Advertisement

Topological Insulators

  • Laura Ortiz MartínEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Topological insulators (TI) are just an example of a broader type of topological phase, called SPT phases, as mentioned in the general introduction. The hallmark of a two-dimensional (2D) TI is an insulating bulk energy gap along with gapless edge states [1, 2, 3, 4]. At each boundary, two counterpropagating edge states with opposite spin polarization and wave numbers form Kramers pairs, i.e. two distinct degenerate states connected by time-reversal symmetry. These states are denoted helical edge states due to the connection between spin and propagation direction.

References

  1. 1.
    Kane CL, Mele EJ (2005) Quantum spin hall effect in graphene. Phys Rev Lett 95:226801ADSCrossRefGoogle Scholar
  2. 2.
    Kane CL, Mele EJ (2005) \({Z}_{2}\) topological order and the quantum spin hall effect. Phys Rev Lett 95:146802ADSCrossRefGoogle Scholar
  3. 3.
    Qi X-L, Zhang S-C (2011) Topological insulators and superconductors. Rev Mod Phys 83:1057ADSCrossRefGoogle Scholar
  4. 4.
    Ando Y (2013) Topological insulator materials. J Phys Soc Jpn 82(10):102001ADSCrossRefGoogle Scholar
  5. 5.
    Xu C, Moore JE (2006) Stability of the quantum spin hall effect: effects of interactions, disorder, and \(\mathbb{Z}_{2}\) topology. Phys Rev B 73:045322Google Scholar
  6. 6.
    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp LW, Qi X-L, Zhang S-C (2007) Quantum spin hall insulator state in hgte quantum wells. Science 318:766ADSCrossRefGoogle Scholar
  7. 7.
    Roth A, Brüne C, Buhmann H, Molenkamp LW, Maciejko J, Qi X-L, Zhang S-C (2009) Nonlocal transport in the quantum spin hall state. Science 325:294ADSCrossRefGoogle Scholar
  8. 8.
    Brüne C, Roth A, Buhmann H, Hankiewicz EM, Molenkamp LW, Maciejko J, Qi X-L, Zhang S-C (2012) Spin polarization of the quantum spin hall edge states. Nat Phys 8:485CrossRefGoogle Scholar
  9. 9.
    König M, Baenninger M, Garcia AGF, Harjee N, Pruitt BL, Ames C, Leubner P, Brüne C, Buhmann H, Molenkamp LW, Goldhaber-Gordon D (2013) Spatially resolved study of backscattering in the quantum spin hall state. Phys Rev X 3:021003Google Scholar
  10. 10.
    Andrei Bernevig B, Hughes TL, Zhang S-C (2006) Quantum spin hall effect and topological phase transition in HgTe quantum wells. Science 314(5806):1757–1761ADSCrossRefGoogle Scholar
  11. 11.
    Liu C, Hughes TL, Qi X-L, Wang K, Zhang S-C (2008) Quantum spin hall effect in inverted type-ii semiconductors. Phys Rev Lett 100:236601ADSCrossRefGoogle Scholar
  12. 12.
    Knez I, Rui-Rui D, Sullivan G (2011) Evidence for helical edge modes in inverted \({\rm InAs}/{\rm GaSb}\) quantum wells. Phys Rev Lett 107:136603ADSCrossRefGoogle Scholar
  13. 13.
    Suzuki K, Harada Y, Onomitsu K, Muraki K (2013) Edge channel transport in the inas/gasb topological insulating phase. Phys Rev B 87:235311ADSCrossRefGoogle Scholar
  14. 14.
    Knez I, Rettner CT, Yang S-H, Parkin SSP, Du L, Rui-Rui D, Sullivan G (2014) Observation of edge transport in the disordered regime of topologically insulating \(\rm InAs /\rm GaSb \) quantum wells. Phys Rev Lett 112:026602ADSCrossRefGoogle Scholar
  15. 15.
    Lingjie D, Knez I, Sullivan G, Rui-Rui D (2015) Robust helical edge transport in gated \({\rm InAs}/{\rm GaSb}\) bilayers. Phys Rev Lett 114:096802ADSCrossRefGoogle Scholar
  16. 16.
    Gusev GM, Kvon ZD, Shegai OA, Mikhailov NN, Dvoretsky SA, Portal JC (2011) Transport in disordered two-dimensional topological insulators. Phys. Rev. B 84:121302 SepGoogle Scholar
  17. 17.
    Vaudel G, Pezeril T, Lomonosov A, Lejman M, Ruello P, Gusev V (2014) Laser generation of hypersound by a terahertz photo-dember electric field in a piezoelectric gaas semiconductor. Phys Rev B 90:014302ADSCrossRefGoogle Scholar
  18. 18.
    Spanton Eric M, Nowack Katja C, Lingjie D, Sullivan G, Rui-Rui D, Moler KA (2014) Images of edge current in \({\rm InAs}/{\rm GaSb}\) quantum wells. Phys Rev Lett 113:026804ADSCrossRefGoogle Scholar
  19. 19.
    Sinova J, MacDonald AH (2013) Models and materials for topological insulators. Elsevier, AmsterdamGoogle Scholar
  20. 20.
    Winkler R (2003) Spin-orbit coupling in two-dimensional electron and hole systems. Spinger, New YorkCrossRefGoogle Scholar
  21. 21.
    Schmidt Thomas L, Stephan R, von Oppen F, Glazman LI (2012) Inelastic electron backscattering in a generic helical edge channel. Phys Rev Lett 108:156402Google Scholar
  22. 22.
    Rothe DG, Reinthaler RW, Liu C-X, Molenkamp LW, Zhang S-C, Hankiewicz EM (2010) Fingerprint of different spin-orbit terms for spin transport in hgte quantum wells. New J Phys 12:065012CrossRefGoogle Scholar
  23. 23.
    Virtanen P, Recher P (2012) Signatures of rashba spin-orbit interaction in the superconducting proximity effect in helical luttinger liquids. Phys Rev B 85:035310ADSCrossRefGoogle Scholar
  24. 24.
    König M, Buhmann H, Molenkamp LW, Hughes TL, Liu C-X, Qi XL, Zhang SC (2008) The quantum spin hall effect: theory and experiment. J Phys Soc Jpn 77:031007ADSCrossRefGoogle Scholar
  25. 25.
    Ostrovsky P, Gornyi I, Mirlin A (2012) Symmetries and weak localization and antilocalization of dirac fermions in hgte quantum wells. Phys Rev B 86:125323ADSCrossRefGoogle Scholar
  26. 26.
    Kainaris N, Gornyi IV, Carr ST, Mirlin AD (2014) Conductivity of a generic helical liquid. Phys Rev B 90:075118ADSCrossRefGoogle Scholar
  27. 27.
    Orth C, Strübi G, Schmidt T (2013) Point contacts and localization in generic helical liquids. Phys Rev B 88:165315ADSCrossRefGoogle Scholar
  28. 28.
    Orth CP, Tiwari RP, Meng T, Schmidt TL (2015) Non-abelian parafermions in time-reversal-invariant interacting helical systems. Phys Rev B 91:081406ADSCrossRefGoogle Scholar
  29. 29.
    Rod A, Schmidt TL, Rachel S (2015) Spin texture of generic helical edge states. Phys Rev B 91:245112ADSCrossRefGoogle Scholar
  30. 30.
    Ortiz L, Molina RA, Platero G, Lunde AM (2016) Generic helical edge states due to rashba spin-orbit coupling in a topological insulator. Phys Rev B 93:205431ADSCrossRefGoogle Scholar
  31. 31.
    Orth CP, Strübi G, Schmidt TL (2013) Point contacts and localization in generic helical liquids. Phys Rev B 88:165315ADSCrossRefGoogle Scholar
  32. 32.
    Eriksson E, Ström A, Sharma G, Johannesson H (2012) Electrical control of the kondo effect in a helical edge liquid. Phys Rev B 86:161103ADSCrossRefGoogle Scholar
  33. 33.
    Eriksson E (2013) Spin-orbit interactions in a helical luttinger liquid with a kondo impurity. Phys Rev B 87:235414ADSCrossRefGoogle Scholar
  34. 34.
    Budich JC, Dolcini F, Recher P, Trauzettel B (2012) Phonon-induced backscattering in helical edge states. Phys Rev Lett 108:086602ADSCrossRefGoogle Scholar
  35. 35.
    Lunde AM, Platero G (2013) Hyperfine interactions in two-dimensional hgte topological insulators. Phys Rev B 88:115411ADSCrossRefGoogle Scholar
  36. 36.
    Zhou B, Lu H-Z, Chu R-L, Shen S-Q, Niu Q (2008) Finite size effects on helical edge states in a quantum spin-hall system. Phys Rev Lett 101(24):246807Google Scholar
  37. 37.
    Liu C, Zhang S-C (2008) Theory of spin-orbit effects in semiconductors. Springer, Semiconductors and semimetalsGoogle Scholar
  38. 38.
    Wada M, Murakami S, Freimuth F, Bihlmayer G (2011) Localized edge states in two-dimensional topological insulators: Ultrathin bi films. Phys Rev B 83:121310Google Scholar
  39. 39.
    Andrei Bernevig B, Hughes TL (2013) Topological insulators and topological superconductors. Princeton University Press, PrincetonCrossRefGoogle Scholar
  40. 40.
    Shan W-Y, Lu H-Z, Shen S-Q (2010) Effective continuous model for surface states and thin films of three-dimensional topological insulators. New J Phys 12(4):043048CrossRefGoogle Scholar
  41. 41.
    Takagaki Y (2014) Cancelation of confinement effect by spin-orbit coupling in narrow strips of two-dimensional topological insulators. Phys Rev B 90:165305ADSCrossRefGoogle Scholar
  42. 42.
    Medhi A, Shenoy VB (2012) Continuum theory of edge states of topological insulators: variational principle and boundary conditions. J Phys: Condens Matter 24(35):355001Google Scholar
  43. 43.
    Rashba EI, Sheka VI (1959) Collected papers. Fiz. Tverd. Tela 2:162Google Scholar
  44. 44.
    Koo HC, Kwon JH, Eom J, Chang J, Han SH, Johnson M (2009) Control of spin precession in a spin-injected field effect transistor. Science 325:1515ADSCrossRefGoogle Scholar
  45. 45.
    Chuang P, Ho SC, Smith LW, Sfigakis F, Pepper M, Chen CH, Fan JC, Griffiths JP, Farrer I, Beere HE, Jones GAC, Ritchie DA, Chen TM (2014) All-electric all-semiconductor spin field-effect transistors. Nat Nanotech 10:35ADSCrossRefGoogle Scholar
  46. 46.
    Bhardwaj V, Pal L, Prakash S, Varga LK, Tomar M, Gupta V, Chatterjee R (2018) Weak antilocalization and quantum oscillations of surface states in topologically nontrivial dypdbi(110)half heusler alloy. Sci Rep 8:2045CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Racah Institute of PhysicsThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations