Advertisement

Understanding Obesity as a Risk Factor for Uterine Tumors Using Drosophila

  • Xiao Li
  • Mengmeng Liu
  • Jun-Yuan JiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1167)

Abstract

Multiple large-scale epidemiological studies have identified obesity as an important risk factor for a variety of human cancers, particularly cancers of the uterus, gallbladder, kidney, liver, colon, and ovary, but there is much uncertainty regarding how obesity increases the cancer risks. Given that obesity has been consistently identified as a major risk factor for uterine tumors, the most common malignancies of the female reproductive system, we use uterine tumors as a pathological context to survey the relevant literature and propose a novel hypothesis: chronic downregulation of the cyclin-dependent kinase 8 (CDK8) module, composed of CDK8 (or its paralog CDK19), Cyclin C, MED12 (or MED12L), and MED13 (or MED13L), by elevated insulin or insulin-like growth factor signaling in obese women may increase the chances to dysregulate the activities of transcription factors regulated by the CDK8 module, thereby increasing the risk of uterine tumors. Although we focus on endometrial cancer and uterine leiomyomas (or fibroids), two major forms of uterine tumors, our model may offer additional insights into how obesity increases the risk of other types of cancers and diseases. To illustrate the power of model organisms for studying human diseases, here we place more emphasis on the findings obtained from Drosophila melanogaster.

Keywords

Obesity Endometrial cancer Uterine leiomyomas The CDK8 module Drosophila 

Notes

Acknowledgments

We apologize to those colleagues whose work is not cited in this essay due to space limitations or our ignorance and negligence. This work was supported in part by NIH grants R01DK095013 and R01GM129266.

References

  1. 1.
    Adler AS, McCleland ML, Truong T, Lau S, Modrusan Z, Soukup TM, Roose-Girma M, Blackwood EM, Firestein R (2012) CDK8 maintains tumor dedifferentiation and embryonic stem cell pluripotency. Cancer Res 72:2129–2139PubMedCrossRefGoogle Scholar
  2. 2.
    Ajabnoor GMA, Mohammed NA, Banaganapalli B, Abdullah LS, Bondagji ON, Mansouri N, Sahly NN, Vaidyanathan V, Bondagji N, Elango R et al (2018) Expanded somatic mutation Spectrum of MED12 gene in uterine leiomyomas of Saudi Arabian Women. Front Genet 9:552PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Akoulitchev S, Chuikov S, Reinberg D (2000) TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature 407:102–106PubMedCrossRefGoogle Scholar
  4. 4.
    Al-Hendy A, Laknaur A, Diamond MP, Ismail N, Boyer TG, Halder SK (2017) Silencing Med12 gene reduces proliferation of human leiomyoma cells mediated via Wnt/beta-catenin signaling pathway. Endocrinology 158:592–603PubMedGoogle Scholar
  5. 5.
    Alarcon C, Zaromytidou AI, Xi Q, Gao S, Yu J, Fujisawa S, Barlas A, Miller AN, Manova-Todorova K, Macias MJ et al (2009) Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell 139:757–769PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Aleman A, Rios M, Juarez M, Lee D, Chen A, Eivers E (2014) Mad linker phosphorylations control the intensity and range of the BMP-activity gradient in developing Drosophila tissues. Sci Rep 4:6927PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Allen BL, Taatjes DJ (2015) The mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol 16:155–166PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ashrafian H, Harling L, Darzi A, Athanasiou T (2013) Neurodegenerative disease and obesity: what is the role of weight loss and bariatric interventions? Metab Brain Dis 28:341–353PubMedCrossRefGoogle Scholar
  9. 9.
    Ashworth A, Lord CJ, Reis-Filho JS (2011) Genetic interactions in cancer progression and treatment. Cell 145:30–38PubMedCrossRefGoogle Scholar
  10. 10.
    Audetat KA, Galbraith MD, Odell AT, Lee T, Pandey A, Espinosa JM, Dowell RD, Taatjes DJ (2017) A kinase-independent role for cyclin-dependent kinase 19 in p53 response. Mol Cell Biol 37:e00626-16PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bancerek J, Poss ZC, Steinparzer I, Sedlyarov V, Pfaffenwimmer T, Mikulic I, Dolken L, Strobl B, Muller M, Taatjes DJ et al (2013) CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response. Immunity 38:250–262PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bar-Peled L, Sabatini DM (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol 24:400–406PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Barette C, Jariel-Encontre I, Piechaczyk M, Piette J (2001) Human cyclin C protein is stabilized by its associated kinase cdk8, independently of its catalytic activity. Oncogene 20:551–562PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Belakavadi M, Fondell JD (2006) Role of the mediator complex in nuclear hormone receptor signaling. Rev Physiol Biochem Pharmacol 156:23–43PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Bell DW, Ellenson LH (2019) Molecular genetics of endometrial carcinoma. Annu Rev Pathol 14:339–367PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Bertsch E, Qiang W, Zhang Q, Espona-Fiedler M, Druschitz S, Liu Y, Mittal K, Kong B, Kurita T, Wei JJ (2014) MED12 and HMGA2 mutations: two independent genetic events in uterine leiomyoma and leiomyosarcoma. Mod Pathol 27:1144–1153PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Bhaskaran K, Douglas I, Forbes H, dos-Santos-Silva I, Leon DA, Smeeth L (2014) Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5.24 million UK adults. Lancet 384:755–765PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Bjorge T, Engeland A, Tretli S, Weiderpass E (2007) Body size in relation to cancer of the uterine corpus in 1 million Norwegian women. Int J Cancer 120:378–383PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Bourbon HM (2008) Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex. Nucleic Acids Res 36:3993–4008PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bray GA (2004) Medical consequences of obesity. J Clin Endocrinol Metab 89:2583–2589PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Bulun SE (2013) Uterine fibroids. N Engl J Med 369:1344–1355PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Buza N, Xu F, Wu W, Carr RJ, Li P, Hui P (2014) Recurrent chromosomal aberrations in intravenous leiomyomatosis of the uterus: high-resolution array comparative genomic hybridization study. Hum Pathol 45:1885–1892PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Cadigan KM (2012) TCFs and Wnt/beta-catenin signaling: more than one way to throw the switch. Curr Top Dev Biol 98:1–34PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Cai S, Zhang YX, Han K, Ding YQ (2017) Expressions and clinical significance of COX-2, VEGF-C, and EFGR in endometrial carcinoma. Arch Gynecol Obstet 296:93–98PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4:579–591PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348:1625–1638PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Cancer Genome Atlas Research N, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R et al (2013) Integrated genomic characterization of endometrial carcinoma. Nature 497:67–73CrossRefGoogle Scholar
  28. 28.
    Carrera I, Janody F, Leeds N, Duveau F, Treisman JE (2008) Pygopus activates wingless target gene transcription through the mediator complex subunits Med12 and Med13. Proc Natl Acad Sci U S A 105:6644–6649PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Chen M, Liang J, Ji H, Yang Z, Altilia S, Hu B, Schronce A, McDermott MSJ, Schools GP, Lim CU et al (2017) CDK8/19 mediator kinases potentiate induction of transcription by NFkappaB. Proc Natl Acad Sci U S A 114:10208–10213PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Clark AD, Oldenbroek M, Boyer TG (2015) Mediator kinase module and human tumorigenesis. Crit Rev Biochem Mol Biol 50:393–426PubMedPubMedCentralGoogle Scholar
  31. 31.
    Colditz GA, Peterson LL (2018) Obesity and Cancer: evidence, impact, and future directions. Clin Chem 64:154–162PubMedCrossRefGoogle Scholar
  32. 32.
    Conaway RC, Conaway JW (2011) Function and regulation of the mediator complex. Curr Opin Genet Dev 21:225–230PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Corachan A, Ferrero H, Aguilar A, Garcia N, Monleon J, Faus A, Cervello I, Pellicer A (2019) Inhibition of tumor cell proliferation in human uterine leiomyomas by vitamin D via Wnt/beta-catenin pathway. Fertil Steril 111:397–407PubMedCrossRefGoogle Scholar
  34. 34.
    Croce S, Chibon F (2015) MED12 and uterine smooth muscle oncogenesis: state of the art and perspectives. Eur J Cancer 51:1603–1610PubMedCrossRefGoogle Scholar
  35. 35.
    Crown J (2017) CDK8: a new breast cancer target. Oncotarget 8:14269–14270PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Dannappel MV, Sooraj D, Loh JJ, Firestein R (2018) Molecular and in vivo functions of the CDK8 and CDK19 kinase modules. Front Cell Dev Biol 6:171PubMedCrossRefGoogle Scholar
  37. 37.
    David CJ, Massague J (2018) Contextual determinants of TGFbeta action in development, immunity and cancer. Nat Rev Mol Cell Biol 19:419–435PubMedCrossRefGoogle Scholar
  38. 38.
    de Graaff MA, Cleton-Jansen AM, Szuhai K, Bovee JV (2013) Mediator complex subunit 12 exon 2 mutation analysis in different subtypes of smooth muscle tumors confirms genetic heterogeneity. Hum Pathol 44:1597–1604PubMedCrossRefGoogle Scholar
  39. 39.
    DeBose-Boyd RA, Ye J (2018) SREBPs in lipid metabolism, insulin signaling, and beyond. Trends Biochem Sci 43:358–368PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Demetriades C, Doumpas N, Teleman AA (2014) Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 156:786–799PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Desvergne B, Michalik L, Wahli W (2006) Transcriptional regulation of metabolism. Physiol Rev 86:465–514PubMedCrossRefGoogle Scholar
  42. 42.
    Di Tommaso S, Tinelli A, Malvasi A, Massari S (2014) Missense mutations in exon 2 of the MED12 gene are involved in IGF-2 overexpression in uterine leiomyoma. Mol Hum Reprod 20:1009–1015PubMedCrossRefGoogle Scholar
  43. 43.
    Donner AJ, Szostek S, Hoover JM, Espinosa JM (2007) CDK8 is a stimulus-specific positive coregulator of p53 target genes. Mol Cell 27:121–133PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Dyson N (1998) The regulation of E2F by pRB-family proteins. Genes Dev 12:2245–2262PubMedCrossRefGoogle Scholar
  45. 45.
    Edgar BA (2006) How flies get their size: genetics meets physiology. Nat Rev Genet 7:907–916PubMedCrossRefGoogle Scholar
  46. 46.
    Eritja N, Yeramian A, Chen BJ, Llobet-Navas D, Ortega E, Colas E, Abal M, Dolcet X, Reventos J, Matias-Guiu X (2017) Endometrial carcinoma: specific targeted pathways. Adv Exp Med Biol 943:149–207PubMedCrossRefGoogle Scholar
  47. 47.
    Fant CB, Taatjes DJ (2018) Regulatory functions of the mediator kinases CDK8 and CDK19. Transcription 10:76–90PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Felix AS, Yang HP, Bell DW, Sherman ME (2017a) Epidemiology of endometrial carcinoma: etiologic importance of hormonal and metabolic influences. Adv Exp Med Biol 943:3–46PubMedCrossRefGoogle Scholar
  49. 49.
    Felix AS, Yang HP, Bell DW, Sherman ME (2017b) Epidemiology of endometrial carcinoma: etiologic importance of hormonal and metabolic influences. In: Ellenson LH (ed) Molecular genetics of endometrial carcinoma, advances in experimental medicine and biology. Springer, Cham, pp 3–46CrossRefGoogle Scholar
  50. 50.
    Feng D, Youn DY, Zhao X, Gao Y, Quinn WJ 3rd, Xiaoli AM, Sun Y, Birnbaum MJ, Pessin JE, Yang F (2015) mTORC1 Down-regulates cyclin-dependent kinase 8 (CDK8) and cyclin C (CycC). PLoS One 10:e0126240PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Feng L, Peng Y, Wu P, Hu K, Jiang WD, Liu Y, Jiang J, Li SH, Zhou XQ (2013) Threonine affects intestinal function, protein synthesis and gene expression of TOR in Jian carp (Cyprinus carpio var. Jian). PloS One 8:e69974PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Firestein R, Bass AJ, Kim SY, Dunn IF, Silver SJ, Guney I, Freed E, Ligon AH, Vena N, Ogino S et al (2008) CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 455:547–551PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Fryer CJ, White JB, Jones KA (2004) Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 16:509–520PubMedCrossRefGoogle Scholar
  54. 54.
    Galbraith MD, Allen MA, Bensard CL, Wang X, Schwinn MK, Qin B, Long HW, Daniels DL, Hahn WC, Dowell RD et al (2013) HIF1A employs CDK8-mediator to stimulate RNAPII elongation in response to hypoxia. Cell 153:1327–1339PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Galindo LJ, Hernandez-Beeftink T, Salas A, Jung Y, Reyes R, de Oca FM, Hernandez M, Almeida TA (2018) HMGA2 and MED12 alterations frequently co-occur in uterine leiomyomas. Gynecol Oncol 150:562–568PubMedCrossRefGoogle Scholar
  56. 56.
    Gallinetti J, Harputlugil E, Mitchell JR (2013) Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem J 449:1–10PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Gao X, Xie XJ, Hsu FN, Li X, Liu M, Hemba-Waduge RU, Xu W, Ji JY (2018) CDK8 mediates the dietary effects on developmental transition in Drosophila. Dev Biol 444:62–70PubMedCrossRefGoogle Scholar
  58. 58.
    Gao Y, Lin P, Lydon JP, Li Q (2017) Conditional abrogation of transforming growth factor-beta receptor 1 in PTEN-inactivated endometrium promotes endometrial cancer progression in mice. J Pathol 243:89–99PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Garofalo RS (2002) Genetic analysis of insulin signaling in Drosophila. Trends Endocrinol Metab 13:156–162PubMedCrossRefGoogle Scholar
  60. 60.
    Geminard C, Arquier N, Layalle S, Bourouis M, Slaidina M, Delanoue R, Bjordal M, Ohanna M, Ma M, Colombani J et al (2006) Control of metabolism and growth through insulin-like peptides in Drosophila. Diabetes 55:S5–S8CrossRefGoogle Scholar
  61. 61.
    Goldstein JL, Rawson RB, Brown MS (2002) Mutant mammalian cells as tools to delineate the sterol regulatory element-binding protein pathway for feedback regulation of lipid synthesis. Arch Biochem Biophys 397:139–148PubMedCrossRefGoogle Scholar
  62. 62.
    Goodwin PJ, Stambolic V (2015) Impact of the obesity epidemic on cancer. Annu Rev Med 66:281–296PubMedCrossRefGoogle Scholar
  63. 63.
    Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445PubMedCrossRefGoogle Scholar
  64. 64.
    Gu W, Wang C, Li W, Hsu FN, Tian L, Zhou J, Yuan C, Xie XJ, Jiang T, Addya S et al (2013) Tumor-suppressive effects of CDK8 in endometrial cancer cells. Cell Cycle 12:987–999PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Gunter MJ, Hoover DR, Yu H, Wassertheil-Smoller S, Manson JE, Li J, Harris TG, Rohan TE, Xue X, Ho GY et al (2008) A prospective evaluation of insulin and insulin-like growth factor-I as risk factors for endometrial cancer. Cancer Epidemiol Biomarkers Prev 17:921–929PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Halder G, Mills GB (2011) Drosophila in cancer research: to boldly go where no one has gone before. Oncogene 30:4063–4066PubMedCrossRefGoogle Scholar
  67. 67.
    Halder SK, Laknaur A, Miller J, Layman LC, Diamond M, Al-Hendy A (2015) Novel MED12 gene somatic mutations in women from the southern United States with symptomatic uterine fibroids. Mol Genet Genomics 290:505–511PubMedCrossRefGoogle Scholar
  68. 68.
    Hamilton KJ, Hewitt SC, Arao Y, Korach KS (2017) Estrogen Hormone Biology. Curr Top Dev Biol 125:109–146PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Hayden MA, Ordulu Z, Gallagher CS, Quade BJ, Anchan RM, Middleton NR, Srouji SS, Stewart EA, Morton CC (2018) Clinical, pathologic, cytogenetic, and molecular profiling in self-identified black women with uterine leiomyomata. Cancer Genet 222–223:1–8PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Heikkinen T, Kampjarvi K, Keskitalo S, von Nandelstadh P, Liu X, Rantanen V, Pitkanen E, Kinnunen M, Kuusanmaki H, Kontro M et al (2017) Somatic MED12 nonsense mutation escapes mRNA decay and reveals a motif required for nuclear entry. Hum Mutat 38:269–274PubMedCrossRefGoogle Scholar
  71. 71.
    Heinonen HR, Pasanen A, Heikinheimo O, Tanskanen T, Palin K, Tolvanen J, Vahteristo P, Sjoberg J, Pitkanen E, Butzow R et al (2017) Multiple clinical characteristics separate MED12-mutation-positive and -negative uterine leiomyomas. Sci Rep 7:1015PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Heinonen HR, Sarvilinna NS, Sjoberg J, Kampjarvi K, Pitkanen E, Vahteristo P, Makinen N, Aaltonen LA (2014) MED12 mutation frequency in unselected sporadic uterine leiomyomas. Fertil Steril 102:1137–1142PubMedCrossRefGoogle Scholar
  73. 73.
    Hengartner CJ, Myer VE, Liao SM, Wilson CJ, Koh SS, Young RA (1998) Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. Mol Cell 2:43–53PubMedCrossRefGoogle Scholar
  74. 74.
    Hirabayashi S (2016) The interplay between obesity and cancer: a fly view. Dis Model Mech 9:917–926PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Holzmann C, Markowski DN, Bartnitzke S, Koczan D, Helmke BM, Bullerdiek J (2015) A rare coincidence of different types of driver mutations among uterine leiomyomas (UL). Mol Cytogenet 8:76PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Hruby A, Hu FB (2015) The epidemiology of obesity: A big picture. PharmacoEconomics 33:673–689PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Ito M, Okano HJ, Darnell RB, Roeder RG (2002) The TRAP100 component of the TRAP/mediator complex is essential in broad transcriptional events and development. EMBO J 21:3464–3475PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ito M, Yuan CX, Malik S, Gu W, Fondell JD, Yamamura S, Fu ZY, Zhang X, Qin J, Roeder RG (1999) Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol Cell 3:361–370PubMedCrossRefGoogle Scholar
  79. 79.
    Iyengar NM, Hudis CA, Dannenberg AJ (2015) Obesity and cancer: local and systemic mechanisms. Annu Rev Med 66:297–309PubMedCrossRefGoogle Scholar
  80. 80.
    Jamaluddin MFB, Ko YA, Kumar M, Brown Y, Bajwa P, Nagendra PB, Skerrett-Byrne DA, Hondermarck H, Baker MA, Dun MD et al (2018) Proteomic profiling of human uterine fibroids reveals upregulation of the extracellular matrix protein Periostin. Endocrinology 159:1106–1118PubMedCrossRefGoogle Scholar
  81. 81.
    Je EM, Kim MR, Min KO, Yoo NJ, Lee SH (2012) Mutational analysis of MED12 exon 2 in uterine leiomyoma and other common tumors. Int J Cancer 131:E1044–E1047PubMedCrossRefGoogle Scholar
  82. 82.
    Ji JY, Dyson NJ (2010) Interplay between cyclin-dependent kinases and E2F-dependent transcription. In: Enders G (ed) Cell cycle deregulation in cancer. Springer, New York, pp 23–41CrossRefGoogle Scholar
  83. 83.
    Jiang P, Hu Q, Ito M, Meyer S, Waltz S, Khan S, Roeder RG, Zhang X (2010) Key roles for MED1 LxxLL motifs in pubertal mammary gland development and luminal-cell differentiation. Proc Natl Acad Sci U S A 107:6765–6770PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Joshi A, Miller C Jr, Baker SJ, Ellenson LH (2015) Activated mutant p110alpha causes endometrial carcinoma in the setting of biallelic Pten deletion. Am J Pathol 185:1104–1113PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Kampjarvi K, Jarvinen TM, Heikkinen T, Ruppert AS, Senter L, Hoag KW, Dufva O, Kontro M, Rassenti L, Hertlein E et al (2015) Somatic MED12 mutations are associated with poor prognosis markers in chronic lymphocytic leukemia. Oncotarget 6:1884–1888PubMedCrossRefGoogle Scholar
  86. 86.
    Kampjarvi K, Kim NH, Keskitalo S, Clark AD, von Nandelstadh P, Turunen M, Heikkinen T, Park MJ, Makinen N, Kivinummi K et al (2016) Somatic MED12 mutations in prostate cancer and uterine leiomyomas promote tumorigenesis through distinct mechanisms. Prostate 76:22–31PubMedCrossRefGoogle Scholar
  87. 87.
    Kampjarvi K, Makinen N, Kilpivaara O, Arola J, Heinonen HR, Bohm J, Abdel-Wahab O, Lehtonen HJ, Pelttari LM, Mehine M et al (2012) Somatic MED12 mutations in uterine leiomyosarcoma and colorectal cancer. Br J Cancer 107:1761–1765PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Kampjarvi K, Park MJ, Mehine M, Kim NH, Clark AD, Butzow R, Bohling T, Bohm J, Mecklin JP, Jarvinen H et al (2014) Mutations in exon 1 highlight the role of MED12 in uterine leiomyomas. Hum Mutat 35:1136–1141PubMedCrossRefGoogle Scholar
  89. 89.
    Kapoor A, Goldberg MS, Cumberland LK, Ratnakumar K, Segura MF, Emanuel PO, Menendez S, Vardabasso C, Leroy G, Vidal CI et al (2010) The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 468:1105–1109PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kato Y, Habas R, Katsuyama Y, Naar AM, He X (2002) A component of the ARC/mediator complex required for TGF beta/nodal signalling. Nature 418:641–646PubMedCrossRefGoogle Scholar
  91. 91.
    Kim JJ, Chapman-Davis E (2010) Role of progesterone in endometrial cancer. Semin Reprod Med 28:81–90PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Kim S, Xu X, Hecht A, Boyer TG (2006) Mediator is a transducer of Wnt/beta-catenin signaling. J Biol Chem 281:14066–14075PubMedCrossRefGoogle Scholar
  93. 93.
    Knuesel MT, Meyer KD, Donner AJ, Espinosa JM, Taatjes DJ (2009) The human CDK8 subcomplex is a histone kinase that requires Med12 for activity and can function independently of mediator. Mol Cell Biol 29:650–661PubMedCrossRefGoogle Scholar
  94. 94.
    Koehler MF, Bergeron P, Blackwood EM, Bowman K, Clark KR, Firestein R, Kiefer JR, Maskos K, McCleland ML, Orren L et al (2016) Development of a potent, specific CDK8 kinase inhibitor which Phenocopies CDK8/19 knockout cells. ACS Med Chem Lett 7:223–228PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Kornberg RD (2005) Mediator and the mechanism of transcriptional activation. Trends Biochem Sci 30:235–239PubMedCrossRefGoogle Scholar
  96. 96.
    Kriseman M, Monsivais D, Agno J, Masand RP, Creighton CJ, Matzuk MM (2019) Uterine double-conditional inactivation of Smad2 and Smad3 in mice causes endometrial dysregulation, infertility, and uterine cancer. Proc Natl Acad Sci U S A 116:3873–3882PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Kuuluvainen E, Hakala H, Havula E, Sahal Estime M, Ramet M, Hietakangas V, Makela TP (2014) Cyclin-dependent kinase 8 module expression profiling reveals requirement of mediator subunits 12 and 13 for transcription of serpent-dependent innate immunity genes in Drosophila. J Biol Chem 289:16252–16261PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Lansard M, Panserat S, Plagnes-Juan E, Dias K, Seiliez I, Skiba-Cassy S (2011) L-leucine, L-methionine, and L-lysine are involved in the regulation of intermediary metabolism-related gene expression in rainbow trout hepatocytes. J Nutr 141:75–80PubMedCrossRefGoogle Scholar
  99. 99.
    Laplante M, Sabatini DM (2009) An emerging role of mTOR in lipid biosynthesis. Curr Biol 19:R1046–R1052PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K, and International Agency for Research on Cancer Handbook Working, G (2016) Body fatness and cancer – viewpoint of the IARC Working Group. N Engl J Med 375:794–798PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Lax SF (2017) Pathology of endometrial carcinoma. Adv Exp Med Biol 943:75–96PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Leclerc V, Tassan JP, O’Farrell PH, Nigg EA, Leopold P (1996) Drosophila Cdk8, a kinase partner of cyclin C that interacts with the large subunit of RNA polymerase II. Mol Biol Cell 7:505–513PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Lee JH, Bassel-Duby R, Olson EN (2014) Heart- and muscle-derived signaling system dependent on MED13 and wingless controls obesity in Drosophila. Proc Natl Acad Sci U S A 111:9491–9496PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Lee M, Cheon K, Chae B, Hwang H, Kim HK, Chung YJ, Song JY, Cho HH, Kim JH, Kim MR (2018) Analysis of MED12 mutation in multiple uterine leiomyomas in South Korean patients. Int J Med Sci 15:124–128PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Li Q (2019) Tumor-suppressive signaling in the uterus. Proc Natl Acad Sci U S A 116:3367–3369PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Li, X., Liu, M., Ren, X., Loncle, N., Wang, Q., Hemba-Waduge, R., Boube, M., Bourbon, H.-M. G., Ni, J.Q., and Ji, J.Y. (2018a). The mediator CDK8-Cyclin C complex modulates vein patterning in Drosophila by stimulating Mad-dependent transcription. BioRxiv  https://doi.org/10.1101/360628
  107. 107.
    Li Z, Maeda D, Kudo-Asabe Y, Tamura D, Nanjo H, Hayashi A, Ikemura M, Fukayama M, Goto A (2018b) MED12 is frequently mutated in ovarian and other adnexal leiomyomas. Hum Pathol 81:89–95PubMedCrossRefGoogle Scholar
  108. 108.
    Liegl-Atzwanger B, Heitzer E, Flicker K, Muller S, Ulz P, Saglam O, Tavassoli F, Devouassoux-Shisheboran M, Geigl J, Moinfar F (2016) Exploring chromosomal abnormalities and genetic changes in uterine smooth muscle tumors. Mod Pathol 29:1262–1277PubMedCrossRefGoogle Scholar
  109. 109.
    Lim WK, Ong CK, Tan J, Thike AA, Ng CC, Rajasegaran V, Myint SS, Nagarajan S, Nasir ND, McPherson JR et al (2014) Exome sequencing identifies highly recurrent MED12 somatic mutations in breast fibroadenoma. Nat Genet 46:877–880PubMedCrossRefGoogle Scholar
  110. 110.
    Lindemann K, Vatten LJ, Ellstrom-Engh M, Eskild A (2009) The impact of BMI on subgroups of uterine cancer. Br J Cancer 101:534–536PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Lu KH, Wu W, Dave B, Slomovitz BM, Burke TW, Munsell MF, Broaddus RR, Walker CL (2008) Loss of tuberous sclerosis complex-2 function and activation of mammalian target of rapamycin signaling in endometrial carcinoma. Clin Cancer Res 14:2543–2550PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Lukanova A, Bjor O, Kaaks R, Lenner P, Lindahl B, Hallmans G, Stattin P (2006) Body mass index and cancer: results from the northern Sweden health and disease cohort. Int J Cancer 118:458–466PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Lundqvist E, Kaprio J, Verkasalo PK, Pukkala E, Koskenvuo M, Soderberg KC, Feychting M (2007) Co-twin control and cohort analyses of body mass index and height in relation to breast, prostate, ovarian, corpus uteri, colon and rectal cancer among Swedish and Finnish twins. Int J Cancer 121:810–818PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Lynch CJ, Adams SH (2014) Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol 10:723–736PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Makinen N, Aavikko M, Heikkinen T, Taipale M, Taipale J, Koivisto-Korander R, Butzow R, Vahteristo P (2016) Exome sequencing of uterine Leiomyosarcomas identifies frequent mutations in TP53, ATRX, and MED12. PLoS Genet 12:e1005850PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Makinen N, Heinonen HR, Moore S, Tomlinson IP, van der Spuy ZM, Aaltonen LA (2011a) MED12 exon 2 mutations are common in uterine leiomyomas from south African patients. Oncotarget 2:966–969PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Makinen N, Heinonen HR, Sjoberg J, Taipale J, Vahteristo P, Aaltonen LA (2014) Mutation analysis of components of the mediator kinase module in MED12 mutation-negative uterine leiomyomas. Br J Cancer 110:2246–2249PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Makinen N, Kampjarvi K, Frizzell N, Butzow R, Vahteristo P (2017) Characterization of MED12, HMGA2, and FH alterations reveals molecular variability in uterine smooth muscle tumors. Mol Cancer 16:101PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Makinen N, Mehine M, Tolvanen J, Kaasinen E, Li Y, Lehtonen HJ, Gentile M, Yan J, Enge M, Taipale M et al (2011b) MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science 334:252–255PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Malik S, Roeder RG (2010) The metazoan mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 11:761–772PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Markowski DN, Bartnitzke S, Loning T, Drieschner N, Helmke BM, Bullerdiek J (2012) MED12 mutations in uterine fibroids--their relationship to cytogenetic subgroups. Int J Cancer 131:1528–1536PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Massague J (2008) TGFbeta in Cancer. Cell 134:215–230PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Matsubara A, Sekine S, Yoshida M, Yoshida A, Taniguchi H, Kushima R, Tsuda H, Kanai Y (2013) Prevalence of MED12 mutations in uterine and extrauterine smooth muscle tumours. Histopathology 62:657–661PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    McCleland ML, Soukup TM, Liu SD, Esensten JH, de Sousa EMF, Yaylaoglu M, Warming S, Roose-Girma M, Firestein R (2015) Cdk8 deletion in the Apc(Min) murine tumour model represses EZH2 activity and accelerates tumourigenesis. J Pathol 237:508–519PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    McConechy MK, Ding J, Cheang MC, Wiegand K, Senz J, Tone A, Yang W, Prentice L, Tse K, Zeng T et al (2012) Use of mutation profiles to refine the classification of endometrial carcinomas. J Pathol 228:20–30PubMedPubMedCentralGoogle Scholar
  126. 126.
    McDermott MS, Chumanevich AA, Lim CU, Liang J, Chen M, Altilia S, Oliver D, Rae JM, Shtutman M, Kiaris H et al (2017) Inhibition of CDK8 mediator kinase suppresses estrogen dependent transcription and the growth of estrogen receptor positive breast cancer. Oncotarget 8:12558–12575PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    McGuire MM, Yatsenko A, Hoffner L, Jones M, Surti U, Rajkovic A (2012) Whole exome sequencing in a random sample of north American women with leiomyomas identifies MED12 mutations in majority of uterine leiomyomas. PLoS One 7:e33251PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Mehine M, Kaasinen E, Heinonen HR, Makinen N, Kampjarvi K, Sarvilinna N, Aavikko M, Vaharautio A, Pasanen A, Butzow R et al (2016) Integrated data analysis reveals uterine leiomyoma subtypes with distinct driver pathways and biomarkers. Proc Natl Acad Sci U S A 113:1315–1320PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Mehine M, Kaasinen E, Makinen N, Katainen R, Kampjarvi K, Pitkanen E, Heinonen HR, Butzow R, Kilpivaara O, Kuosmanen A et al (2013) Characterization of uterine leiomyomas by whole-genome sequencing. N Engl J Med 369:43–53PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Mehine M, Makinen N, Heinonen HR, Aaltonen LA, Vahteristo P (2014) Genomics of uterine leiomyomas: insights from high-throughput sequencing. Fertil Steril 102:621–629PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Mello JBH, Barros-Filho MC, Abreu FB, Cirilo PDR, Domingues MAC, Pontes A, Rogatto SR (2018) MicroRNAs involved in the HMGA2 deregulation and its co-occurrence with MED12 mutation in uterine leiomyoma. Mol Hum Reprod 24:556–563PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Meyer KD, Lin SC, Bernecky C, Gao Y, Taatjes DJ (2010) p53 activates transcription by directing structural shifts in mediator. Nat Struct Mol Biol 17:753–760PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Mittal P, Shin YH, Yatsenko SA, Castro CA, Surti U, Rajkovic A (2015) Med12 gain-of-function mutation causes leiomyomas and genomic instability. J Clin Invest 125:3280–3284PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Monsivais D, Peng J, Kang Y, Matzuk MM (2019) Activin-like kinase 5 (ALK5) inactivation in the mouse uterus results in metastatic endometrial carcinoma. Proc Natl Acad Sci U S A 116:3883–3892PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Moravek MB, Bulun SE (2015) Endocrinology of uterine fibroids: steroid hormones, stem cells, and genetic contribution. Curr Opin Obstet Gynecol 27:276–283PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Morris EJ, Ji JY, Yang F, Di Stefano L, Herr A, Moon NS, Kwon EJ, Haigis KM, Naar AM, Dyson NJ (2008) E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature 455:552–556PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Nagasawa S, Maeda I, Fukuda T, Wu W, Hayami R, Kojima Y, Tsugawa K, Ohta T (2015) MED12 exon 2 mutations in phyllodes tumors of the breast. Cancer Med 4:1117–1121PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Neishabouri SH, Hutson SM, Davoodi J (2015) Chronic activation of mTOR complex 1 by branched chain amino acids and organ hypertrophy. Amino Acids 47:1167–1182PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF et al (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the global burden of disease Study 2013. Lancet 384:766–781PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Nusse R, Clevers H (2017) Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169:985–999CrossRefGoogle Scholar
  141. 141.
    Oh JC, Wu W, Tortolero-Luna G, Broaddus R, Gershenson DM, Burke TW, Schmandt R, Lu KH (2004) Increased plasma levels of insulin-like growth factor 2 and insulin-like growth factor binding protein 3 are associated with endometrial cancer risk. Cancer Epidemiol Biomarkers Prev 13:748–752PubMedPubMedCentralGoogle Scholar
  142. 142.
    Osborne TF, Espenshade PJ (2009) Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it’s been. Genes Dev 23:2578–2591PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Osherovich L (2008) CDK8 is enough in colorectal cancer Science-Business eXchange 1:5–7CrossRefGoogle Scholar
  144. 144.
    Osinovskaya NS, Malysheva OV, Shved NY, Ivashchenko TE, Sultanov IY, Efimova OA, Yarmolinskaya MI, Bezhenar VF, Baranov VS (2016) Frequency and Spectrum of MED12 exon 2 mutations in multiple versus solitary uterine leiomyomas from Russian patients. Int J Gynecol Pathol 35:509–515PubMedCrossRefGoogle Scholar
  145. 145.
    Park MJ, Shen H, Kim NH, Gao F, Failor C, Knudtson JF, McLaughlin J, Halder SK, Heikkinen TA, Vahteristo P et al (2018a) Mediator kinase disruption in MED12-mutant uterine fibroids from Hispanic Women of South Texas. J Clin Endocrinol Metab 103:4283–4292PubMedCrossRefGoogle Scholar
  146. 146.
    Park MJ, Shen H, Spaeth JM, Tolvanen JH, Failor C, Knudtson JF, McLaughlin J, Halder SK, Yang Q, Bulun SE et al (2018b) Oncogenic exon 2 mutations in mediator subunit MED12 disrupt allosteric activation of cyclin C-CDK8/19. J Biol Chem 293:4870–4882PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Paul PG, Gulati G, Shintre H, Mannur S, Paul G, Mehta S (2018) Extrauterine adenomyoma: a review of the literature. Eur J Obstet Gynecol Reprod Biol 228:130–136PubMedCrossRefGoogle Scholar
  148. 148.
    Pavone D, Clemenza S, Sorbi F, Fambrini M, Petraglia F (2018) Epidemiology and risk factors of uterine fibroids. Best Pract Res Clin Obstet Gynaecol 46:3–11PubMedCrossRefGoogle Scholar
  149. 149.
    Pelish HE, Liau BB, Nitulescu II, Tangpeerachaikul A, Poss ZC, Da Silva DH, Caruso BT, Arefolov A, Fadeyi O, Christie AL et al (2015) Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature 526:273–276PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Perot G, Croce S, Ribeiro A, Lagarde P, Velasco V, Neuville A, Coindre JM, Stoeckle E, Floquet A, MacGrogan G et al (2012) MED12 alterations in both human benign and malignant uterine soft tissue tumors. PLoS One 7:e40015PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Philip S, Kumarasiri M, Teo T, Yu M, Wang S (2018) Cyclin-dependent kinase 8: A new Hope in targeted Cancer therapy? J Med Chem 61:5073–5092PubMedCrossRefGoogle Scholar
  152. 152.
    Pi-Sunyer X (2009) The medical risks of obesity. Postgrad Med 121:21–33PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM, Cordon-Cardo C, Catoretti G, Fisher PE, Parsons R (1999) Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci U S A 96:1563–1568PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Pon JR, Marra MA (2015) Driver and passenger mutations in cancer. Annu Rev Pathol 10:25–50PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Potter CJ, Turenchalk GS, Xu T (2000) Drosophila in cancer research. An expanding role. Trends Genet 16:33–39PubMedCrossRefGoogle Scholar
  156. 156.
    Quinn WJ 3rd, Birnbaum MJ (2012) Distinct mTORC1 pathways for transcription and cleavage of SREBP-1c. Proc Natl Acad Sci U S A 109:15974–15975PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Raftery LA, Sutherland DJ (1999) TGF-beta family signal transduction in Drosophila development: from mad to Smads. Dev Biol 210:251–268PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Raj N, Attardi LD (2017) The transactivation domains of the p53 protein. Cold Spring Harb Perspect Med 7:a026047PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Ramirez PT, Mundt AJ, Muggia FM (2011) Cancers of the uterine body, 9th edn (LWW)Google Scholar
  160. 160.
    Rapp K, Schroeder J, Klenk J, Stoehr S, Ulmer H, Concin H, Diem G, Oberaigner W, Weiland SK (2005) Obesity and incidence of cancer: a large cohort study of over 145,000 adults in Austria. Br J Cancer 93:1062–1067PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Ravegnini G, Marino-Enriquez A, Slater J, Eilers G, Wang Y, Zhu M, Nucci MR, George S, Angelini S, Raut CP et al (2013) MED12 mutations in leiomyosarcoma and extrauterine leiomyoma. Mod Pathol 26:743–749PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Rawson RB (2003) The SREBP pathway--insights from Insigs and insects. Nat Rev Mol Cell Biol 4:631–640PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Reeves GK, Pirie K, Beral V, Green J, Spencer E, Bull D, Million Women Study C (2007) Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study. BMJ 335:1134PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Renehan AG, Frystyk J, Flyvbjerg A (2006) Obesity and cancer risk: the role of the insulin-IGF axis. Trends Endocrinol Metab 17:328–336PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M (2008) Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371:569–578PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Restrepo S, Zartman JJ, Basler K (2014) Coordination of patterning and growth by the morphogen DPP. Curr Biol 24:R245–R255PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Ross RK, Pike MC, Vessey MP, Bull D, Yeates D, Casagrande JT (1986) Risk factors for uterine fibroids: reduced risk associated with oral contraceptives. Br Med J 293:359–362CrossRefGoogle Scholar
  168. 168.
    Rudrapatna VA, Cagan RL, Das TK (2012) Drosophila cancer models. Dev Dyn 241:107–118PubMedCrossRefGoogle Scholar
  169. 169.
    Rzymski T, Mikula M, Wiklik K, Brzozka K (2015) CDK8 kinase--an emerging target in targeted cancer therapy. Biochim Biophys Acta 1854:1617–1629PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Sabatini DM (2017) Twenty-five years of mTOR: uncovering the link from nutrients to growth. Proc Natl Acad Sci U S A 114:11818–11825PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Sadeghi S, Khorrami M, Amin-Beidokhti M, Abbasi M, Kamalian Z, Irani S, Omrani M, Azmoodeh O, Mirfakhraie R (2016) The study of MED12 gene mutations in uterine leiomyomas from Iranian patients. Tumour Biol 37:1567–1571PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Saltiel AR, Olefsky JM (2017) Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest 127:1–4PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Schiano C, Casamassimi A, Rienzo M, de Nigris F, Sommese L, Napoli C (2014a) Involvement of mediator complex in malignancy. Biochim Biophys Acta 1845:66–83PubMedPubMedCentralGoogle Scholar
  174. 174.
    Schiano C, Casamassimi A, Vietri MT, Rienzo M, Napoli C (2014b) The roles of mediator complex in cardiovascular diseases. Biochim Biophys Acta 1839:444–451PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Schwetye KE, Pfeifer JD, Duncavage EJ (2014) MED12 exon 2 mutations in uterine and extrauterine smooth muscle tumors. Hum Pathol 45:65–70PubMedCrossRefGoogle Scholar
  176. 176.
    Senior K (2002) Drosophila still flying high in cancer research. Lancet 359:952PubMedCrossRefGoogle Scholar
  177. 177.
    Serna VA, Wu X, Qiang W, Thomas J, Blumenfeld ML, Kurita T (2018) Cellular kinetics of MED12-mutant uterine leiomyoma growth and regression in vivo. Endocr Relat Cancer 25:747–759PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Setiawan VW, Yang HP, Pike MC, McCann SE, Yu H, Xiang YB, Wolk A, Wentzensen N, Weiss NS, Webb PM et al (2013) Type I and II endometrial cancers: have they different risk factors? J Clin Oncol Off J Am Soc Clin Oncol 31:2607–2618CrossRefGoogle Scholar
  179. 179.
    Shahbazi S, Fatahi N, Amini-Moghaddam S (2015) Somatic mutational analysis of MED12 exon 2 in uterine leiomyomas of Iranian women. Am J Cancer Res 5:2441–2446PubMedPubMedCentralGoogle Scholar
  180. 180.
    Shao W, Espenshade PJ (2012) Expanding roles for SREBP in metabolism. Cell Metab 16:414–419PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Siraj AK, Masoodi T, Bu R, Pratheeshkumar P, Al-Sanea N, Ashari LH, Abduljabbar A, Alhomoud S, Al-Dayel F, Alkuraya FS et al (2018) MED12 is recurrently mutated in middle eastern colorectal cancer. Gut 67:663–671PubMedGoogle Scholar
  182. 182.
    Song Z, Xiaoli AM, Yang F (2018) Regulation and metabolic significance of De novo lipogenesis in adipose tissues. Nutrients 10:E1383PubMedCrossRefGoogle Scholar
  183. 183.
    Stewart EA, Laughlin-Tommaso SK, Catherino WH, Lalitkumar S, Gupta D, Vollenhoven B (2016) Uterine fibroids. Nat Rev Dis Primers 2:16043PubMedCrossRefGoogle Scholar
  184. 184.
    Styer AK, Rueda BR (2016) The epidemiology and genetics of uterine leiomyoma. Best Pract Res Clin Obstet Gynaecol 34:3–12PubMedCrossRefGoogle Scholar
  185. 185.
    Tahlan A, Nanda A, Mohan H (2006) Uterine adenomyoma: a clinicopathologic review of 26 cases and a review of the literature. Int J Gynecol Pathol 25:361–365PubMedCrossRefGoogle Scholar
  186. 186.
    Tan WJ, Chan JY, Thike AA, Lim JC, Md Nasir ND, Tan JS, Koh VC, Lim WK, Tan J, Ng CC et al (2016) MED12 protein expression in breast fibroepithelial lesions: correlation with mutation status and oestrogen receptor expression. J Clin Pathol 69:858–865PubMedCrossRefGoogle Scholar
  187. 187.
    Tang HW, Hu Y, Chen CL, Xia B, Zirin J, Yuan M, Asara JM, Rabinow L, Perrimon N (2018) The TORC1-regulated CPA complex rewires an RNA processing network to drive autophagy and metabolic reprogramming. Cell Metab 27(1040–1054):e1048Google Scholar
  188. 188.
    Tassan JP, Jaquenoud M, Leopold P, Schultz SJ, Nigg EA (1995) Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C. Proc Natl Acad Sci U S A 92:8871–8875PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Terriente-Felix A, Lopez-Varea A, de Celis JF (2010) Identification of genes affecting wing patterning through a loss-of-function mutagenesis screen and characterization of med15 function during wing development. Genetics 185:671–684PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Tipping M, Perrimon N (2014) Drosophila as a model for context-dependent tumorigenesis. J Cell Physiol 229:27–33PubMedPubMedCentralGoogle Scholar
  191. 191.
    Tsai KL, Sato S, Tomomori-Sato C, Conaway RC, Conaway JW, Asturias FJ (2013) A conserved mediator-CDK8 kinase module association regulates mediator-RNA polymerase II interaction. Nat Struct Mol Biol 20:611–619PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Turunen M, Spaeth JM, Keskitalo S, Park MJ, Kivioja T, Clark AD, Makinen N, Gao F, Palin K, Nurkkala H et al (2014) Uterine leiomyoma-linked MED12 mutations disrupt mediator-associated CDK activity. Cell Rep 7:654–660PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Upadhyay A, Moss-Taylor L, Kim MJ, Ghosh AC, O’Connor MB (2017) TGF-beta family signaling in Drosophila. Cold Spring Harb Perspect Biol 9:a022152PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Valenta T, Hausmann G, Basler K (2012) The many faces and functions of beta-catenin. EMBO J 31:2714–2736PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Valladares F, Frias I, Baez D, Garcia C, Lopez FJ, Fraser JD, Rodriguez Y, Reyes R, Diaz-Flores L, Bello AR (2006) Characterization of estrogen receptors alpha and beta in uterine leiomyoma cells. Fertil Steril 86:1736–1743PubMedCrossRefGoogle Scholar
  196. 196.
