:184516ADSCrossRefGoogle Scholar
  50. 50.
    Alicea J (2010) Majorana fermions in a tunable semiconductor device. Phys Rev B 81:125318ADSCrossRefGoogle Scholar
  51. 51.
    Kohmoto M (1985) Topological invariant and the quantization of the hall conductance. Ann Phys 160(2):343–354ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    Sato M (2010) Topological odd-parity superconductors. Phys Rev B 81:220504ADSCrossRefGoogle Scholar
  53. 53.
    Sato M, Ando Y (2017) Topological superconductors: a review. Rep Prog Phys 80(7):076501ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    Teo JCY, Kane CL (2010) Topological defects and gapless modes in insulators and superconductors. Phys Rev B 82:115120ADSCrossRefGoogle Scholar
  55. 55.
    Fukui T, Hatsugai Y, Suzuki H (2005) Chern numbers in discretized brillouin zone: efficient method of computing (spin) hall conductances. J Phys Soc Jpn 74(6):1674–1677ADSCrossRefGoogle Scholar
  56. 56.
    Resta R (2000) Manifestations of berry’s phase in molecules and condensed matter. J Phys Condens Matter 12(9):R107ADSCrossRefGoogle Scholar
  57. 57.
    Sato M (2006) Nodal structure of superconductors with time-reversal invariance and \({\mathbb{z}}_{2}\) topological number. Phys Rev B 73:214502ADSGoogle Scholar
  58. 58.
    Takei S, Fregoso BM, Galitski V, Das Sarma S (2013) Topological superconductivity and Majorana fermions in hybrid structures involving cuprate high-\({T}_{c}\) superconductors. Phys Rev B 87:014504ADSGoogle Scholar
  59. 59.
    Zareapour P, Xu J, Zhao SYF, Jain A, Xu Z, Liu TS, Gu GD, Burch KS (2016) Modeling tunneling for the unconventional superconducting proximity effect. Supercond Sci Technol 29(12):125006ADSCrossRefGoogle Scholar
  60. 60.
    Kashiwaya S, Tanaka Y (2000) Tunnelling effects on surface bound states in unconventional superconductors. Rep Prog Phys 63(10):1641–1724ADSCrossRefGoogle Scholar
  61. 61.
    Tanaka Y, Kashiwaya S (1995) Theory of tunneling spectroscopy of \({d}\)-wave superconductors. Phys Rev Lett 74:3451–3454ADSGoogle Scholar
  62. 62.
    Leijnse M, Flensberg K (2012) Introduction to topological superconductivity and Majorana fermions. Semicond Sci Technol 27(12):124003ADSCrossRefGoogle Scholar
  63. 63.
    Hashimoto M, Vishik IM, He R-H, Devereaux TP, Shen Z-X (2014) Energy gaps in high-transition-temperature cuprate superconductors. Nat Phys 10(7):483–495CrossRefGoogle Scholar
  64. 64.
    Stanescu TD, Lutchyn RM, Das Sarma S (2011) Majorana fermions in semiconductor nanowires. Phys Rev B 84:144522ADSCrossRefGoogle Scholar
  65. 65.
    Suominen HJ, Kjaergaard M, Hamilton AR, Shabani J, Palmstrøm CJ, Marcus CM, Nichele F (2017) Zero-energy modes from coalescing andreev states in a two-dimensional semiconductor-superconductor hybrid platform. Phys Rev Lett 119:176805ADSCrossRefGoogle Scholar
  66. 66.
    Lee JS, Shojaei B, Pendharkar M, McFadden AP, Kim Y, Suominen HJ, Kjaergaard M, Nichele F, Marcus CM, Palmstrøm CJ (2017) Phenomenology of soft gap, zero bias peak, and zero mode splitting in ideal majorana nanowires. arXiv, 2017Google Scholar
  67. 67.
    Shabani J, Kjaergaard M, Suominen HJ, Kim Y, Nichele F, Pakrouski K, Stankevic T, Lutchyn RM, Krogstrup P, Feidenhans’l R, Kraemer S, Nayak C, Troyer M, Marcus CM, Palmstrøm CJ (2016) Two-dimensional epitaxial superconductor-semiconductor heterostructures: a platform for topological superconducting networks. Phys Rev B 93:155402ADSCrossRefGoogle Scholar
  68. 68.
    Mong RSK, Shivamoggi V (2011) Edge states and the bulk-boundary correspondence in Dirac Hamiltonians. Phys Rev B 83:125109ADSCrossRefGoogle Scholar
  69. 69.
    Ryu S, Hatsugai Y (2002) Topological origin of zero-energy edge states in particle-hole symmetric systems. Phys Rev Lett 89:077002ADSCrossRefGoogle Scholar
  70. 70.
    Cirac JI, Zoller P (1995) Quantum computations with cold trapped ions. Phys Rev Lett 74:4091–4094ADSCrossRefGoogle Scholar
  71. 71.
    Gong X, Kargarian M, Stern A, Yue D, Zhou H, Jin X, Galitski Victor M, Yakovenko VM, Xia J (2017) Time-reversal symmetry-breaking superconductivity in epitaxial bismuth/nickel bilayers. Sci Adv 3(3):e1602579ADSCrossRefGoogle Scholar
  72. 72.
    Nandkishore R, Levitov LS, Chubukov AV (2014) Chiral superconductivity from repulsive interactions in doped graphene. Nat Phys 8:1804Google Scholar
  73. 73.
    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P (2018) Unconventional superconductivity in magic-angle graphene superlattices. Nature 8Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Racah Institute of PhysicsThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations