Advertisement

Two Sides of the Same Coin – Compensatory Proliferation in Regeneration and Cancer

  • Neha Diwanji
  • Andreas BergmannEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1167)

Abstract

Apoptosis has long been regarded as a tumor suppressor mechanism and evasion from apoptosis is considered to be one hallmark of cancer. However, this principle is not always consistent with clinical data which often illustrate a correlation between apoptosis and poor prognosis. Work in the last 15 years has provided an explanation for this apparent paradox. Apoptotic cells communicate with their environment and can produce signals which promote compensatory proliferation of surviving cells. This behavior of apoptotic cells is important for tissue regeneration in several model organisms, ranging from hydra to mammals. However, it may also play an important feature for tumorigenesis and tumor relapse. Several distinct forms of apoptosis-induced compensatory proliferation (AiP) have been identified, many of which involve reactive oxygen species (ROS) and immune cells. One type of AiP, “undead” AiP, in which apoptotic cells are kept in an immortalized state and continuously divide, may have particular relevance for tumorigenesis. Furthermore, given that chemo- and radiotherapy often aim to kill tumor cells, an improved understanding of the effects of apoptotic cells on the tumor and the tumor environment is of critical importance for the well-being of the patient. In this review, we summarize the current knowledge of AiP and focus our attention on recent findings obtained in Drosophila and other model organisms, and relate them to tumorigenesis.

Keywords

Apoptosis-induced proliferation Caspases Reactive oxygen species Macrophages Drosophila 

Notes

Acknowledgements

This work was supported by the National Institute of General Medical Sciences (NIGMS) under award number R35GM118330. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

References

  1. 1.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70CrossRefGoogle Scholar
  2. 2.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674.  https://doi.org/10.1016/j.cell.2011.02.013CrossRefGoogle Scholar
  3. 3.
    Letai AG (2008) Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer 8(2):121–132.  https://doi.org/10.1038/nrc2297CrossRefPubMedGoogle Scholar
  4. 4.
    Frey B, Derer A, Scheithauer H, Wunderlich R, Fietkau R, Gaipl US (2016) Cancer cell death-inducing radiotherapy: impact on local tumour control, tumour cell proliferation and induction of systemic anti-tumour immunity. Adv Exp Med Biol 930:151–172.  https://doi.org/10.1007/978-3-319-39406-0_7CrossRefPubMedGoogle Scholar
  5. 5.
    Dasgupta A, Nomura M, Shuck R, Yustein J (2017) Cancer’s achilles’ heel: apoptosis and necroptosis to the rescue. Int J Mol Sci 18:1422–0067.  https://doi.org/10.3390/ijms18010023. LID – E23 [pii] LID – (Electronic))CrossRefGoogle Scholar
  6. 6.
    Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147(4):742–758.  https://doi.org/10.1016/j.cell.2011.10.033CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tait SW, Ichim G, Green DR (2014) Die another way–non-apoptotic mechanisms of cell death. J Cell Sci 127(Pt 10):2135–2144.  https://doi.org/10.1242/jcs.093575CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D’Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jaattela M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, Lopez-Otin C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Munoz-Pinedo C, Nagata S, Nunez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25(3):486–541.  https://doi.org/10.1038/s41418-017-0012-4CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88(3):347–354CrossRefGoogle Scholar
  10. 10.
    Green DR (2011) Means to an end: apoptosis and other cell death mechanisms. Cold Spring Harbor Laboratory Press, Cold Spring harborGoogle Scholar
  11. 11.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257CrossRefGoogle Scholar
  12. 12.
    Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281(5381):1312–1316CrossRefGoogle Scholar
  13. 13.
    Parrish AB, Freel CD, Kornbluth S (2013) Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol 5(6).  https://doi.org/10.1101/cshperspect.a008672CrossRefGoogle Scholar
  14. 14.
    Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44(6):817–829CrossRefGoogle Scholar
  15. 15.
    Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75(4):641–652CrossRefGoogle Scholar
  16. 16.
    Lamkanfi M, Declercq W, Kalai M, Saelens X, Vandenabeele P (2002) Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ 9(4):358–361.  https://doi.org/10.1038/sj/cdd/4400989CrossRefPubMedGoogle Scholar
  17. 17.
    Shalini S, Dorstyn L, Dawar S, Kumar S (2015) Old, new and emerging functions of caspases. Cell Death Differ 22(4):526–539.  https://doi.org/10.1038/cdd.2014.216CrossRefPubMedGoogle Scholar
  18. 18.
    Denton D, Aung-Htut MT, Kumar S (2013) Developmentally programmed cell death in Drosophila. Biochim Biophys Acta 1833(12):3499–3506.  https://doi.org/10.1016/j.bbamcr.2013.06.014CrossRefPubMedGoogle Scholar
  19. 19.
    Kumar S (2007) Caspase function in programmed cell death. Cell Death Differ 14(1):32–43.  https://doi.org/10.1038/sj.cdd.4402060CrossRefPubMedGoogle Scholar
  20. 20.
    Pop C, Salvesen GS (2009) Human caspases: activation, specificity, and regulation. J Biol Chem 284(33):21777–21781.  https://doi.org/10.1074/jbc.R800084200CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Grether ME, Abrams JM, Agapite J, White K, Steller H (1995) The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev 9(14):1694–1708CrossRefGoogle Scholar
  22. 22.
    Chen P, Nordstrom W, Gish B, Abrams JM (1996) Grim, a novel cell death gene in Drosophila. Genes Dev 10(14):1773–1782CrossRefGoogle Scholar
  23. 23.
    Wang SL, Hawkins CJ, Yoo SJ, Muller HA, Hay BA (1999) The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98(4):453–463CrossRefGoogle Scholar
  24. 24.
    Yoo SJ, Huh JR, Muro I, Yu H, Wang L, Wang SL, Feldman RM, Clem RJ, Muller HA, Hay BA (2002) Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat Cell Biol 4(6):416–424.  https://doi.org/10.1038/ncb793CrossRefPubMedGoogle Scholar
  25. 25.
    Goyal L, McCall K, Agapite J, Hartwieg E, Steller H (2000) Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J 19(4):589–597.  https://doi.org/10.1093/emboj/19.4.589CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lisi S, Mazzon I, White K (2000) Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila. Genetics 154(2):669–678PubMedPubMedCentralGoogle Scholar
  27. 27.
    Xu D, Woodfield SE, Lee TV, Fan Y, Antonio C, Bergmann A (2009) Genetic control of programmed cell death (apoptosis) in Drosophila. Fly (Austin) 3(1):78–90CrossRefGoogle Scholar
  28. 28.
    Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281(5381):1305–1308CrossRefGoogle Scholar
  29. 29.
    Igaki T, Kanda H, Yamamoto-Goto Y, Kanuka H, Kuranaga E, Aigaki T, Miura M (2002) Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway. EMBO J 21(12):3009–3018.  https://doi.org/10.1093/emboj/cdf306CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kanda H, Igaki T, Kanuka H, Yagi T, Miura M (2002) Wengen, a member of the Drosophila tumor necrosis factor receptor superfamily, is required for Eiger signaling. J Biol Chem 277(32):28372–28375.  https://doi.org/10.1074/jbc.C200324200CrossRefPubMedGoogle Scholar
  31. 31.
    Moreno E, Yan M, Basler K (2002) Evolution of TNF signaling mechanisms: JNK-dependent apoptosis triggered by Eiger, the Drosophila homolog of the TNF superfamily. Curr Biol 12(14):1263–1268CrossRefGoogle Scholar
  32. 32.
    Kauppila S, Maaty WS, Chen P, Tomar RS, Eby MT, Chapo J, Chew S, Rathore N, Zachariah S, Sinha SK, Abrams JM, Chaudhary PM (2003) Eiger and its receptor, Wengen, comprise a TNF-like system in Drosophila. Oncogene 22(31):4860–4867.  https://doi.org/10.1038/sj.onc.1206715CrossRefPubMedGoogle Scholar
  33. 33.
    Andersen DS, Colombani J, Palmerini V, Chakrabandhu K, Boone E, Rothlisberger M, Toggweiler J, Basler K, Mapelli M, Hueber AO, Leopold P (2015) The Drosophila TNF receptor Grindelwald couples loss of cell polarity and neoplastic growth. Nature 522(7557):482–486.  https://doi.org/10.1038/nature14298CrossRefPubMedGoogle Scholar
  34. 34.
    McEwen DG, Peifer M (2005) Puckered, a Drosophila MAPK phosphatase, ensures cell viability by antagonizing JNK-induced apoptosis. Development 132(17):3935–3946.  https://doi.org/10.1242/dev.01949CrossRefPubMedGoogle Scholar
  35. 35.
    Bergmann A (2010) The role of ubiquitylation for the control of cell death in Drosophila. Cell Death Differ 17(1):61–67.  https://doi.org/10.1038/cdd.2009.70CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kamber Kaya HE, Ditzel M, Meier P, Bergmann A (2017) An inhibitory mono-ubiquitylation of the Drosophila initiator caspase Dronc functions in both apoptotic and non-apoptotic pathways. PLoS Genet 13(2):e1006438.  https://doi.org/10.1371/journal.pgen.1006438CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Man SM, Kanneganti TD (2016) Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat Rev Immunol 16(1):7–21.  https://doi.org/10.1038/nri.2015.7CrossRefPubMedGoogle Scholar
  38. 38.
    Yi CH, Yuan J (2009) The Jekyll and Hyde functions of caspases. Dev Cell 16(1):21–34.  https://doi.org/10.1016/j.devcel.2008.12.012CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Feinstein-Rotkopf Y, Arama E (2009) Can’t live without them, can live with them: roles of caspases during vital cellular processes. Apoptosis 14(8):980–995.  https://doi.org/10.1007/s10495-009-0346-6CrossRefPubMedGoogle Scholar
  40. 40.
    Portela M, Richardson HE (2013) Death takes a holiday – non-apoptotic role for caspases in cell migration and invasion. EMBO Rep 14(2):107–108.  https://doi.org/10.1038/embor.2012.224CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Connolly PF, Jager R, Fearnhead HO (2014) New roles for old enzymes: killer caspases as the engine of cell behavior changes. Front Physiol 5:149.  https://doi.org/10.3389/fphys.2014.00149CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gorelick-Ashkenazi A, Weiss R, Sapozhnikov L, Florentin A, Tarayrah-Ibraheim L, Dweik D, Yacobi-Sharon K, Arama E (2018) Caspases maintain tissue integrity by an apoptosis-independent inhibition of cell migration and invasion. Nat Commun 9(1):2806.  https://doi.org/10.1038/s41467-018-05204-6CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Baena-Lopez LA, Arthurton L, Xu DC, Galasso A (2018) Non-apoptotic caspase regulation of stem cell properties. Semin Cell Dev Biol 82:118–126.  https://doi.org/10.1016/j.semcdb.2017.10.034CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ravichandran KS, Lorenz U (2007) Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 7(12):964–974.  https://doi.org/10.1038/nri2214CrossRefPubMedGoogle Scholar
  45. 45.
    Ravichandran KS (2011) Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity 35(4):445–455.  https://doi.org/10.1016/j.immuni.2011.09.004CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Perez-Garijo A, Fuchs Y, Steller H (2013) Apoptotic cells can induce non-autonomous apoptosis through the TNF pathway. elife 2:e01004.  https://doi.org/10.7554/eLife.01004CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Fogarty CE, Bergmann A (2017) Killers creating new life: caspases drive apoptosis-induced proliferation in tissue repair and disease. Cell Death Differ 24(8):1390–1400.  https://doi.org/10.1038/cdd.2017.47CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Perez-Garijo A (2018) When dying is not the end: apoptotic caspases as drivers of proliferation. Semin Cell Dev Biol 82:86–95.  https://doi.org/10.1016/j.semcdb.2017.11.036CrossRefPubMedGoogle Scholar
  49. 49.
    Mollereau B, Perez-Garijo A, Bergmann A, Miura M, Gerlitz O, Ryoo HD, Steller H, Morata G (2013) Compensatory proliferation and apoptosis-induced proliferation: a need for clarification. Cell Death Differ 20(1):181.  https://doi.org/10.1038/cdd.2012.82CrossRefPubMedGoogle Scholar
  50. 50.
    Ryoo HD, Bergmann A (2012) The role of apoptosis-induced proliferation for regeneration and cancer. Cold Spring Harb Perspect Biol 4(8):a008797.  https://doi.org/10.1101/cshperspect.a008797CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315(26):1650–1659.  https://doi.org/10.1056/NEJM198612253152606CrossRefPubMedGoogle Scholar
  52. 52.
    Birnbaum KD, Sanchez Alvarado A (2008) Slicing across kingdoms: regeneration in plants and animals. Cell 132(4):697–710.  https://doi.org/10.1016/j.cell.2008.01.040CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Tanaka EM, Reddien PW (2011) The cellular basis for animal regeneration. Dev Cell 21(1):172–185.  https://doi.org/10.1016/j.devcel.2011.06.016CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Haynie JL, Bryant PJ (1977) The effects of X-rays on the proliferation dynamics of cells in the imaginal wing disc of Drosophila melanogaster. Wilehm Roux Arch Dev Biol 183(2):85–100.  https://doi.org/10.1007/BF00848779CrossRefPubMedGoogle Scholar
  55. 55.
    Taub R (2004) Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol 5(10):836–847.  https://doi.org/10.1038/nrm1489CrossRefPubMedGoogle Scholar
  56. 56.
    Fan Y, Bergmann A (2008) Apoptosis-induced compensatory proliferation. The cell is dead. Long live the cell! Trends Cell Biol 18(10):467–473.  https://doi.org/10.1016/j.tcb.2008.08.001CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Smith-Bolton R (2016) Drosophila imaginal discs as a model of epithelial wound repair and regeneration. Adv Wound Care (New Rochelle) 5(6):251–261.  https://doi.org/10.1089/wound.2014.0547CrossRefGoogle Scholar
  58. 58.
    Huh JR, Guo M, Hay BA (2004) Compensatory proliferation induced by cell death in the Drosophila wing disc requires activity of the apical cell death caspase Dronc in a nonapoptotic role. Curr Biol 14(14):1262–1266.  https://doi.org/10.1016/j.cub.2004.06.015CrossRefPubMedGoogle Scholar
  59. 59.
    Perez-Garijo A, Martin FA, Morata G (2004) Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila. Development 131(22):5591–5598.  https://doi.org/10.1242/dev.01432CrossRefPubMedGoogle Scholar
  60. 60.
    Kondo S, Senoo-Matsuda N, Hiromi Y, Miura M (2006) DRONC coordinates cell death and compensatory proliferation. Mol Cell Biol 26(19):7258–7268.  https://doi.org/10.1128/MCB.00183-06CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Wells BS, Yoshida E, Johnston LA (2006) Compensatory proliferation in Drosophila imaginal discs requires Dronc-dependent p53 activity. Curr Biol 16(16):1606–1615.  https://doi.org/10.1016/j.cub.2006.07.046CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Clem RJ, Fechheimer M, Miller LK (1991) Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 254(5036):1388–1390CrossRefGoogle Scholar
  63. 63.
    Hay BA, Wolff T, Rubin GM (1994) Expression of baculovirus P35 prevents cell death in Drosophila. Development 120(8):2121–2129PubMedGoogle Scholar
  64. 64.
    Martin FA, Perez-Garijo A, Morata G (2009) Apoptosis in Drosophila: compensatory proliferation and undead cells. Int J Dev Biol 53(8–10):1341–1347.  https://doi.org/10.1387/ijdb.072447fmCrossRefPubMedGoogle Scholar
  65. 65.
    Fan Y, Wang S, Hernandez J, Yenigun VB, Hertlein G, Fogarty CE, Lindblad JL, Bergmann A (2014) Genetic models of apoptosis-induced proliferation decipher activation of JNK and identify a requirement of EGFR signaling for tissue regenerative responses in Drosophila. PLoS Genet 10(1):e1004131.  https://doi.org/10.1371/journal.pgen.1004131CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Fogarty CE, Diwanji N, Lindblad JL, Tare M, Amcheslavsky A, Makhijani K, Bruckner K, Fan Y, Bergmann A (2016) Extracellular reactive oxygen species drive apoptosis-induced proliferation via Drosophila macrophages. Curr Biol 26(5):575–584.  https://doi.org/10.1016/j.cub.2015.12.064CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Smith-Bolton RK, Worley MI, Kanda H, Hariharan IK (2009) Regenerative growth in Drosophila imaginal discs is regulated by Wingless and Myc. Dev Cell 16(6):797–809.  https://doi.org/10.1016/j.devcel.2009.04.015CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Bergantinos C, Corominas M, Serras F (2010) Cell death-induced regeneration in wing imaginal discs requires JNK signalling. Development 137(7):1169–1179.  https://doi.org/10.1242/dev.045559CrossRefPubMedGoogle Scholar
  69. 69.
    Herrera SC, Martin R, Morata G (2013) Tissue homeostasis in the wing disc of Drosophila melanogaster: immediate response to massive damage during development. PLoS Genet 9(4):e1003446.  https://doi.org/10.1371/journal.pgen.1003446CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Fan Y, Bergmann A (2008) Distinct mechanisms of apoptosis-induced compensatory proliferation in proliferating and differentiating tissues in the Drosophila eye. Dev Cell 14(3):399–410.  https://doi.org/10.1016/j.devcel.2008.01.003CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Amcheslavsky A, Wang S, Fogarty CE, Lindblad JL, Fan Y, Bergmann A (2018) Plasma membrane localization of apoptotic caspases for non-apoptotic functions. Dev Cell 45(4):450–464 e453.  https://doi.org/10.1016/j.devcel.2018.04.020CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ryoo HD, Gorenc T, Steller H (2004) Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Dev Cell 7(4):491–501.  https://doi.org/10.1016/j.devcel.2004.08.019CrossRefPubMedGoogle Scholar
  73. 73.
    Perez-Garijo A, Shlevkov E, Morata G (2009) The role of Dpp and Wg in compensatory proliferation and in the formation of hyperplastic overgrowths caused by apoptotic cells in the Drosophila wing disc. Development 136(7):1169–1177.  https://doi.org/10.1242/dev.034017CrossRefPubMedGoogle Scholar
  74. 74.
    Simon R, Aparicio R, Housden BE, Bray S, Busturia A (2014) Drosophila p53 controls Notch expression and balances apoptosis and proliferation. Apoptosis 19(10):1430–1443.  https://doi.org/10.1007/s10495-014-1000-5CrossRefPubMedGoogle Scholar
  75. 75.
    Shlevkov E, Morata G (2012) A dp53/JNK-dependant feedback amplification loop is essential for the apoptotic response to stress in Drosophila. Cell Death Differ 19(3):451–460.  https://doi.org/10.1038/cdd.2011.113CrossRefPubMedGoogle Scholar
  76. 76.
    Diwanji N, Bergmann A (2017) The beneficial role of extracellular reactive oxygen species in apoptosis-induced compensatory proliferation. Fly (Austin) 11(1):46–52.  https://doi.org/10.1080/19336934.2016.1222997CrossRefGoogle Scholar
  77. 77.
    Diwanji N, Bergmann A (2018) An unexpected friend – ROS in apoptosis-induced compensatory proliferation: implications for regeneration and cancer. Semin Cell Dev Biol 80:74–82.  https://doi.org/10.1016/j.semcdb.2017.07.004CrossRefPubMedGoogle Scholar
  78. 78.
    Kang Y, Neuman SD, Bashirullah A (2017) Tango7 regulates cortical activity of caspases during reaper-triggered changes in tissue elasticity. Nat Commun 8(1):603.  https://doi.org/10.1038/s41467-017-00693-3CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Bergmann A (2018) Are membranes non-apoptotic compartments for apoptotic caspases? Oncotarget 9(60):31566–31567.  https://doi.org/10.18632/oncotarget.25796CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Santabarbara-Ruiz P, Lopez-Santillan M, Martinez-Rodriguez I, Binagui-Casas A, Perez L, Milan M, Corominas M, Serras F (2015) ROS-induced JNK and p38 signaling is required for unpaired cytokine activation during Drosophila regeneration. PLoS Genet 11(10):e1005595.  https://doi.org/10.1371/journal.pgen.1005595CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Santabarbara-Ruiz P, Esteban-Collado J, Perez L, Viola G, Abril JF, Milan M, Corominas M, Serras F (2019) Ask1 and Akt act synergistically to promote ROS-dependent regeneration in Drosophila. PLoS Genet 15(1):e1007926.  https://doi.org/10.1371/journal.pgen.1007926CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Worley MI, Setiawan L, Hariharan IK (2012) Regeneration and transdetermination in Drosophila imaginal discs. Annu Rev Genet 46:289–310.  https://doi.org/10.1146/annurev-genet-110711-155637CrossRefPubMedGoogle Scholar
  83. 83.
    Harris RE, Setiawan L, Saul J, Hariharan IK (2016) Localized epigenetic silencing of a damage-activated WNT enhancer limits regeneration in mature Drosophila imaginal discs. elife 5.  https://doi.org/10.7554/eLife.11588
  84. 84.
    Meserve JH, Duronio RJ (2015) Scalloped and Yorkie are required for cell cycle re-entry of quiescent cells after tissue damage. Development 142(16):2740–2751.  https://doi.org/10.1242/dev.119339CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Meserve JH, Duronio RJ (2018) Fate mapping during regeneration: cells that undergo compensatory proliferation in damaged Drosophila eye imaginal discs differentiate into multiple retinal accessory cell types. Dev Biol 444(2):43–49.  https://doi.org/10.1016/j.ydbio.2018.10.011CrossRefPubMedGoogle Scholar
  86. 86.
    Galliot B (2012) Hydra, a fruitful model system for 270 years. Int J Dev Biol 56(6–8):411–423.  https://doi.org/10.1387/ijdb.120086bgCrossRefPubMedGoogle Scholar
  87. 87.
    Chera S, Ghila L, Wenger Y, Galliot B (2011) Injury-induced activation of the MAPK/CREB pathway triggers apoptosis-induced compensatory proliferation in hydra head regeneration. Develop Growth Differ 53(2):186–201.  https://doi.org/10.1111/j.1440-169X.2011.01250.xCrossRefGoogle Scholar
  88. 88.
    Chera S, Ghila L, Dobretz K, Wenger Y, Bauer C, Buzgariu W, Martinou JC, Galliot B (2009) Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Dev Cell 17(2):279–289.  https://doi.org/10.1016/j.devcel.2009.07.014CrossRefPubMedGoogle Scholar
  89. 89.
    Vriz S, Reiter S, Galliot B (2014) Cell death: a program to regenerate. Curr Top Dev Biol 108:121–151.  https://doi.org/10.1016/B978-0-12-391498-9.00002-4CrossRefPubMedGoogle Scholar
  90. 90.
    Birkholz TR, Van Huizen AV, Beane WS (2018) Staying in shape: planarians as a model for understanding regenerative morphology. Semin Cell Dev Biol.  https://doi.org/10.1016/j.semcdb.2018.04.014CrossRefGoogle Scholar
  91. 91.
    Hwang JS, Kobayashi C, Agata K, Ikeo K, Gojobori T (2004) Detection of apoptosis during planarian regeneration by the expression of apoptosis-related genes and TUNEL assay. Gene 333:15–25.  https://doi.org/10.1016/j.gene.2004.02.034CrossRefPubMedGoogle Scholar
  92. 92.
    Pirotte N, Stevens AS, Fraguas S, Plusquin M, Van Roten A, Van Belleghem F, Paesen R, Ameloot M, Cebria F, Artois T, Smeets K (2015) Reactive oxygen species in planarian regeneration: an upstream necessity for correct patterning and brain formation. Oxidative Med Cell Longev 2015:392476.  https://doi.org/10.1155/2015/392476CrossRefGoogle Scholar
  93. 93.
    Tseng AS, Adams DS, Qiu D, Koustubhan P, Levin M (2007) Apoptosis is required during early stages of tail regeneration in Xenopus laevis. Dev Biol 301(1):62–69.  https://doi.org/10.1016/j.ydbio.2006.10.048CrossRefPubMedGoogle Scholar
  94. 94.
    Love NR, Chen Y, Ishibashi S, Kritsiligkou P, Lea R, Koh Y, Gallop JL, Dorey K, Amaya E (2013) Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat Cell Biol 15(2):222–228.  https://doi.org/10.1038/ncb2659CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Ferreira F, Raghunathan V, Luxardi G, Zhu K, Zhao M (2018) Early redox activities modulate Xenopus tail regeneration. Nat Commun 9(1):4296.  https://doi.org/10.1038/s41467-018-06614-2CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Beck CW, Izpisua Belmonte JC, Christen B (2009) Beyond early development: xenopus as an emerging model for the study of regenerative mechanisms. Dev Dyn 238(6):1226–1248.  https://doi.org/10.1002/dvdy.21890CrossRefPubMedGoogle Scholar
  97. 97.
    Galliot B, Crescenzi M, Jacinto A, Tajbakhsh S (2017) Trends in tissue repair and regeneration. Development 144(3):357–364.  https://doi.org/10.1242/dev.144279CrossRefPubMedGoogle Scholar
  98. 98.
    Niethammer P, Grabher C, Look AT, Mitchison TJ (2009) A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459(7249):996–999.  https://doi.org/10.1038/nature08119CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Romero MMG, McCathie G, Jankun P, Roehl HH (2018) Damage-induced reactive oxygen species enable zebrafish tail regeneration by repositioning of Hedgehog expressing cells. Nat Commun 9(1):4010.  https://doi.org/10.1038/s41467-018-06460-2CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Gauron C, Rampon C, Bouzaffour M, Ipendey E, Teillon J, Volovitch M, Vriz S (2013) Sustained production of ROS triggers compensatory proliferation and is required for regeneration to proceed. Sci Rep 3:2084.  https://doi.org/10.1038/srep02084CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Li F, Huang Q, Chen J, Peng Y, Roop DR, Bedford JS, Li CY (2010) Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci Signal 3(110):ra13.  https://doi.org/10.1126/scisignal.2000634CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Goessling W, North TE, Loewer S, Lord AM, Lee S, Stoick-Cooper CL, Weidinger G, Puder M, Daley GQ, Moon RT, Zon LI (2009) Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136(6):1136–1147.  https://doi.org/10.1016/j.cell.2009.01.015CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    North TE, Babu IR, Vedder LM, Lord AM, Wishnok JS, Tannenbaum SR, Zon LI, Goessling W (2010) PGE2-regulated wnt signaling and N-acetylcysteine are synergistically hepatoprotective in zebrafish acetaminophen injury. Proc Natl Acad Sci U S A 107(40):17315–17320.  https://doi.org/10.1073/pnas.1008209107CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Jung Y, Witek RP, Syn WK, Choi SS, Omenetti A, Premont R, Guy CD, Diehl AM (2010) Signals from dying hepatocytes trigger growth of liver progenitors. Gut 59(5):655–665.  https://doi.org/10.1136/gut.2009.204354CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Nishina T, Komazawa-Sakon S, Yanaka S, Piao X, Zheng DM, Piao JH, Kojima Y, Yamashina S, Sano E, Putoczki T, Doi T, Ueno T, Ezaki J, Ushio H, Ernst M, Tsumoto K, Okumura K, Nakano H (2012) Interleukin-11 links oxidative stress and compensatory proliferation. Sci Signal 5(207):ra5.  https://doi.org/10.1126/scisignal.2002056CrossRefPubMedGoogle Scholar
  106. 106.
    Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G, Karin M (2008) Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 14(2):156–165.  https://doi.org/10.1016/j.ccr.2008.06.016CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M (1991) Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352(6333):345–347.  https://doi.org/10.1038/352345a0CrossRefPubMedGoogle Scholar
  108. 108.
    Ichikawa A, Kinoshita T, Watanabe T, Kato H, Nagai H, Tsushita K, Saito H, Hotta T (1997) Mutations of the p53 gene as a prognostic factor in aggressive B-cell lymphoma. N Engl J Med 337(8):529–534.  https://doi.org/10.1056/NEJM199708213370804CrossRefPubMedGoogle Scholar
  109. 109.
    Moller MB, Gerdes AM, Skjodt K, Mortensen LS, Pedersen NT (1999) Disrupted p53 function as predictor of treatment failure and poor prognosis in B- and T-cell non-Hodgkin’s lymphoma. Clin Cancer Res 5(5):1085–1091PubMedGoogle Scholar
  110. 110.
    Llambi F, Green DR (2011) Apoptosis and oncogenesis: give and take in the BCL-2 family. Curr Opin Genet Dev 21(1):12–20.  https://doi.org/10.1016/j.gde.2010.12.001CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    de Jong JS, van Diest PJ, Baak JP (2000) Number of apoptotic cells as a prognostic marker in invasive breast cancer. Br J Cancer 82(2):368–373.  https://doi.org/10.1054/bjoc.1999.0928CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Naresh KN, Lakshminarayanan K, Pai SA, Borges AM (2001) Apoptosis index is a predictor of metastatic phenotype in patients with early stage squamous carcinoma of the tongue: a hypothesis to support this paradoxical association. Cancer 91(3):578–584CrossRefGoogle Scholar
  113. 113.
    Jalalinadoushan M, Peivareh H, Azizzadeh Delshad A (2004) Correlation between apoptosis and histological grade of transitional cell carcinoma of urinary bladder. Urol J 1(3):177–179PubMedGoogle Scholar
  114. 114.
    Sun B, Sun Y, Wang J, Zhao X, Wang X, Hao X (2006) Extent, relationship and prognostic significance of apoptosis and cell proliferation in synovial sarcoma. Eur J Cancer Prev 15(3):258–265.  https://doi.org/10.1097/01.cej.0000198896.02185.68CrossRefPubMedGoogle Scholar
  115. 115.
    Gregory CD, Pound JD (2010) Microenvironmental influences of apoptosis in vivo and in vitro. Apoptosis 15(9):1029–1049.  https://doi.org/10.1007/s10495-010-0485-9CrossRefPubMedGoogle Scholar
  116. 116.
    Jager R, Zwacka RM (2010) The enigmatic roles of caspases in tumor development. Cancers (Basel) 2(4):1952–1979.  https://doi.org/10.3390/cancers2041952CrossRefGoogle Scholar
  117. 117.
    Alcaide J, Funez R, Rueda A, Perez-Ruiz E, Pereda T, Rodrigo I, Covenas R, Munoz M, Redondo M (2013) The role and prognostic value of apoptosis in colorectal carcinoma. BMC Clin Pathol 13(1):24.  https://doi.org/10.1186/1472-6890-13-24CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Huang Q, Li F, Liu X, Li W, Shi W, Liu FF, O’Sullivan B, He Z, Peng Y, Tan AC, Zhou L, Shen J, Han G, Wang XJ, Thorburn J, Thorburn A, Jimeno A, Raben D, Bedford JS, Li CY (2011) Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med 17(7):860–866.  https://doi.org/10.1038/nm.2385CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Kurtova AV, Xiao J, Mo Q, Pazhanisamy S, Krasnow R, Lerner SP, Chen F, Roh TT, Lay E, Ho PL, Chan KS (2015) Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517(7533):209–213.  https://doi.org/10.1038/nature14034CrossRefPubMedGoogle Scholar
  120. 120.
    Bubici C, Papa S (2014) JNK signalling in cancer: in need of new, smarter therapeutic targets. Br J Pharmacol 171(1):24–37.  https://doi.org/10.1111/bph.12432CrossRefPubMedGoogle Scholar
  121. 121.
    Tournier C (2013) The 2 faces of JNK signaling in Cancer. Genes Cancer 4(9–10):397–400.  https://doi.org/10.1177/1947601913486349CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Wagner EF, Nebreda AR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9(8):537–549.  https://doi.org/10.1038/nrc2694CrossRefPubMedGoogle Scholar
  123. 123.
    Qiu W, Wang X, Leibowitz B, Yang W, Zhang L, Yu J (2011) PUMA-mediated apoptosis drives chemical hepatocarcinogenesis in mice. Hepatology 54(4):1249–1258.  https://doi.org/10.1002/hep.24516CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Maeda S, Kamata H, Luo JL, Leffert H, Karin M (2005) IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121(7):977–990.  https://doi.org/10.1016/j.cell.2005.04.014CrossRefPubMedGoogle Scholar
  125. 125.
    Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120(5):649–661.  https://doi.org/10.1016/j.cell.2004.12.041CrossRefPubMedGoogle Scholar
  126. 126.
    Luedde T, Beraza N, Kotsikoris V, van Loo G, Nenci A, De Vos R, Roskams T, Trautwein C, Pasparakis M (2007) Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 11(2):119–132.  https://doi.org/10.1016/j.ccr.2006.12.016CrossRefPubMedGoogle Scholar
  127. 127.
    Pagliarini RA, Xu T (2003) A genetic screen in Drosophila for metastatic behavior. Science 302(5648):1227–1231.  https://doi.org/10.1126/science.1088474CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Brumby AM, Richardson HE (2003) Scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J 22(21):5769–5779.  https://doi.org/10.1093/emboj/cdg548CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Perez E, Lindblad JL, Bergmann A (2017) Tumor-promoting function of apoptotic caspases by an amplification loop involving ROS, macrophages and JNK in Drosophila. elife 6.  https://doi.org/10.7554/eLife.26747
  130. 130.
    Ogrunc M, Di Micco R, Liontos M, Bombardelli L, Mione M, Fumagalli M, Gorgoulis VG, d’Adda di Fagagna F (2014) Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ 21(6):998–1012.  https://doi.org/10.1038/cdd.2014.16CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Myant KB, Cammareri P, McGhee EJ, Ridgway RA, Huels DJ, Cordero JB, Schwitalla S, Kalna G, Ogg EL, Athineos D, Timpson P, Vidal M, Murray GI, Greten FR, Anderson KI, Sansom OJ (2013) ROS production and NF-kappaB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell Stem Cell 12(6):761–773.  https://doi.org/10.1016/j.stem.2013.04.006CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Moloney JN, Cotter TG (2018) ROS signalling in the biology of cancer. Semin Cell Dev Biol 80:50–64.  https://doi.org/10.1016/j.semcdb.2017.05.023CrossRefPubMedGoogle Scholar
  133. 133.
    Bordonaro M, Drago E, Atamna W, Lazarova DL (2014) Comprehensive suppression of all apoptosis-induced proliferation pathways as a proposed approach to colorectal cancer prevention and therapy. PLoS One 9(12):e115068.  https://doi.org/10.1371/journal.pone.0115068CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Cheng J, Tian L, Ma J, Gong Y, Zhang Z, Chen Z, Xu B, Xiong H, Li C, Huang Q (2015) Dying tumor cells stimulate proliferation of living tumor cells via caspase-dependent protein kinase Cdelta activation in pancreatic ductal adenocarcinoma. Mol Oncol 9(1):105–114.  https://doi.org/10.1016/j.molonc.2014.07.024CrossRefPubMedGoogle Scholar
  135. 135.
    Donato AL, Huang Q, Liu X, Li F, Zimmerman MA, Li CY (2014) Caspase 3 promotes surviving melanoma tumor cell growth after cytotoxic therapy. J Invest Dermatol 134(6):1686–1692.  https://doi.org/10.1038/jid.2014.18CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Feng X, Tian L, Zhang Z, Yu Y, Cheng J, Gong Y, Li CY, Huang Q (2015) Caspase 3 in dying tumor cells mediates post-irradiation angiogenesis. Oncotarget 6(32):32353–32367.  https://doi.org/10.18632/oncotarget.5898CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Feng X, Yu Y, He S, Cheng J, Gong Y, Zhang Z, Yang X, Xu B, Liu X, Li CY, Tian L, Huang Q (2017) Dying glioma cells establish a proangiogenic microenvironment through a caspase 3 dependent mechanism. Cancer Lett 385:12–20.  https://doi.org/10.1016/j.canlet.2016.10.042CrossRefPubMedGoogle Scholar
  138. 138.
    Hu Q, Peng J, Liu W, He X, Cui L, Chen X, Yang M, Liu H, Liu S, Wang H (2014) Elevated cleaved caspase-3 is associated with shortened overall survival in several cancer types. Int J Clin Exp Pathol 7(8):5057–5070PubMedPubMedCentralGoogle Scholar
  139. 139.
    Mao P, Smith L, Xie W, Wang M (2013) Dying endothelial cells stimulate proliferation of malignant glioma cells via a caspase 3-mediated pathway. Oncol Lett 5(5):1615–1620.  https://doi.org/10.3892/ol.2013.1223CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Zhang Z, Wang M, Zhou L, Feng X, Cheng J, Yu Y, Gong Y, Zhu Y, Li C, Tian L, Huang Q (2015) Increased HMGB1 and cleaved caspase-3 stimulate the proliferation of tumor cells and are correlated with the poor prognosis in colorectal cancer. J Exp Clin Cancer Res 34:51.  https://doi.org/10.1186/s13046-015-0166-1CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Miles WO, Dyson NJ, Walker JA (2011) Modeling tumor invasion and metastasis in Drosophila. Dis Model Mech 4(6):753–761.  https://doi.org/10.1242/dmm.006908CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Rudrapatna VA, Bangi E, Cagan RL (2013) Caspase signalling in the absence of apoptosis drives Jnk-dependent invasion. EMBO Rep 14(2):172–177.  https://doi.org/10.1038/embor.2012.217CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Hua H, Li M, Luo T, Yin Y, Jiang Y (2011) Matrix metalloproteinases in tumorigenesis: an evolving paradigm. Cell Mol Life Sci 68(23):3853–3868.  https://doi.org/10.1007/s00018-011-0763-xCrossRefPubMedGoogle Scholar
  144. 144.
    Gdynia G, Grund K, Eckert A, Bock BC, Funke B, Macher-Goeppinger S, Sieber S, Herold-Mende C, Wiestler B, Wiestler OD, Roth W (2007) Basal caspase activity promotes migration and invasiveness in glioblastoma cells. Mol Cancer Res 5(12):1232–1240.  https://doi.org/10.1158/1541-7786.MCR-07-0343CrossRefPubMedGoogle Scholar
  145. 145.
    Liu YR, Sun B, Zhao XL, Gu Q, Liu ZY, Dong XY, Che N, Mo J (2013) Basal caspase-3 activity promotes migration, invasion, and vasculogenic mimicry formation of melanoma cells. Melanoma Res 23(4):243–253.  https://doi.org/10.1097/CMR.0b013e3283625498CrossRefPubMedGoogle Scholar
  146. 146.
    Zhao X, Wang D, Zhao Z, Xiao Y, Sengupta S, Xiao Y, Zhang R, Lauber K, Wesselborg S, Feng L, Rose TM, Shen Y, Zhang J, Prestwich G, Xu Y (2006) Caspase-3-dependent activation of calcium-independent phospholipase A2 enhances cell migration in non-apoptotic ovarian cancer cells. J Biol Chem 281(39):29357–29368.  https://doi.org/10.1074/jbc.M513105200CrossRefPubMedGoogle Scholar
  147. 147.
    Mukai M, Kusama T, Hamanaka Y, Koga T, Endo H, Tatsuta M, Inoue M (2005) Cross talk between apoptosis and invasion signaling in cancer cells through caspase-3 activation. Cancer Res 65(20):9121–9125.  https://doi.org/10.1158/0008-5472.CAN-04-4344CrossRefPubMedGoogle Scholar
  148. 148.
    Whiteside TL (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27(45):5904–5912.  https://doi.org/10.1038/onc.2008.271CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, Gong Z, Zhang S, Zhou J, Cao K, Li X, Xiong W, Li G, Zeng Z, Guo C (2017) Role of tumor microenvironment in tumorigenesis. J Cancer 8(5):761–773.  https://doi.org/10.7150/jca.17648CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Schafer M, Werner S (2008) Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 9(8):628–638.  https://doi.org/10.1038/nrm2455CrossRefPubMedGoogle Scholar
  151. 151.
    Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444.  https://doi.org/10.1038/nature07205CrossRefPubMedGoogle Scholar
  152. 152.
    Balkwill FR, Mantovani A (2012) Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol 22(1):33–40.  https://doi.org/10.1016/j.semcancer.2011.12.005CrossRefPubMedGoogle Scholar
  153. 153.
    Biswas SK, Allavena P, Mantovani A (2013) Tumor-associated macrophages: functional diversity, clinical significance, and open questions. Semin Immunopathol 35(5):585–600.  https://doi.org/10.1007/s00281-013-0367-7CrossRefPubMedGoogle Scholar
  154. 154.
    Cordero JB, Macagno JP, Stefanatos RK, Strathdee KE, Cagan RL, Vidal M (2010) Oncogenic Ras diverts a host TNF tumor suppressor activity into tumor promoter. Dev Cell 18(6):999–1011.  https://doi.org/10.1016/j.devcel.2010.05.014CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations