Topology in Quantum Information

  • Laura Ortiz MartínEmail author
Part of the Springer Theses book series (Springer Theses)


Quantum Computation began when the fundamental questions of computer science and information theory were asked in the realm of quantum mechanics. This change of perspective inspires many problems combining physics, computer science and information theory and results in a better understanding of the nature of quantum physics.


  1. 1.
    Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. University Press, CambridgeGoogle Scholar
  2. 2.
    Therhal BM (2018) Quantum supremacy, here we come. Nat Phys 14(2):045004Google Scholar
  3. 3.
    Rosales JL, Martin V (2016) Quantum simulation of the factorization problem. Phys Rev Lett 117:200502ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bacon D, Martin-Delgado M, Roetteler M (2011) Theory of quantum computation, communication, and cryptography. Springer, BerlinzbMATHGoogle Scholar
  5. 5.
    Preskill J (2018) Quantum Computing in the NISQ era and beyond. Quantum 2:79CrossRefGoogle Scholar
  6. 6.
    Shor PW (1996) Fault-tolerant quantum computation. In: Proceedings of 37th conference on foundations of computer science, pp 56–65 (Oct 1996)Google Scholar
  7. 7.
    Kitaev AYu (2003) Fault-tolerant quantum computation by anyons. Ann Phys 303(1):2–30Google Scholar
  8. 8.
    Nayak C, Simon SH, Stern A, Freedman M, Sarma SD (2008) Non-abelian anyons and topological quantum computation. Rev Mod Phys 80:1083–1159ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Pachos JK (2010) Introduction to topological quantum computation. University Press, CambridgezbMATHGoogle Scholar
  10. 10.
    Loss D, DiVincenzo DP (1998) Quantum computation with quantum dots. Phys Rev A 57:120–126ADSCrossRefGoogle Scholar
  11. 11.
    Cirac JI, Zoller P (1995) Quantum computations with cold trapped ions. Phys Rev Lett 74:4091–4094ADSCrossRefGoogle Scholar
  12. 12.
    Knill E, Laflamme R, Milburn GJ (2001) A scheme for efficient quantum computation with linear optics. Nature 409:46ADSCrossRefGoogle Scholar
  13. 13.
    Shnirman A, Schön G, Hermon Z (1997) Quantum manipulations of small Josephson junctions. Phys Rev Lett 79:2371–2374ADSCrossRefGoogle Scholar
  14. 14.
    Bombin H, Martin-Delgado MA (2008) Family of non-abelian kitaev models on a lattice: topological condensation and confinement. Phys Rev B 78:115421ADSCrossRefGoogle Scholar
  15. 15.
    Bombin H, Martin-Delgado MA (2011) Nested topological order. New J Phys 13(12):125001CrossRefGoogle Scholar
  16. 16.
    Field B, Simula T (2018) Introduction to topological quantum computation with non-abelian anyons. Q Sci Technol 3(4):045004Google Scholar
  17. 17.
    Shor PW (1995) Scheme for reducing decoherence in quantum computer memory. Phys Rev A 52:R2493–R2496ADSCrossRefGoogle Scholar
  18. 18.
    Fradkin E, Shenker SH (1979) Phase diagrams of lattice gauge theories with higgs fields. Phys Rev D 19:3682–3697ADSCrossRefGoogle Scholar
  19. 19.
    Calderbank AR, Rains EM, Shor PW, Sloane NJA (1997) Quantum error correction and orthogonal geometry. Phys Rev Lett 78:405–408ADSMathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Bravyi SB, Kitaev AY (1998) Quantum codes on a lattice with boundary. arXiv: 9811052
  21. 21.
    Lahtinen V, Pachos JK (2017) A short introduction to topological quantum computation. SciPost Phys 3:021ADSCrossRefGoogle Scholar
  22. 22.
    Kitaev A (2006) Anyons in an exactly solved model and beyond. Ann Phys 321(1):2–111 (January Special Issue)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Gonzalez J, Martin-Delgado MA, Sierra G, Vozmediano AH (1995) Quantum electron liquids and high-Tc superconductivity. Springer, BerlinzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Racah Institute of PhysicsThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations