Advertisement

Autophagy and Tumorigenesis in Drosophila

  • Royjar Khezri
  • Tor Erik RustenEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1167)

Abstract

The resurgence of Drosophila as a recognized model for carcinogenesis has contributed greatly to our conceptual advance and mechanistic understanding of tumor growth in vivo. With its powerful genetics, Drosophila has emerged as a prime model organism to study cell biology and physiological functions of autophagy. This has enabled exploration of the contributions of autophagy in several tumor models. Here we review the literature of autophagy related to tumorigenesis in Drosophila. Functional analysis of core autophagy components does not provide proof for a classical tumor suppression role for autophagy alone. Autophagy both serve to suppress or support tumor growth. These effects are context-specific, depending on cell type and oncogenic or tumor suppressive lesion. Future delineation of how autophagy impinges on tumorigenesis will demand to untangle in detail, the regulation and flux of autophagy in the respective tumor models. The downstream tumor-regulative roles of autophagy through organelle homeostasis, metabolism, selective autophagy or alternative mechanisms remain largely unexplored.

Keywords

Tumor Autophagy ras scrib Scribble yki Yorkie Notch Raf Autophagy vps34 LKB1 TOR ROS Mitochondria PI3K Atg Uvrag P62 NRF2 Keap1 Upd PERK Myc Stem cell 

References

  1. 1.
    Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F et al (2015) Autophagy in malignant transformation and cancer progression. EMBO J 34(7):856–880CrossRefGoogle Scholar
  2. 2.
    Rybstein MD, Bravo-San Pedro JM, Kroemer G, Galluzzi L (2018) The autophagic network and cancer. Nat Cell Biol 20(3):243–251CrossRefGoogle Scholar
  3. 3.
    Scott RC, Juhasz G, Neufeld TP (2007) Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 17(1):1–11CrossRefGoogle Scholar
  4. 4.
    Takahashi Y, He H, Tang Z, Hattori T, Liu Y, Young MM et al (2018) An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure. Nat Commun 9(1):2855CrossRefGoogle Scholar
  5. 5.
    Takats S, Pircs K, Nagy P, Varga A, Karpati M, Hegedus K et al (2014) Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila. Mol Biol Cell 25(8):1338–1354CrossRefGoogle Scholar
  6. 6.
    Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100(25):15077–15082CrossRefGoogle Scholar
  7. 7.
    Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A et al (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112(12):1809–1820CrossRefGoogle Scholar
  8. 8.
    Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y et al (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9(10):1142–1151CrossRefGoogle Scholar
  9. 9.
    Laddha SV, Ganesan S, Chan CS, White E (2014) Mutational landscape of the essential autophagy gene BECN1 in human cancers. Mol Cancer Res 12(4):485–490CrossRefGoogle Scholar
  10. 10.
    Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O et al (2011) Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 193(2):275–284CrossRefGoogle Scholar
  11. 11.
    Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S et al (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25(8):795–800CrossRefGoogle Scholar
  12. 12.
    Lee G, Liang C, Park G, Jang C, Jung JU, Chung J (2011) UVRAG is required for organ rotation by regulating Notch endocytosis in Drosophila. Dev Biol 356(2):588–597CrossRefGoogle Scholar
  13. 13.
    O’Farrell F, Lobert VH, Sneeggen M, Jain A, Katheder NS, Wenzel EM et al (2017) Class III phosphatidylinositol-3-OH kinase controls epithelial integrity through endosomal LKB1 regulation. Nat Cell Biol 19(12):1412–1423CrossRefGoogle Scholar
  14. 14.
    Kannan K, Coarfa C, Rajapakshe K, Hawkins SM, Matzuk MM, Milosavljevic A et al (2014) CDKN2D-WDFY2 is a cancer-specific fusion gene recurrent in high-grade serous ovarian carcinoma. PLoS Genet 10(3):e1004216CrossRefGoogle Scholar
  15. 15.
    Lee JH, Koh H, Kim M, Park J, Lee SY, Lee S et al (2006) JNK pathway mediates apoptotic cell death induced by tumor suppressor LKB1 in Drosophila. Cell Death Differ 13(7):1110–1122CrossRefGoogle Scholar
  16. 16.
    Nagy P, Kovacs L, Sandor GO, Juhasz G (2016) Stem-cell-specific endocytic degradation defects lead to intestinal dysplasia in Drosophila. Dis Model Mech 9(5):501–512CrossRefGoogle Scholar
  17. 17.
    Nagy P, Sandor GO, Juhasz G (2018) Autophagy maintains stem cells and intestinal homeostasis in Drosophila. Sci Rep 8(1):4644CrossRefGoogle Scholar
  18. 18.
    Shravage BV, Hill JH, Powers CM, Wu L, Baehrecke EH (2013) Atg6 is required for multiple vesicle trafficking pathways and hematopoiesis in Drosophila. Development (Cambridge, England) 140(6):1321–1329CrossRefGoogle Scholar
  19. 19.
    Vaccari T, Rusten TE, Menut L, Nezis IP, Brech A, Stenmark H et al (2009) Comparative analysis of ESCRT-I, II, -III function in Drosophila by efficient isolation of ESCRT mutants. J Cell Sci 122(Pt 14):2413–2423.  https://doi.org/10.1242/jcs.046391. PMID: 19571114CrossRefGoogle Scholar
  20. 20.
    Vaccari T, Bilder D (2005) The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating notch trafficking. Dev Cell 9(5):687–698CrossRefGoogle Scholar
  21. 21.
    Menut L, Vaccari T, Dionne H, Hill J, Wu G, Bilder D (2007) A mosaic genetic screen for Drosophila neoplastic tumor suppressor genes based on defective pupation. Genetics 177(3):1667–1677CrossRefGoogle Scholar
  22. 22.
    Lu H, Bilder D (2005) Endocytic control of epithelial polarity and proliferation in Drosophila. Nat Cell Biol 7(12):1232–1239CrossRefGoogle Scholar
  23. 23.
    Grifoni D, Bellosta P (2015) Drosophila Myc: a master regulator of cellular performance. Biochim Biophys Acta 1849(5):570–581CrossRefGoogle Scholar
  24. 24.
    Paiardi C, Mirzoyan Z, Zola S, Parisi F, Vingiani A, Pasini ME et al (2017) The Stearoyl-CoA Desaturase-1 (Desat1) in Drosophila cooperated with Myc to induce autophagy and growth, a potential new link to tumor survival. Genes (Basel) 8(5):131CrossRefGoogle Scholar
  25. 25.
    Nagy P, Varga A, Pircs K, Hegedus K, Juhasz G (2013) Myc-driven overgrowth requires unfolded protein response-mediated induction of autophagy and antioxidant responses in Drosophila melanogaster. PLoS Genet 9(8):e1003664CrossRefGoogle Scholar
  26. 26.
    Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY et al (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137(6):1062–1075CrossRefGoogle Scholar
  27. 27.
    Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A et al (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285(29):22576–22591CrossRefGoogle Scholar
  28. 28.
    Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12(3):213–223CrossRefGoogle Scholar
  29. 29.
    Jain A, Rusten TE, Katheder N, Elvenes J, Bruun JA, Sjottem E et al (2015) p62/Sequestosome-1, autophagy-related gene 8, and autophagy in Drosophila are regulated by nuclear factor erythroid 2-related factor 2 (NRF2), independent of transcription factor TFEB. J Biol Chem 290(24):14945–14962CrossRefGoogle Scholar
  30. 30.
    Ma M, Zhao H, Zhao H, Binari R, Perrimon N, Li Z (2016) Wildtype adult stem cells, unlike tumor cells, are resistant to cellular damages in Drosophila. Dev Biol 411(2):207–216CrossRefGoogle Scholar
  31. 31.
    Singh SR, Zeng X, Zhao J, Liu Y, Hou G, Liu H et al (2016) The lipolysis pathway sustains normal and transformed stem cells in adult Drosophila. Nature 538(7623):109–113CrossRefGoogle Scholar
  32. 32.
    Chi C, Zhu H, Han M, Zhuang Y, Wu X, Xu T (2010) Disruption of lysosome function promotes tumor growth and metastasis in Drosophila. J Biol Chem 285(28):21817–21823CrossRefGoogle Scholar
  33. 33.
    Ohsawa S, Sato Y, Enomoto M, Nakamura M, Betsumiya A, Igaki T (2012) Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in Drosophila. Nature 490(7421):547–551CrossRefGoogle Scholar
  34. 34.
    Bilder D, Perrimon N (2000) Localization of apical epithelial determinants by the basolateral PDZ protein scribble. Nature 403(6770):676–680CrossRefGoogle Scholar
  35. 35.
    de Vreede G, Schoenfeld JD, Windler SL, Morrison H, Lu H, Bilder D (2014) The scribble module regulates retromer-dependent endocytic trafficking during epithelial polarization. Development (Cambridge, England) 141(14):2796–2802CrossRefGoogle Scholar
  36. 36.
    Igaki T, Pastor-Pareja JC, Aonuma H, Miura M, Xu T (2009) Intrinsic tumor suppression and epithelial maintenance by endocytic activation of Eiger/TNF signaling in Drosophila. Dev Cell 16(3):458–465CrossRefGoogle Scholar
  37. 37.
    Enomoto M, Siow C, Igaki T (2018) Drosophila as a cancer model. Adv Exp Med Biol 1076:173–194CrossRefGoogle Scholar
  38. 38.
    Igaki T, Pagliarini RA, Xu T (2006) Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Curr Biol 16(11):1139–1146CrossRefGoogle Scholar
  39. 39.
    Andersen DS, Colombani J, Palmerini V, Chakrabandhu K, Boone E, Rothlisberger M et al (2015) The Drosophila TNF receptor Grindelwald couples loss of cell polarity and neoplastic growth. Nature 522(7557):482–486CrossRefGoogle Scholar
  40. 40.
    Perez E, Das G, Bergmann A, Baehrecke EH (2015) Autophagy regulates tissue overgrowth in a context-dependent manner. Oncogene 34(26):3369–3376CrossRefGoogle Scholar
  41. 41.
    Katheder NS, Khezri R, O’Farrell F, Schultz SW, Jain A, Rahman MM et al (2017) Microenvironmental autophagy promotes tumour growth. Nature 541(7637):417–420CrossRefGoogle Scholar
  42. 42.
    Thompson BJ, Mathieu J, Sung HH, Loeser E, Rorth P, Cohen SM (2005) Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev Cell 9(5):711–720CrossRefGoogle Scholar
  43. 43.
    Moberg KH, Schelble S, Burdick SK, Hariharan IK (2005) Mutations in erupted, the Drosophila Ortholog of mammalian tumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev Cell 9(5):699–710CrossRefGoogle Scholar
  44. 44.
    Shivas JM, Morrison HA, Bilder D, Skop AR (2010) Polarity and endocytosis: reciprocal regulation. Trends Cell Biol 20:445CrossRefGoogle Scholar
  45. 45.
    Ferres-Marco D, Gutierrez-Garcia I, Vallejo DM, Bolivar J, Gutierrez-Avino FJ, Dominguez M (2006) Epigenetic silencers and Notch collaborate to promote malignant tumours by Rb silencing. Nature 439(7075):430–436CrossRefGoogle Scholar
  46. 46.
    Manent J, Banerjee S, de Matos Simoes R, Zoranovic T, Mitsiades C, Penninger JM et al (2017) Autophagy suppresses Ras-driven epithelial tumourigenesis by limiting the accumulation of reactive oxygen species. Oncogene 36(40):5576–5592CrossRefGoogle Scholar
  47. 47.
    Kimmelman AC, White E (2017) Autophagy and tumor metabolism. Cell Metab 25(5):1037–1043CrossRefGoogle Scholar
  48. 48.
    Isakson P, Bjoras M, Boe SO, Simonsen A (2010) Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein. Blood 116(13):2324–2331CrossRefGoogle Scholar
  49. 49.
    Zhao S, Fortier TM, Baehrecke EH (2018) Autophagy promotes tumor-like stem cell niche occupancy. Curr Biol 28(19):3056–64 e3CrossRefGoogle Scholar
  50. 50.
    Katheder NS, Rusten TE (2017) Microenvironment and tumors-a nurturing relationship. Autophagy 13(7):1241–1243CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center for Cancer Cell Reprogramming (CanCell), Institute for Clinical Medicine, The Medical FacultyUniversity of OsloOsloNorway
  2. 2.Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway

Personalised recommendations