Advertisement

P53 and Apoptosis in the Drosophila Model

  • Lei ZhouEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1167)

Abstract

Human P53 (HsP53) is the most frequently mutated gene associated with cancers. Despite heightened research interest over the last four decades, a clear picture of how wild type HsP53 functions as the guardian against malignant transformation remains elusive. Studying the ortholog of P53 in the genetic model organism Drosophila melanogaster (DmP53) has revealed many interesting insights. This chapter focuses on recent findings that have shed light on how DmP53 -mediated apoptosis plays an important role in maintaining genome integrity, and how the immediate output of activated DmP53 is determined by the epigenetic landscape of individual cells.

Keywords

Apoptosis Cancer Corp Epigenetics DNA damage Transposable element P53 MDM2 

Notes

Acknowledgement

Research work in the author’s lab was supported in part by NIH grants GM106174 & GM110477. The author is grateful for helpful comments and editing by Jasmine Ayers and Haya Ghannouma.

References

  1. 1.
    Levine AJ, Oren M (2009 Oct) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9(10):749–758CrossRefGoogle Scholar
  2. 2.
    Lane D, Levine A (2010) P53 Research: The past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2:1–10CrossRefGoogle Scholar
  3. 3.
    Botcheva K (2014) P53 binding to human genome: crowd control navigation in chromatin context. Front Genet 5:1–7CrossRefGoogle Scholar
  4. 4.
    Menendez D, Inga A, Resnick MA (2009) The expanding universe of p53 targets. Nat Rev Cancer 9(10):724–737CrossRefGoogle Scholar
  5. 5.
    Kastenhuber ER, Lowe SW (2017) Putting p53 in context. Cell 170(6):1062–1078CrossRefGoogle Scholar
  6. 6.
    Mollereau B, Ma D (2014) The p53 control of apoptosis and proliferation: lessons from Drosophila. Apoptosis 19:1421–1429CrossRefGoogle Scholar
  7. 7.
    Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM (2000) Drosophila p53 binds a damage response element at the reaper locus. Cell 101(1):103–113CrossRefGoogle Scholar
  8. 8.
    Ollmann M, Young LM, Di Como CJ, Karim F, Belvin M, Robertson S et al (2000) Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 101(1):91–101CrossRefGoogle Scholar
  9. 9.
    Jin S, Martinek S, Joo WS, Wortman JR, Mirkovic N, Sali A et al (2000) Identification and characterization of a p53 homologue in Drosophila melanogaster. Proc Natl Acad Sci 97(13):7301–7306CrossRefGoogle Scholar
  10. 10.
    Zhang B, Rotelli M, Dixon M, Calvi BR (2015) The function of Drosophila p53 isoforms in apoptosis. Cell Death Differ 22(12):2058–2067CrossRefGoogle Scholar
  11. 11.
    Marcel V, Sagne C, Hafsi H, Ma D, Olivier M, Hall J et al (2011) Biological functions of p53 isoforms through evolution: lessons from animal and cellular models. Cell Death Differ 44(12):1815–1824CrossRefGoogle Scholar
  12. 12.
    Dichtel-Danjoy M-L, Ma D, Dourlen P, Chatelain G, Napoletano F, Robin M et al (2013) Drosophila p53 isoforms differentially regulate apoptosis and apoptosis-induced proliferation. Cell Death Differ 20(1):108–116CrossRefGoogle Scholar
  13. 13.
    Botcheva K, Mccorkle SR, Mccombie WR, Botcheva K, Mccorkle SR, Mccombie WR et al (2016) Distinct p53 genomic binding patterns in normal and cancer-derived human cells. Cell Cycle 10:4237–4249CrossRefGoogle Scholar
  14. 14.
    Link N, Kurtz P, O’Neal M, Garcia-Hughes G, Abrams JM (2013) A p53 enhancer region regulates target genes through chromatin conformations in cis and in trans. Genes Dev 27(22):2433–2438CrossRefGoogle Scholar
  15. 15.
    Sogame N, Kim M, Abrams JM (2003) Drosophila p53 preserves genomic stability by regulating cell death. Proc Natl Acad Sci U S A 100(8):4696–4701CrossRefGoogle Scholar
  16. 16.
    Kurzhals RL, SW a T, Xie HB, Golic KG (2011) Chk2 and p53 are haploinsufficient with dependent and independent functions to eliminate cells after telomere loss. PLoS Genet 7(6):e1002103CrossRefGoogle Scholar
  17. 17.
    Brodsky MH, Weinert BT, Tsang G, Rong YS, McGinnis NM, Golic KG et al (2004) Drosophila melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. Mol Cell Biol 24(3):1219–1231CrossRefGoogle Scholar
  18. 18.
    Der OH, Löhr F, Vogel V, Mäntele W, Dötsch V (2007) Structural evolution of C-terminal domains in the p53 family. EMBO J 26(14):3463–3473CrossRefGoogle Scholar
  19. 19.
    Mateo A-RF, Kessler Z, Jolliffe AK, McGovern O, Yu B, Nicolucci A et al (2016) The p53-like protein CEP-1 is required for meiotic Fidelity in C. elegans. Curr Biol 26(9):1148–1158CrossRefGoogle Scholar
  20. 20.
    Zhang Y, Lin N, Carroll PM, Chan G, Guan B, Xiao H et al (2008) Epigenetic blocking of an enhancer region controls irradiation-induced Proapoptotic gene expression in Drosophila embryos. Dev Cell 14(4):481–493CrossRefGoogle Scholar
  21. 21.
    Senbabaoglu Y, Schultz N, Miller ML, Ciriello G, Sander C, Aksoy BA (2013) Emerging landscape of oncogenic signatures across human cancers. Nat Genet 45(10):1127–1133CrossRefGoogle Scholar
  22. 22.
    Ahmad K, Golic KG (1998) The transmission of fragmented chromosomes in Drosophila melanogaster. Genetics 148(2):775–792PubMedPubMedCentralGoogle Scholar
  23. 23.
    Titen SWA, Golic KG (2008) Telomere loss provokes multiple pathways to apoptosis and produces genomic instability in Drosophila melanogaster. Genetics 180(4):1821–1832CrossRefGoogle Scholar
  24. 24.
    Mehrotra S, Maqbool SB, Kolpakas A, Murnen K, Calvi BR (2008) Endocycling cells do not apoptose in response to DNA rereplication genotoxic stress. Genes Dev 22(22):3158–3171CrossRefGoogle Scholar
  25. 25.
    Zhang B, Mehrotra S, Ng WL, Calvi BR (2014) Low levels of p53 protein and chromatin silencing of p53 target genes repress apoptosis in Drosophila Endocycling cells. PLoS Genet 10(9):e1004581CrossRefGoogle Scholar
  26. 26.
    Tan Y, Yamada-Mabuchi M, Arya R, St Pierre S, Tang W, Tosa M et al (2011) Coordinated expression of cell death genes regulates neuroblast apoptosis. Development 138(11):2197–2206CrossRefGoogle Scholar
  27. 27.
    Lin N, Li X, Cui K, Chepelev I, Tie F, Liu B et al (2011) A barrier-only boundary element delimits the formation of facultative heterochromatin in Drosophila melanogaster and vertebrates. Mol Cell Biol 31(13):2729–2741CrossRefGoogle Scholar
  28. 28.
    Fogarty CE, Bergmann A (2015) The sound of silence: signaling by apoptotic cells. Curr Top Dev Biol 114:241–265CrossRefGoogle Scholar
  29. 29.
    Ryoo HD, Gorenc T, Steller H (2004) Apoptotic cells can induce compensatory cell proliferation through the JNK and the wingless signaling pathways. Dev Cell 7(4):491–501CrossRefGoogle Scholar
  30. 30.
    Diwanji N, Bergmann A (2018) An unexpected friend – ROS in apoptosis-induced compensatory proliferation: implications for regeneration and cancer. Semin Cell Dev Biol 80:74–82CrossRefGoogle Scholar
  31. 31.
    Hassel C, Zhang B, Dixon M, Calvi BR (2014) Induction of endocycles represses apoptosis independently of differentiation and predisposes cells to genome instability. Development 141(1):112–123CrossRefGoogle Scholar
  32. 32.
    Zhang C, Tintó SC, Li G, Lin N, Chung M, Moreno E et al (2015) An intergenic regulatory region mediates Drosophila Myc-induced apoptosis and blocks tissue hyperplasia. Oncogene 34(18):1–13Google Scholar
  33. 33.
    Montero L, Müller N, Gallant P (2008) Induction of apoptosis by Drosophila Myc. Genesis 46(2):104–111CrossRefGoogle Scholar
  34. 34.
    Zhang W, Cohen SM (2013) The Hippo pathway acts via p53 and microRNAs to control proliferation and proapoptotic gene expression during tissue growth. Biol Open 2(8):822–828CrossRefGoogle Scholar
  35. 35.
    Pujadas E, Feinberg APP (2012) Regulated noise in the epigenetic landscape of development and disease. Cell 148(6):1123–1131CrossRefGoogle Scholar
  36. 36.
    Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447(7143):433–440CrossRefGoogle Scholar
  37. 37.
    Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7(1):21–33CrossRefGoogle Scholar
  38. 38.
    Everett H, McFadden G (1999) Apoptosis: an innate immune response to virus infection. Trends Microbiol 7(4):160–165CrossRefGoogle Scholar
  39. 39.
    Zhou L, Jiang G, Chan G, Santos CP, Severson DW, Xiao L (2005) Michelob_x is the missing inhibitor of apoptosis protein antagonist in mosquito genomes. EMBO Rep 6(8):769–774CrossRefGoogle Scholar
  40. 40.
    Liu B, Becnel JJ, Zhang Y, Zhou L (2011) Induction of reaper ortholog mx in mosquito midgut cells following baculovirus infection. Cell Death Differ 18(8):1337–1345CrossRefGoogle Scholar
  41. 41.
    Liu B, Behura SK, Clem RJ, Schneemann A, Becnel J, Severson DW et al (2013) P53-mediated rapid induction of apoptosis conveys resistance to viral infection in Drosophila melanogaster. PLoS Pathog 9(2):e1003137CrossRefGoogle Scholar
  42. 42.
    Belyi VA, Ak P, Markert E, Wang H, Hu W, Puzio-Kuter A et al (2009) The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol 2(6):a001198PubMedGoogle Scholar
  43. 43.
    Wylie A, Jones AE, Brot AD, Lu WJ, Kurtz P, Moran JV et al (2016) P53 genes function to restrain mobile elements. Genes Dev 30(1):64–77CrossRefGoogle Scholar
  44. 44.
    Wylie A, Jones AE, Abrams JM (2016) p53 in the game of transposons. BioEssays 38(11):1111–1116CrossRefGoogle Scholar
  45. 45.
    Harris CR, Dewan A, Zupnick A, Normart R, Gabriel A, Prives C et al (2009) p53 responsive elements in human retrotransposons. Oncogene 28(44):3857–3865CrossRefGoogle Scholar
  46. 46.
    Lane DP, Cheok CF, Brown C, Madhumalar A, Ghadessy FJ, Verma C (2010) Mdm2 and p53 are highly conserved from placozoans to man. Cell Cycle 9(3):540–547CrossRefGoogle Scholar
  47. 47.
    Lane DP, Verma C (2012) Mdm2 in evolution. Genes Cancer 3(3–4):320–324CrossRefGoogle Scholar
  48. 48.
    Chakraborty R, Li Y, Zhou L, Golic KGKG (2015) Corp regulates P53 in Drosophila melanogaster via a negative feedback loop. PLoS Genet 11(7):e1005400CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Molecular Genetics and Microbiology, UF Health Cancer Center, College of MedicineUniversity of FloridaGainesvilleUSA

Personalised recommendations