Advertisement

The Initial Stage of Tumorigenesis in Drosophila Epithelial Tissues

  • Yoichiro TamoriEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1167)

Abstract

Cancer development originates in a single mutant cell transformed from a normal cell, including further evolution of pro-tumor cells through additional mutations into malignant cancer tissues. Data from recent studies, however, suggest that most pro-tumor cells do not develop into tumors but remain dormant within or are prophylactically eliminated from tissues unless bestowed with additional driver mutations. Drosophila melanogaster has provided very efficient model systems, such as imaginal discs and ovarian follicular epithelia, to study the initial stage of tumorigenesis. This review will focus on the behaviors of emerging pro-tumor cells surrounded by normal cells and situations where they initiate tumor development.

Keywords

Tumorigenesis Tumor hotspot Cell competition Epithelial tissues 

Notes

Acknowledgements

I thank K. Kozawa, C. Sabusap and J. Vaughen for critical reading and corrections of the manuscript. This work was supported by grants from JSPS KAKENHI Grant Number 17H05626 and 18KK0234 to Y.T.

References

  1. 1.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Jacobs KB et al (2012) Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet 44:651–658PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Laurie CC et al (2012) Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 44:642–650PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Hsieh JCF, Van Den Berg D, Kang H, Hsieh CL, Lieber MR (2013) Large chromosome deletions, duplications, and gene conversion events accumulate with age in normal human colon crypts. Aging Cell 12:269–279PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Martincorena I et al (2015) High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348:880–886PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bissell MJ, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17:320–329PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Tamori Y, Deng W-M (2017) Tissue-intrinsic tumor hotspots: terroir for tumorigenesis. Trends Cancer 3:259–268PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Fujita Y (2011) Interface between normal and transformed epithelial cells: a road to a novel type of cancer prevention and treatment. Cancer Sci 102:1749–1755PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Levayer R, Moreno E (2013) Mechanisms of cell competition: themes and variations. J Cell Biol 200:689–698PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Clavería C, Torres M (2016) Cell competition: mechanisms and physiological roles. Annu Rev Cell Dev Biol 32:411–439PubMedCrossRefGoogle Scholar
  11. 11.
    Moreno E (2008) Is cell competition relevant to cancer? Nat Rev Cancer 8:141–147PubMedCrossRefGoogle Scholar
  12. 12.
    Tamori Y, Deng W-M (2011) Cell competition and its implications for development and cancer. J Genet Genomics 38:483–495PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Baker NE (2017) Mechanisms of cell competition emerging from Drosophila studies. Curr Opin Cell Biol 48:40–46PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Di-Gregorio A, Bowling S, Rodriguez TA (2016) Cell competition and its role in the regulation of cell fitness from development to cancer. Dev Cell 38:621–634PubMedCrossRefGoogle Scholar
  15. 15.
    Igaki T, Pagliarini RA, Xu T (2006) Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Curr Biol 16:1139–1146PubMedCrossRefGoogle Scholar
  16. 16.
    Igaki T, Pastor-Pareja JC, Aonuma H, Miura M, Xu T (2009) Intrinsic tumor suppression and epithelial maintenance by endocytic activation of Eiger/TNF signaling in Drosophila. Dev Cell 16:458–465PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Tamori Y et al (2010) Involvement of Lgl and Mahjong/VprBP in cell competition. PLoS Biol 8:e1000422PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Menéndez J, Pérez-Garijo A, Calleja M, Morata G (2010) A tumor-suppressing mechanism in Drosophila involving cell competition and the Hippo pathway. Proc Natl Acad Sci U S A 107:14651–14656PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Bilder D, Li M, Perrimon N (2000) Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289:113–116PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Bilder D (2004) Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev 18:1909–1925PubMedCrossRefGoogle Scholar
  21. 21.
    Humbert PO et al (2008) Control of tumourigenesis by the Scribble/Dlg/Lgl polarity module. Oncogene 27:6888–6907PubMedCrossRefGoogle Scholar
  22. 22.
    Muthuswamy SK, Xue B (2012) Cell polarity as a regulator of cancer cell behavior plasticity. Annu Rev Cell Dev Biol 28:599–625PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Zhan L et al (2008) Deregulation of scribble promotes mammary tumorigenesis and reveals a role for cell polarity in carcinoma. Cell 135:865–878PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Brumby AM, Richardson HE (2003) Scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J 22:5769–5779PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Ohsawa S et al (2011) Elimination of oncogenic neighbors by JNK-mediated engulfment in Drosophila. Dev Cell 20:315–328PubMedCrossRefGoogle Scholar
  26. 26.
    Yamamoto M, Ohsawa S, Kunimasa K, Igaki T (2017) The ligand Sas and its receptor PTP10D drive tumour-suppressive cell competition. Nature 542:246–250.  https://doi.org/10.1038/nature21033CrossRefPubMedGoogle Scholar
  27. 27.
    Honti V, Csordás G, Kurucz E, Márkus R, Ando I (2014) The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation. Dev Comp Immunol 42:47–56PubMedCrossRefGoogle Scholar
  28. 28.
    Pastor-Pareja JC, Wu M, Xu T (2008) An innate immune response of blood cells to tumors and tissue damage in Drosophila. Dis Models Mech 1:144–154. discussion 153CrossRefGoogle Scholar
  29. 29.
    Cordero JB et al (2010) Oncogenic Ras diverts a host TNF tumor suppressor activity into tumor promoter. Dev Cell 18:999–1011PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    de la Cova C, Abril M, Bellosta P, Gallant P, Johnston LA (2004) Drosophila myc regulates organ size by inducing cell competition. Cell 117:107–116PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Moreno E, Basler K (2004) dMyc transforms cells into super-competitors. Cell 117:117–129PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Neto-Silva RM, de Beco S, Johnston LA (2010) Evidence for a growth-stabilizing regulatory feedback mechanism between Myc and Yorkie, the Drosophila homolog of Yap. Dev Cell 19:507–520PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ziosi M et al (2010) dMyc functions downstream of Yorkie to promote the Supercompetitive behavior of hippo pathway mutant cells. PLoS Genet 6:e1001140PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Vincent J-P, Kolahgar G, Gagliardi M, Piddini E (2011) Steep differences in wingless signaling trigger Myc-independent competitive cell interactions. Dev Cell 21:366–374PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Rodrigues AB et al (2012) Activated STAT regulates growth and induces competitive interactions independently of Myc, Yorkie, Wingless and ribosome biogenesis. Development 139:4051–4061PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Pagliarini RA, Xu T (2003) A genetic screen in Drosophila for metastatic behavior. Science 302:1227–1231PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Nakajima Y-I (2018) Mitotic spindle orientation in epithelial homeostasis and plasticity. J Biochem 164:277–284PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    McCaffrey LM, Macara IG (2011) Epithelial organization, cell polarity, and tumorigenesis. Trends Cell Biol 21:727–735PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Pease JC, Tirnauer JS (2011) Mitotic spindle misorientation in cancer–out of alignment and into the fire. J Cell Sci 124:1007–1016PubMedCrossRefGoogle Scholar
  40. 40.
    Abdelilah-Seyfried S, Cox DN, Jan YN (2003) Bazooka is a permissive factor for the invasive behavior of discs large tumor cells in Drosophila ovarian follicular epithelia. Development 130:1927–1935PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Fernández-Miñán A, Martín-Bermudo MD, González-Reyes A (2007) Integrin signaling regulates spindle orientation in Drosophila to preserve the follicular-epithelium monolayer. Curr Biol 17:683–688PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Fernández-Miñán A, Cobreros L, González-Reyes A, Martín-Bermudo MD (2008) Integrins contribute to the establishment and maintenance of cell polarity in the follicular epithelium of the Drosophila ovary. Int J Dev Biol 52:925–932PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Ng BF et al (2016) Alpha-Spectrin and Integrins act together to regulate actomyosin and columnarization, and to maintain a mono-layered follicular epithelium. Development 143:1388–1399.  https://doi.org/10.1242/dev.130070–1399CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Meignin C, Alvarez-Garcia I, Davis I, Palacios IM (2007) The Salvador-warts-hippo pathway is required for epithelial proliferation and axis specification in Drosophila. Curr Biol 17:1871–1878PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Bergstralh DT, Lovegrove HE, Johnston DS (2013) Discs large links spindle orientation to apical-basal polarity in Drosophila epithelia. Curr Biol 23:1–6CrossRefGoogle Scholar
  46. 46.
    Nakajima Y-I, Meyer EJ, Kroesen A, McKinney SA, Gibson MC (2013) Epithelial junctions maintain tissue architecture by directing planar spindle orientation. Nature 500:359–362PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Bell GP, Fletcher GC, Brain R, Thompson BJ (2015) Aurora kinases phosphorylate Lgl to induce mitotic spindle orientation in Drosophila epithelia. Curr Biol 25:61–68PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Carvalho CA, Moreira S, Ventura G, Sunkel CE, Morais-de-Sá E (2015) Aurora A triggers Lgl cortical release during symmetric division to control planar spindle orientation. Curr Biol 25:53–60PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Vaughen J, Igaki T (2016) Slit-Robo repulsive signaling extrudes tumorigenic cells from epithelia. Dev Cell 39:683–695PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Bastock R, St Johnston D (2008) Drosophila oogenesis. Curr Biol 18:R1082–R1087PubMedCrossRefGoogle Scholar
  51. 51.
    Klusza S, Deng W-M (2011) At the crossroads of differentiation and proliferation: precise control of cell-cycle changes by multiple signaling pathways in Drosophila follicle cells. BioEssays 33:124–134PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Calvi B, Lilly M (1998) Cell cycle control of chorion gene amplification. Genes Dev 12:734–744PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Cayirlioglu P, Bonnette PC, Dickson MR, Duronio RJ (2001) Drosophila E2f2 promotes the conversion from genomic DNA replication to gene amplification in ovarian follicle cells. Development 128:5085–5098PubMedGoogle Scholar
  54. 54.
    Sun J, Smith L, Armento A, Deng W-M (2008) Regulation of the endocycle/gene amplification switch by Notch and ecdysone signaling. J Cell Biol 182:885–896PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Deng WM, Althauser C, Ruohola-Baker H (2001) Notch-Delta signaling induces a transition from mitotic cell cycle to endocycle in Drosophila follicle cells. Development 128:4737–4746PubMedGoogle Scholar
  56. 56.
    López-Schier H, St Johnston D (2001) Delta signaling from the germ line controls the proliferation and differentiation of the somatic follicle cells during Drosophila oogenesis. Genes Dev 15:1393–1405PubMedCrossRefGoogle Scholar
  57. 57.
    Bray SJ (2016) Notch signalling in context. Nat Rev Mol Cell Biol 17:722–735PubMedCrossRefGoogle Scholar
  58. 58.
    Tamori Y, Deng W-M (2013) Tissue repair through cell competition and compensatory cellular hypertrophy in postmitotic epithelia. Dev Cell 25:350–363PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Tamori Y, Deng W-M (2014) Compensatory cellular hypertrophy: the other strategy for tissue homeostasis. Trends Cell Biol 24:230–237PubMedCrossRefGoogle Scholar
  60. 60.
    Kraut R, Chia W, Jan LY, Jan YN, Knoblich JA (1996) Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature 383:50–55PubMedCrossRefGoogle Scholar
  61. 61.
    Siller KH, Cabernard C, Doe CQ (2006) The NuMA-related mud protein binds pins and regulates spindle orientation in Drosophila neuroblasts. Nat Cell Biol 8:594–600PubMedCrossRefGoogle Scholar
  62. 62.
    Bowman SK, Neumüller RA, Novatchkova M, Du Q, Knoblich JA (2006) The Drosophila NuMA homolog mud regulates spindle orientation in asymmetric cell division. Dev Cell 10:731–742PubMedCrossRefGoogle Scholar
  63. 63.
    Izumi Y, Ohta N, Hisata K, Raabe T, Matsuzaki F (2006) Drosophila pins-binding protein mud regulates spindle-polarity coupling and centrosome organization. Nat Cell Biol 8:586–593PubMedCrossRefGoogle Scholar
  64. 64.
    Bergstralh DT, Lovegrove HE, St Johnston D (2015) Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers. Nat Cell Biol 17:1497–1503PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Li Q et al (2009) Role of Scrib and Dlg in anterior-posterior patterning of the follicular epithelium during Drosophila oogenesis. BMC Dev Biol 9:60PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Froldi F et al (2010) The lethal giant larvae tumour suppressor mutation requires dMyc oncoprotein to promote clonal malignancy. BMC Biol 8:33PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lu H, Bilder D (2005) Endocytic control of epithelial polarity and proliferation in Drosophila. Nat Cell Biol 7:1232–1239PubMedCrossRefGoogle Scholar
  68. 68.
    Moberg KH, Schelble S, Burdick SK, Hariharan IK (2005) Mutations in erupted, the Drosophila ortholog of mammalian tumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev Cell 9:699–710PubMedCrossRefGoogle Scholar
  69. 69.
    Thompson BJ et al (2005) Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev Cell 9:711–720PubMedCrossRefGoogle Scholar
  70. 70.
    Vaccari T, Bilder D (2005) The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating notch trafficking. Dev Cell 9:687–698PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Vaccari T, Bilder D (2009) At the crossroads of polarity, proliferation and apoptosis: the use of Drosophila to unravel the multifaceted role of endocytosis in tumor suppression. Mol Oncol 3:354–365PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Vaccari T et al (2009) Comparative analysis of ESCRT-I, ESCRT-II and ESCRT-III function in Drosophila by efficient isolation of ESCRT mutants. J Cell Sci 122:2413–2423PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Takino K, Ohsawa S, Igaki T (2014) Loss of Rab5 drives non-autonomous cell proliferation through TNF and Ras signaling in drosophila. Dev Biol 395:19–28PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Robinson BS, Huang J, Hong Y, Moberg KH (2010) Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein expanded. Curr Biol 20:582–590PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Djiane A et al (2013) Dissecting the mechanisms of Notch induced hyperplasia. EMBO J 32:60–71PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Sun J, Deng W-M (2007) Hindsight mediates the role of notch in suppressing hedgehog signaling and cell proliferation. Dev Cell 12:431–442PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Jia D, Tamori Y, Pyrowolakis G, Deng W-M (2014) Regulation of broad by the Notch pathway affects timing of follicle cell development. Dev Biol 392:52–61PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Tamori Y, Suzuki E, Deng W-M (2016) Epithelial tumors originate in tumor hotspots, a tissue-intrinsic microenvironment. PLoS Biol 14:e1002537–e1002523PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Khan SJ et al (2013) Epithelial neoplasia in Drosophila entails switch to primitive cell states. Proc Natl Acad Sci U S A 110:E2163–E2172PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Gilmore AP (2005) Anoikis. Cell Death Differ 12:1473–1477PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Chiarugi P, Giannoni E (2008) Anoikis: a necessary death program for anchorage-dependent cells. Biochem Pharmacol 76:1352–1364PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Buchheit CL, Weigel KJ, Schafer ZT (2014) Cancer cell survival during detachment from the ECM: multiple barriers to tumour progression. Nat Rev Cancer 14:632–641PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Schwartz MA (1997) Integrins, oncogenes, and anchorage independence. J Cell Biol 139:575–578PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Harrison DA, McCoon PE, Binari R, Gilman M, Perrimon N (1998) Drosophila unpaired encodes a secreted protein that activates the JAK signaling pathway. Genes Dev 12:3252–3263PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Bach EA et al (2007) GFP reporters detect the activation of the Drosophila JAK/STAT pathway in vivo. Gene Expr Patterns 7:323–331PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Hombría JC-G, Sotillos S (2008) Disclosing JAK/STAT links to cell adhesion and cell polarity. Semin Cell Dev Biol 19:370–378PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Brose K, Tessier-Lavigne M (2000) Slit proteins: key regulators of axon guidance, axonal branching, and cell migration. Curr Opin Neurobiol 10:95–102PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Araújo SJ, Tear G (2003) Axon guidance mechanisms and molecules: lessons from invertebrates. Nat Rev Neurosci 4:910–922PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Ohsawa S, Vaughen J, Igaki T (2018) Cell extrusion: a stress-responsive force for good or evil in epithelial homeostasis. Dev Cell 44:284–296PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Yu J, Poulton J, Huang Y-C, Deng W-M (2008) The hippo pathway promotes Notch signaling in regulation of cell differentiation, proliferation, and oocyte polarity. PLoS One 3:e1761PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Polesello C, Tapon N (2007) Salvador-warts-hippo signaling promotes Drosophila posterior follicle cell maturation downstream of notch. Curr Biol 17:1864–1870PubMedCrossRefGoogle Scholar
  92. 92.
    Xi R, McGregor JR, Harrison DA (2003) A gradient of JAK pathway activity patterns the anterior-posterior axis of the follicular epithelium. Dev Cell 4:167–177PubMedCrossRefGoogle Scholar
  93. 93.
    Hayashi Y et al (2012) Glypicans regulate JAK/STAT signaling and distribution of the unpaired morphogen. Development 139:4162–4171PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Chen J, Sayadian A-C, Lowe N, Lovegrove HE, St Johnston D (2018) An alternative mode of epithelial polarity in the Drosophila midgut. PLoS Biol 16:e3000041PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Molecular Oncology, Institute for Genetic MedicineHokkaido UniversitySapporoJapan

Personalised recommendations