    Vasquez YM (2018) Estrogen-regulated transcription: mammary gland and uterus. Steroids 133:82–86PubMedCrossRefGoogle Scholar
  197. 197.
    Verit FF, Yucel O (2013) Endometriosis, leiomyoma and adenomyosis: the risk of gynecologic malignancy. Asian Pac J Cancer Prev 14:5589–5597PubMedCrossRefGoogle Scholar
  198. 198.
    Vidal M, Cagan RL (2006) Drosophila models for cancer research. Curr Opin Genet Dev 16:10–16PubMedCrossRefGoogle Scholar
  199. 199.
    Wang H, Ye J, Qian H, Zhou R, Jiang J, Ye L (2015) High-resolution melting analysis of MED12 mutations in uterine leiomyomas in Chinese patients. Genet Test Mol Biomarkers 19:162–166PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Weber H, Garabedian MJ (2018) The mediator complex in genomic and non-genomic signaling in cancer. Steroids 133:8–14PubMedCrossRefGoogle Scholar
  201. 201.
    Weiderpass E, Brismar K, Bellocco R, Vainio H, Kaaks R (2003) Serum levels of insulin-like growth factor-I, IGF-binding protein 1 and 3, and insulin and endometrial cancer risk. Br J Cancer 89:1697–1704PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    White PJ, Newgard CB (2019) Branched-chain amino acids in disease. Science 363:582–583PubMedCrossRefGoogle Scholar
  203. 203.
    Wu B, Slabicki M, Sellner L, Dietrich S, Liu X, Jethwa A, Hullein J, Walther T, Wagner L, Huang Z et al (2017a) MED12 mutations and NOTCH signalling in chronic lymphocytic leukaemia. Br J Haematol 179:421–429PubMedCrossRefGoogle Scholar
  204. 204.
    Wu J, Zou Y, Luo Y, Guo JB, Liu FY, Zhou JY, Zhang ZY, Wan L, Huang OP (2017b) Prevalence and clinical significance of mediator complex subunit 12 mutations in 362 Han Chinese samples with uterine leiomyoma. Oncol Lett 14:47–54PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Xie XJ, Hsu FN, Gao X, Xu W, Ni JQ, Xing Y, Huang L, Hsiao HC, Zheng H, Wang C et al (2015) CDK8-cyclin C mediates nutritional regulation of developmental transitions through the ecdysone receptor in Drosophila. PLoS Biol 13:e1002207PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Xu P, Lin X, Feng XH (2016) Posttranslational regulation of Smads. Cold Spring Harb Perspect Biol 8:a022087PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Xu W, Ji JY (2011) Dysregulation of CDK8 and cyclin C in tumorigenesis. J Genet Genomics 38:439–452PubMedCrossRefGoogle Scholar
  208. 208.
    Yang F, Vought BW, Satterlee JS, Walker AK, Jim Sun ZY, Watts JL, DeBeaumont R, Saito RM, Hyberts SG, Yang S et al (2006) An ARC/mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature 442:700–704PubMedCrossRefGoogle Scholar
  209. 209.
    Yatsenko SA, Mittal P, Wood-Trageser MA, Jones MW, Surti U, Edwards RP, Sood AK, Rajkovic A (2017) Highly heterogeneous genomic landscape of uterine leiomyomas by whole exome sequencing and genome-wide arrays. Fertil Steril 107(457–466):e459Google Scholar
  210. 210.
    Yergiyev O, Garib G, Schoedel K, Palekar A, Bartlett D, Rao UNM (2018) CDK8 expression in Extrauterine Leiomyosarcoma correlates with tumor stage and progression. Appl Immunohistochem Mol Morphol 26:161–164PubMedPubMedCentralGoogle Scholar
  211. 211.
    Yoda A, Kouike H, Okano H, Sawa H (2005) Components of the transcriptional mediator complex are required for asymmetric cell division in C. elegans. Development 132:1885–1893PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Yoon MS (2016) The emerging role of branched-chain amino acids in insulin resistance and metabolism. Nutrients 8:E405PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Zhai Y, Sun Z, Zhang J, Kang K, Chen J, Zhang W (2015) Activation of the TOR Signalling pathway by glutamine regulates insect fecundity. Sci Rep 5:10694PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Zhang Q, Ubago J, Li L, Guo H, Liu Y, Qiang W, Kim JJ, Kong B, Wei JJ (2014) Molecular analyses of 6 different types of uterine smooth muscle tumors: emphasis in atypical leiomyoma. Cancer 120:3165–3177PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Zhang S, Zeng X, Ren M, Mao X, Qiao S (2017) Novel metabolic and physiological functions of branched chain amino acids: a review. J Anim Sci Biotechnol 8:10PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Zhao J, Ramos R, Demma M (2013) CDK8 regulates E2F1 transcriptional activity through S375 phosphorylation. Oncogene 32:3520–3530PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Zhao X, Feng D, Wang Q, Abdulla A, Xie XJ, Zhou J, Sun Y, Yang ES, Liu LP, Vaitheesvaran B et al (2012) Regulation of lipogenesis by cyclin-dependent kinase 8-mediated control of SREBP-1. J Clin Invest 122:2417–2427PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Dossus L, Rinaldi S, Becker S, Lukanova A, Tjonneland A, Olsen A, Stegger J, Overvad K, Chabbert-Buffet N, Jimenez-Corona A, Clavel-Chapelon F, Rohrmann S, Teucher B, Boeing H, Schütze M, Trichopoulou A, Benetou V, Lagiou P, Palli D, Berrino F, Panico S, Tumino R, Sacerdote C, Redondo M-L, Travier N, Sanchez M-J, Altzibar JM, Chirlaque M-D, Ardanaz E, Bueno-de-Mesquita HB, van Duijnhoven FJB, Onland-Moret NC, Peeters PHM, Hallmans G, Lundin E, Khaw K-T, Wareham N, Allen N, Key TJ, Slimani N, Hainaut P, Romaguera D, Norat T, Riboli E, Kaaks R Obesity, inflammatory markers, and endometrial cancer risk: a prospective case–control study. Endocr Relat Cancer 17(4):1007–1019PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Molecular and Cellular Medicine, College of MedicineTexas A&M University Health Science CenterBryanUSA

Personalised recommendations