Advertisement

Drosophila as a Model for Tumor-Induced Organ Wasting

  • Pedro SaavedraEmail author
  • Norbert PerrimonEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1167)

Abstract

In humans, cancer-associated cachexia is a complex syndrome that reduces the overall quality of life and survival of cancer patients, particularly for those undergoing chemotherapy. The most easily observable sign of cachexia is organ wasting, the dramatic loss of skeletal muscle and adipose tissue mass. Estimates suggest that 80% of patients in advanced stages of cancer show signs of the syndrome and about 20% of cancer patients die directly of cachexia. Because there is no treatment or drug available to ameliorate organ wasting induced by cancer, cachexia is a relevant clinical problem. However, it is unclear how cachexia is mediated, what factors drive interactions between tumors and host tissues, and which markers of cachexia might be used to allow early detection before the observable signs of organ wasting. In this chapter, we review the current mammalian models of cachexia and the need to use new models of study. We also explain recent developments in Drosophila as a model for studying organ wasting induced by tumors and how fly studies can help unravel important mechanisms that drive cachexia. In particular, we discuss what lessons have been learned from tumor models recently reported to induce systemic organ wasting in Drosophila.

Keywords

Drosophila Cachexia Muscle Fat body Organ wasting 

Notes

Acknowledgments

We thank Stephanie Mohr, David Doupe, Arpan Ghosh and Jonathan Zirin for important feedback in the writing of this review. Research in the Perrimon laboratory is supported by the National Institutes of Health and Howard Hughes Medical Institute. PS is a recipient of a Human Frontiers Science Program long-term fellowship (LT000937/2016).

References

  1. 1.
    Agrawal N, Delanoue R, Mauri A, Basco D, Pasco M, Thorens B, Leopold P (2016) The Drosophila TNF Eiger is an Adipokine that acts on insulin-producing cells to mediate nutrient response. Cell Metab 23:675–684PubMedCrossRefGoogle Scholar
  2. 2.
    Agustsson T, D’Souza MA, Nowak G, Isaksson B (2011) Mechanisms for skeletal muscle insulin resistance in patients with pancreatic ductal adenocarcinoma. Nutrition 27:796–801PubMedCrossRefGoogle Scholar
  3. 3.
    Agustsson T, Ryden M, Hoffstedt J, van Harmelen V, Dicker A, Laurencikiene J, Isaksson B, Permert J, Arner P (2007) Mechanism of increased lipolysis in cancer cachexia. Cancer Res 67:5531–5537PubMedCrossRefGoogle Scholar
  4. 4.
    Alic N, Hoddinott MP, Vinti G, Partridge L (2011) Lifespan extension by increased expression of the Drosophila homologue of the IGFBP7 tumour suppressor. Aging Cell 10:137–147PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Arefin B, Kunc M, Krautz R, Theopold U (2017) The immune phenotype of three Drosophila leukemia models. G3 (Bethesda) 7:2139–2149CrossRefGoogle Scholar
  6. 6.
    Argiles JM, Busquets S, Stemmler B, Lopez-Soriano FJ (2014) Cancer cachexia: understanding the molecular basis. Nat Rev Cancer 14:754–762PubMedCrossRefGoogle Scholar
  7. 7.
    Argiles JM, Lopez-Soriano FJ (1999) The role of cytokines in cancer cachexia. Med Res Rev 19:223–248PubMedCrossRefGoogle Scholar
  8. 8.
    Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55(1):207–225PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Arquier N, Geminard C, Bourouis M, Jarretou G, Honegger B, Paix A, Leopold P (2008) Drosophila ALS regulates growth and metabolism through functional interaction with insulin-like peptides. Cell Metab 7:333–338PubMedCrossRefGoogle Scholar
  10. 10.
    Asp ML, Tian M, Wendel AA, Belury MA (2010) Evidence for the contribution of insulin resistance to the development of cachexia in tumor-bearing mice. Int J Cancer 126:756–763PubMedCrossRefGoogle Scholar
  11. 11.
    Attaix D, Baracos VE (2010) MAFbx/Atrogin-1 expression is a poor index of muscle proteolysis. Curr Opin Clin Nutr Metab Care 13:223–224PubMedCrossRefGoogle Scholar
  12. 12.
    Bai H, Kang P, Hernandez AM, Tatar M (2013) Activin signaling targeted by insulin/dFOXO regulates aging and muscle proteostasis in Drosophila. PLoS Genet 9:e1003941PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ballaro R, Costelli P, Penna F (2016) Animal models for cancer cachexia. Curr Opin Support Palliat Care 10:281–287PubMedCrossRefGoogle Scholar
  14. 14.
    Baltgalvis KA, Berger FG, Pena MM, Davis JM, Muga SJ, Carson JA (2008) Interleukin-6 and cachexia in ApcMin/+ mice. Am J Physiol Regul Integr Comp Physiol 294:R393–R401PubMedCrossRefGoogle Scholar
  15. 15.
    Baracos V, Rodemann HP, Dinarello CA, Goldberg AL (1983) Stimulation of muscle protein degradation and prostaglandin E2 release by leukocytic pyrogen (interleukin-1). A mechanism for the increased degradation of muscle proteins during fever. N Engl J Med 308:553–558PubMedCrossRefGoogle Scholar
  16. 16.
    Bello B, Reichert H, Hirth F (2006) The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila. Development 133:2639–2648PubMedCrossRefGoogle Scholar
  17. 17.
    Bennani-Baiti N, Walsh D (2011) Animal models of the cancer anorexia-cachexia syndrome. Support Care Cancer 19:1451–1463PubMedCrossRefGoogle Scholar
  18. 18.
    Berg J, Hung YP, Yellen G (2009) A genetically encoded fluorescent reporter of ATP:ADP ratio. Nat Methods 6:161–166PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Beutler B, Cerami A (1986) Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature 320:584–588PubMedCrossRefGoogle Scholar
  20. 20.
    Bharucha KN (2009) The epicurean fly: using Drosophila melanogaster to study metabolism. Pediatr Res 65:132–137PubMedCrossRefGoogle Scholar
  21. 21.
    Bi J, Xiang Y, Chen H, Liu Z, Gronke S, Kuhnlein RP, Huang X (2012) Opposite and redundant roles of the two Drosophila perilipins in lipid mobilization. J Cell Sci 125:3568–3577PubMedCrossRefGoogle Scholar
  22. 22.
    Bilder D (2004) Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev 18:1909–1925CrossRefGoogle Scholar
  23. 23.
    Bilder D, Li M, Perrimon N (2000) Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289:113–116PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Billingsley KG, Fraker DL, Strassmann G, Loeser C, Fliot HM, Alexander HR (1996) Macrophage-derived tumor necrosis factor and tumor-derived of leukemia inhibitory factor and interleukin-6: possible cellular mechanisms of cancer cachexia. Ann Surg Oncol 3:29–35PubMedCrossRefGoogle Scholar
  25. 25.
    Black K, Garrett IR, Mundy GR (1991) Chinese hamster ovarian cells transfected with the murine interleukin-6 gene cause hypercalcemia as well as cachexia, leukocytosis and thrombocytosis in tumor-bearing nude mice. Endocrinology 128:2657–2659PubMedCrossRefGoogle Scholar
  26. 26.
    Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K et al (2001a) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708PubMedCrossRefGoogle Scholar
  27. 27.
    Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ et al (2001b) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019PubMedCrossRefGoogle Scholar
  28. 28.
    Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedGoogle Scholar
  29. 29.
    Branon TC, Bosch JA, Sanchez AD, Udeshi ND, Svinkina T, Carr SA, Feldman JL, Perrimon N, Ting AY (2018) Efficient proximity labeling in living cells and organisms with TurboID. Nat Biotechnol 36:880–887PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Brumby AM, Richardson HE (2003) Scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J 22:5769–5779PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Cahlin C, Korner A, Axelsson H, Wang W, Lundholm K, Svanberg E (2000) Experimental cancer cachexia: the role of host-derived cytokines interleukin (IL)-6, IL-12, interferon-gamma, and tumor necrosis factor alpha evaluated in gene knockout, tumor-bearing mice on C57 Bl background and eicosanoid-dependent cachexia. Cancer Res 60:5488–5493PubMedGoogle Scholar
  32. 32.
    Chen CL, Hu Y, Udeshi ND, Lau TY, Wirtz-Peitz F, He L, Ting AY, Carr SA, Perrimon N (2015) Proteomic mapping in live Drosophila tissues using an engineered ascorbate peroxidase. Proc Natl Acad Sci U S A 112:12093–12098PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Chibalin AV, Leng Y, Vieira E, Krook A, Bjornholm M, Long YC, Kotova O, Zhong Z, Sakane F, Steiler T et al (2008) Downregulation of diacylglycerol kinase delta contributes to hyperglycemia-induced insulin resistance. Cell 132:375–386PubMedCrossRefGoogle Scholar
  34. 34.
    Chintapalli VR, Wang J, Dow JA (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 39:715–720PubMedCrossRefGoogle Scholar
  35. 35.
    Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, Rakhilin SV, Stitt TN, Patterson C, Latres E et al (2007) The E3 ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab 6:376–385PubMedCrossRefGoogle Scholar
  36. 36.
    Cohen P, Spiegelman BM (2016) Cell biology of fat storage. Mol Biol Cell 27:2523–2527PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Cohen S, Brault JJ, Gygi SP, Glass DJ, Valenzuela DM, Gartner C, Latres E, Goldberg AL (2009) During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol 185:1083–1095PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Cohen S, Nathan JA, Goldberg AL (2015) Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov 14:58–74PubMedCrossRefGoogle Scholar
  39. 39.
    Coleman ME, DeMayo F, Yin KC, Lee HM, Geske R, Montgomery C, Schwartz RJ (1995) Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem 270:12109–12116PubMedCrossRefGoogle Scholar
  40. 40.
    Colombani J, Raisin S, Pantalacci S, Radimerski T, Montagne J, Leopold P (2003) A nutrient sensor mechanism controls Drosophila growth. Cell 114:739–749PubMedCrossRefGoogle Scholar
  41. 41.
    Cordero JB, Macagno JP, Stefanatos RK, Strathdee KE, Cagan RL, Vidal M (2010) Oncogenic Ras diverts a host TNF tumor suppressor activity into tumor promoter. Dev Cell 18:999–1011PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Costa G, Holland JF (1962) Effects of Krebs-2 carcinoma on the lipide metabolism of male Swiss mice. Cancer Res 22:1081–1083PubMedGoogle Scholar
  43. 43.
    Crozatier M, Vincent A (2011) Drosophila: a model for studying genetic and molecular aspects of haematopoiesis and associated leukaemias. Dis Model Mech 4:439–445PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Dahlman I, Mejhert N, Linder K, Agustsson T, Mutch DM, Kulyte A, Isaksson B, Permert J, Petrovic N, Nedergaard J et al (2010) Adipose tissue pathways involved in weight loss of cancer cachexia. Br J Cancer 102:1541–1548PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Das SK, Eder S, Schauer S, Diwoky C, Temmel H, Guertl B, Gorkiewicz G, Tamilarasan KP, Kumari P, Trauner M et al (2011) Adipose triglyceride lipase contributes to cancer-associated cachexia. Science 333:233–238PubMedCrossRefGoogle Scholar
  46. 46.
    del Valle Rodriguez A, Didiano D, Desplan C (2011) Power tools for gene expression and clonal analysis in Drosophila. Nat Methods 9:47–55PubMedCrossRefGoogle Scholar
  47. 47.
    Delanoue R, Meschi E, Agrawal N, Mauri A, Tsatskis Y, McNeill H, Leopold P (2016) Drosophila insulin release is triggered by adipose stunted ligand to brain methuselah receptor. Science 353:1553–1556PubMedCrossRefGoogle Scholar
  48. 48.
    Demontis F, Perrimon N (2009) Integration of insulin receptor/Foxo signaling and dMyc activity during muscle growth regulates body size in Drosophila. Development 136:983–993PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Dewys WD, Begg C, Lavin PT, Band PR, Bennett JM, Bertino JR, Cohen MH, Douglass HO Jr, Engstrom PF, Ezdinli EZ et al (1980) Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern cooperative oncology group. Am J Med 69:491–497PubMedCrossRefGoogle Scholar
  50. 50.
    Ebadi M, Mazurak VC (2014) Evidence and mechanisms of fat depletion in cancer. Nutrients 6:5280–5297PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Edgar BA, Orr-Weaver TL (2001) Endoreplication cell cycles: more for less. Cell 105:297–306PubMedCrossRefGoogle Scholar
  52. 52.
    Egerman MA, Glass DJ (2014) Signaling pathways controlling skeletal muscle mass. Crit Rev Biochem Mol Biol 49:59–68PubMedCrossRefGoogle Scholar
  53. 53.
    Eichenlaub T, Villadsen R, Freitas FCP, Andrejeva D, Aldana BI, Nguyen HT, Petersen OW, Gorodkin J, Herranz H, Cohen SM (2018) Warburg effect metabolism drives neoplasia in a Drosophila genetic model of epithelial Cancer. Curr Biol 28(3220–3228):e3226Google Scholar
  54. 54.
    Enomoto M, Siow C, Igaki T (2018) Drosophila as a cancer model. Adv Exp Med Biol 1076:173–194CrossRefGoogle Scholar
  55. 55.
    Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N, Mantovani G et al (2011) Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 12:489–495PubMedCrossRefGoogle Scholar
  56. 56.
    Fearon KC, Glass DJ, Guttridge DC (2012) Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab 16:153–166PubMedCrossRefGoogle Scholar
  57. 57.
    Figueroa-Clarevega A, Bilder D (2015) Malignant Drosophila tumors interrupt insulin signaling to induce cachexia-like wasting. Dev Cell 33:47–55PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Flatt T, Min KJ, D’Alterio C, Villa-Cuesta E, Cumbers J, Lehmann R, Jones DL, Tatar M (2008) Drosophila germ-line modulation of insulin signaling and lifespan. Proc Natl Acad Sci U S A 105:6368–6373PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Fouladiun M, Korner U, Bosaeus I, Daneryd P, Hyltander A, Lundholm KG (2005) Body composition and time course changes in regional distribution of fat and lean tissue in unselected cancer patients on palliative care – correlations with food intake, metabolism, exercise capacity, and hormones. Cancer 103:2189–2198PubMedCrossRefGoogle Scholar
  60. 60.
    Galic S, Oakhill JS, Steinberg GR (2010) Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316:129–139PubMedCrossRefGoogle Scholar
  61. 61.
    Galindo RL, Allport JA, Olson EN (2006) A Drosophila model of the rhabdomyosarcoma initiator PAX7-FKHR. Proc Natl Acad Sci U S A 103:13439–13444PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Gateff E (1978) Malignant neoplasms of genetic origin in Drosophila melanogaster. Science 200:1448–1459PubMedCrossRefGoogle Scholar
  63. 63.
    Glass DJ (2010) Signaling pathways perturbing muscle mass. Curr Opin Clin Nutr Metab Care 13:225–229PubMedCrossRefGoogle Scholar
  64. 64.
    Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 98:14440–14445PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Gonzalez C (2013) Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer 13:172–183PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Gronke S, Mildner A, Fellert S, Tennagels N, Petry S, Muller G, Jackle H, Kuhnlein RP (2005) Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab 1:323–330PubMedCrossRefGoogle Scholar
  67. 67.
    Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, Gottlieb RA, Gustafsson AB (2007) Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ 14:146–157PubMedCrossRefGoogle Scholar
  68. 68.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefGoogle Scholar
  69. 69.
    Herranz H, Eichenlaub T, Cohen SM (2016) Cancer in Drosophila: imaginal discs as a model for epithelial tumor formation. Curr Top Dev Biol 116:181–199PubMedCrossRefGoogle Scholar
  70. 70.
    Hirabayashi S, Baranski TJ, Cagan RL (2013) Transformed Drosophila cells evade diet-mediated insulin resistance through wingless signaling. Cell 154:664–675PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Hollander DM, Ebert EC, Roberts AI, Devereux DF (1986) Effects of tumor type and burden on carcass lipid depletion in mice. Surgery 100:292–297PubMedGoogle Scholar
  72. 72.
    Honegger B, Galic M, Kohler K, Wittwer F, Brogiolo W, Hafen E, Stocker H (2008) Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance. J Biol 7:10PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Honors MA, Kinzig KP (2012) The role of insulin resistance in the development of muscle wasting during cancer cachexia. J Cachexia Sarcopenia Muscle 3:5–11PubMedCrossRefGoogle Scholar
  74. 74.
    Huang XY, Huang ZL, Yang JH, Xu YH, Sun JS, Zheng Q, Wei C, Song W, Yuan Z (2016) Pancreatic cancer cell-derived IGFBP-3 contributes to muscle wasting. J Exp Clin Cancer Res 35:46PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Hung YP, Albeck JG, Tantama M, Yellen G (2011) Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor. Cell Metab 14:545–554PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Igaki T, Pastor-Pareja JC, Aonuma H, Miura M, Xu T (2009) Intrinsic tumor suppression and epithelial maintenance by endocytic activation of Eiger/TNF signaling in Drosophila. Dev Cell 16:458–465PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Itani SI, Ruderman NB, Schmieder F, Boden G (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and I B. Diabetes 51(7):2005–2011PubMedCrossRefGoogle Scholar
  78. 78.
    Jatoi A, Ritter HL, Dueck A, Nguyen PL, Nikcevich DA, Luyun RF, Mattar BI, Loprinzi CL (2010) A placebo-controlled, double-blind trial of infliximab for cancer-associated weight loss in elderly and/or poor performance non-small cell lung cancer patients (N01C9). Lung Cancer 68:234–239PubMedCrossRefGoogle Scholar
  79. 79.
    Johns N, Stephens NA, Fearon KC (2013) Muscle wasting in cancer. Int J Biochem Cell Biol 45:2215–2229PubMedCrossRefGoogle Scholar
  80. 80.
    Karim FD, Rubin GM (1998) Ectopic expression of activated Ras1 induces hyperplastic growth and increased cell death in Drosophila imaginal tissues. Development 125:1–9PubMedGoogle Scholar
  81. 81.
    Karpowicz P, Perez J, Perrimon N (2010) The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development 137:4135–4145PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Kir S, White JP, Kleiner S, Kazak L, Cohen P, Baracos VE, Spiegelman BM (2014) Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513:100–104PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Kitada S, Hays EF, Mead JF, Zabin I (1982) Lipolysis induction in adipocytes by a protein from tumor cells. J Cell Biochem 20:409–416PubMedCrossRefGoogle Scholar
  84. 84.
    Konishi M, Ebner N, von Haehling S, Anker SD, Springer J (2015) Developing models for cachexia and their implications in drug discovery. Expert Opin Drug Discov 10:743–752PubMedCrossRefGoogle Scholar
  85. 85.
    Koyama T, Mirth CK (2016) Growth-blocking peptides as nutrition-sensitive Signals for insulin secretion and body size regulation. PLoS Biol 14:e1002392PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Kwon Y, Song W, Droujinine IA, Hu Y, Asara JM, Perrimon N (2015) Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist Imp-L2. Dev Cell 33:36–46PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Lagirand-Cantaloube J, Offner N, Csibi A, Leibovitch MP, Batonnet-Pichon S, Tintignac LA, Segura CT, Leibovitch SA (2008) The initiation factor eIF3-f is a major target for atrogin1/MAFbx function in skeletal muscle atrophy. EMBO J 27:1266–1276PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18:39–51PubMedCrossRefGoogle Scholar
  89. 89.
    Lee G, Park JH (2004) Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics 167:311–323PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Levine BD, Cagan RL (2016) Drosophila lung cancer models identify Trametinib plus statin as candidate therapeutic. Cell Rep 14:1477–1487PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Lok C (2015) Cachexia: the last illness. Nature 528:182–183PubMedCrossRefGoogle Scholar
  92. 92.
    Loop T, Leemans R, Stiefel U, Hermida L, Egger B, Xie F, Primig M, Certa U, Fischbach KF, Reichert H et al (2004) Transcriptional signature of an adult brain tumor in Drosophila. BMC Genomics 5:24PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Maltoni M, Fabbri L, Nanni O, Scarpi E, Pezzi L, Flamini E, Riccobon A, Derni S, Pallotti G, Amadori D (1997) Serum levels of tumour necrosis factor alpha and other cytokines do not correlate with weight loss and anorexia in cancer patients. Support Care Cancer 5:130–135PubMedCrossRefGoogle Scholar
  94. 94.
    Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J et al (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6:458–471PubMedCrossRefGoogle Scholar
  95. 95.
    Meschi E, Leopold P, Delanoue R (2019) An EGF-responsive neural circuit couples insulin secretion with nutrition in Drosophila. Dev Cell 48(76–86):e75Google Scholar
  96. 96.
    Milan G, Romanello V, Pescatore F, Armani A, Paik JH, Frasson L, Seydel A, Zhao J, Abraham R, Goldberg AL et al (2015) Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun 6:6670PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Miles WO, Dyson NJ, Walker JA (2011) Modeling tumor invasion and metastasis in Drosophila. Dis Model Mech 4:753–761PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Monitto CL, Berkowitz D, Lee KM, Pin S, Li D, Breslow M, O’Malley B, Schiller M (2001) Differential gene expression in a murine model of cancer cachexia. Am J Physiol Endocrinol Metab 281:E289–E297PubMedCrossRefGoogle Scholar
  99. 99.
    Moses AG, Maingay J, Sangster K, Fearon KC, Ross JA (2009) Pro-inflammatory cytokine release by peripheral blood mononuclear cells from patients with advanced pancreatic cancer: relationship to acute phase response and survival. Oncol Rep 21:1091–1095PubMedGoogle Scholar
  100. 100.
    Musaro A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27:195–200PubMedCrossRefGoogle Scholar
  101. 101.
    Musselman LP, Fink JL, Narzinski K, Ramachandran PV, Hathiramani SS, Cagan RL, Baranski TJ (2011) A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis Model Mech 4:842–849PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Musselman LP, Kuhnlein RP (2018) Drosophila as a model to study obesity and metabolic disease. J Exp Biol 221:255–256CrossRefGoogle Scholar
  103. 103.
    Oliff A, Defeo-Jones D, Boyer M, Martinez D, Kiefer D, Vuocolo G, Wolfe A, Socher SH (1987) Tumors secreting human TNF/cachectin induce cachexia in mice. Cell 50:555–563PubMedCrossRefGoogle Scholar
  104. 104.
    Pagliarini RA, Xu T (2003) A genetic screen in Drosophila for metastatic behavior. Science 302:1227–1231PubMedPubMedCentralGoogle Scholar
  105. 105.
    Parisi F, Stefanatos RK, Strathdee K, Yu Y, Vidal M (2014) Transformed epithelia trigger non-tissue-autonomous tumor suppressor response by adipocytes via activation of Toll and Eiger/TNF signaling. Cell Rep 6:855–867PubMedCrossRefGoogle Scholar
  106. 106.
    Pastor-Pareja JC, Wu M, Xu T (2008) An innate immune response of blood cells to tumors and tissue damage in Drosophila. Dis Model Mech 1:144–154; discussion 153PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Peirce V, Carobbio S, Vidal-Puig A (2014) The different shades of fat. Nature 510:76–83PubMedCrossRefGoogle Scholar
  108. 108.
    Penna F, Busquets S, Argiles JM (2016) Experimental cancer cachexia: evolving strategies for getting closer to the human scenario. Semin Cell Dev Biol 54:20–27PubMedCrossRefGoogle Scholar
  109. 109.
    Penna F, Costamagna D, Fanzani A, Bonelli G, Baccino FM, Costelli P (2010) Muscle wasting and impaired myogenesis in tumor bearing mice are prevented by ERK inhibition. PLoS One 5:e13604PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Penna F, Costamagna D, Pin F, Camperi A, Fanzani A, Chiarpotto EM, Cavallini G, Bonelli G, Baccino FM, Costelli P (2013) Autophagic degradation contributes to muscle wasting in cancer cachexia. Am J Pathol 182:1367–1378PubMedCrossRefGoogle Scholar
  111. 111.
    Perrimon N, Pitsouli C, Shilo BZ (2012) Signaling mechanisms controlling cell fate and embryonic patterning. Cold Spring Harb Perspect Biol 4:a005975PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, Allen J, Swarbrick M, Rose-John S, Rincon M, Robertson G et al (2014) A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab 20:433–447PubMedCrossRefGoogle Scholar
  113. 113.
    Petruzzelli M, Wagner EF (2016) Mechanisms of metabolic dysfunction in cancer-associated cachexia. Genes Dev 30:489–501PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Piccirillo R, Demontis F, Perrimon N, Goldberg AL (2014) Mechanisms of muscle growth and atrophy in mammals and Drosophila. Dev Dyn 243:201–215PubMedCrossRefGoogle Scholar
  115. 115.
    Placais PY, de Tredern E, Scheunemann L, Trannoy S, Goguel V, Han KA, Isabel G, Preat T (2017) Upregulated energy metabolism in the Drosophila mushroom body is the trigger for long-term memory. Nat Commun 8:15510PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Rai M, Nongthomba U, Grounds MD (2014) Skeletal muscle degeneration and regeneration in mice and flies. Curr Top Dev Biol 108:247–281PubMedCrossRefGoogle Scholar
  117. 117.
    Rajan A, Perrimon N (2012) Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell 151:123–137PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Read RD, Cavenee WK, Furnari FB, Thomas JB (2009) A drosophila model for EGFR-Ras and PI3K-dependent human glioma. PLoS Genet 5:e1000374PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Reiter LT, Potocki L, Chien S, Gribskov M, Bier E (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 11:1114–1125PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3:1009–1013PubMedCrossRefGoogle Scholar
  121. 121.
    Rossi F, Gonzalez C (2015) Studying tumor growth in Drosophila using the tissue allograft method. Nat Protoc 10:1525–1534PubMedCrossRefGoogle Scholar
  122. 122.
    Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR, Hariharan IK, Fortini ME, Li PW, Apweiler R, Fleischmann W et al (2000) Comparative genomics of the eukaryotes. Science 287:2204–2215PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Ryden M, Agustsson T, Laurencikiene J, Britton T, Sjolin E, Isaksson B, Permert J, Arner P (2008) Lipolysis – not inflammation, cell death, or lipogenesis – is involved in adipose tissue loss in cancer cachexia. Cancer 113:1695–1704PubMedCrossRefGoogle Scholar
  124. 124.
    Ryden M, Arner P (2007) Fat loss in cachexia – is there a role for adipocyte lipolysis? Clin Nutr 26:1–6PubMedCrossRefGoogle Scholar
  125. 125.
    Sacheck JM, Hyatt JP, Raffaello A, Jagoe RT, Roy RR, Edgerton VR, Lecker SH, Goldberg AL (2007) Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB J 21:140–155PubMedCrossRefGoogle Scholar
  126. 126.
    Salz HK, Dawson EP, Heaney JD (2017) Germ cell tumors: insights from the Drosophila ovary and the mouse testis. Mol Reprod Dev 84:200–211PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Samuel VT, Petersen KF, Shulman GI (2010) Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375:2267–2277PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    San Martin A, Ceballo S, Baeza-Lehnert F, Lerchundi R, Valdebenito R, Contreras-Baeza Y, Alegria K, Barros LF (2014) Imaging mitochondrial flux in single cells with a FRET sensor for pyruvate. PLoS One 9:e85780PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Sandri M (2016) Protein breakdown in cancer cachexia. Semin Cell Dev Biol 54:11–19PubMedCrossRefGoogle Scholar
  130. 130.
    Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Sano H, Nakamura A, Texada MJ, Truman JW, Ishimoto H, Kamikouchi A, Nibu Y, Kume K, Ida T, Kojima M (2015) The nutrient-responsive hormone CCHamide-2 controls growth by regulating insulin-like peptides in the brain of Drosophila melanogaster. PLoS Genet 11:e1005209PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M (2013) Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 280:4294–4314PubMedCrossRefGoogle Scholar
  133. 133.
    Schmidt SF, Rohm M, Herzig S, Berriel DM (2018) Cancer cachexia: more than skeletal muscle wasting. Trends Cancer 4:849–860PubMedCrossRefGoogle Scholar
  134. 134.
    Scott HR, McMillan DC, Crilly A, McArdle CS, Milroy R (1996) The relationship between weight loss and interleukin 6 in non-small-cell lung cancer. Br J Cancer 73:1560–1562PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Shaw RL, Kohlmaier A, Polesello C, Veelken C, Edgar BA, Tapon N (2010) The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development 137:4147–4158PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Song W, Kir S, Hong S, Hu Y, Wang X, Binari R, Tang HW, Chung V, Banks AS, Spiegelman B et al (2019) Tumor-derived ligands trigger tumor growth and host wasting via differential MEK activation. Dev Cell 48(277–286):e276Google Scholar
  137. 137.
    Sonoshita M, Cagan RL (2017) Modeling human cancers in Drosophila. Curr Top Dev Biol 121:287–309PubMedCrossRefGoogle Scholar
  138. 138.
    Spletter ML, Schnorrer F (2014) Transcriptional regulation and alternative splicing cooperate in muscle fiber-type specification in flies and mammals. Exp Cell Res 321:90–98PubMedCrossRefGoogle Scholar
  139. 139.
    Stark MB (1918) An hereditary tumor in the fruit fly, Drosophila, pp. 279–301, 509–529 p., 271 l. incl. illus., plates, diagr. Columbia University, New York?Google Scholar
  140. 140.
    Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14:395–403PubMedCrossRefGoogle Scholar
  141. 141.
    Strassmann G, Fong M, Kenney JS, Jacob CO (1992) Evidence for the involvement of interleukin 6 in experimental cancer cachexia. J Clin Invest 89:1681–1684PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Suh SY, Choi YS, Yeom CH, Kwak SM, Yoon HM, Kim DG, Koh SJ, Park J, Lee MA, Lee YJ et al (2013) Interleukin-6 but not tumour necrosis factor-alpha predicts survival in patients with advanced cancer. Support Care Cancer 21:3071–3077PubMedCrossRefGoogle Scholar
  143. 143.
    Taylor DD, Gercel-Taylor C, Jenis LG, Devereux DF (1992) Identification of a human tumor-derived lipolysis-promoting factor. Cancer Res 52:829–834PubMedGoogle Scholar
  144. 144.
    Tennessen JM, Barry WE, Cox J, Thummel CS (2014) Methods for studying metabolism in Drosophila. Methods 68:105–115PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Tintignac LA, Lagirand J, Batonnet S, Sirri V, Leibovitch MP, Leibovitch SA (2005) Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J Biol Chem 280:2847–2856PubMedCrossRefGoogle Scholar
  146. 146.
    Tipping M, Perrimon N (2014) Drosophila as a model for context-dependent tumorigenesis. J Cell Physiol 229:27–33PubMedPubMedCentralGoogle Scholar
  147. 147.
    Tisdale MJ (2009) Mechanisms of cancer cachexia. Physiol Rev 89:381–410PubMedCrossRefGoogle Scholar
  148. 148.
    Todorov P, Cariuk P, McDevitt T, Coles B, Fearon K, Tisdale M (1996) Characterization of a cancer cachectic factor. Nature 379:739–742PubMedCrossRefGoogle Scholar
  149. 149.
    Todorov PT, Field WN, Tisdale MJ (1999) Role of a proteolysis-inducing factor (PIF) in cachexia induced by a human melanoma (G361). Br J Cancer 80:1734–1737PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Todorov PT, McDevitt TM, Meyer DJ, Ueyama H, Ohkubo I, Tisdale MJ (1998) Purification and characterization of a tumor lipid-mobilizing factor. Cancer Res 58:2353–2358PubMedGoogle Scholar
  151. 151.
    Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF (2007) BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 27:6229–6242PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Tsoli M, Swarbrick MM, Robertson GR (2016) Lipolytic and thermogenic depletion of adipose tissue in cancer cachexia. Semin Cell Dev Biol 54:68–81PubMedCrossRefGoogle Scholar
  153. 153.
    Ugur B, Chen K, Bellen HJ (2016) Drosophila tools and assays for the study of human diseases. Dis Model Mech 9:235–244PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Witte HT, Jeibmann A, Klambt C, Paulus W (2009) Modeling glioma growth and invasion in Drosophila melanogaster. Neoplasia 11:882–888PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Wu M, Pastor-Pareja JC, Xu T (2010) Interaction between Ras(V12) and scribbled clones induces tumour growth and invasion. Nature 463:545–548PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Xu T, Rubin GM (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117:1223–1237PubMedGoogle Scholar
  158. 158.
    Yoshikawa T, Noguchi Y, Doi C, Makino T, Okamoto T, Matsumoto A (1999) Insulin resistance was connected with the alterations of substrate utilization in patients with cancer. Cancer Lett 141:93–98PubMedCrossRefGoogle Scholar
  159. 159.
    Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, Bergeron R, Kim JK, Cushman SW, Cooney GJ, Atcheson B, White MF, Kraegen EW, Shulman GI (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor Substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277(52):50230–50236PubMedCrossRefGoogle Scholar
  160. 160.
    Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, Madeo F (2012) FAT SIGNALS – lipases and lipolysis in lipid metabolism and signaling. Cell Metab 15:279–291PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Zeidler MP, Tan C, Bellaiche Y, Cherry S, Hader S, Gayko U, Perrimon N (2004) Temperature-sensitive control of protein activity by conditionally splicing inteins. Nat Biotechnol 22:871–876PubMedCrossRefGoogle Scholar
  162. 162.
    Zeng X, Singh SR, Hou D, Hou SX (2010) Tumor suppressors Sav/Scrib and oncogene Ras regulate stem-cell transformation in adult Drosophila malpighian tubules. J Cell Physiol 224:766–774PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6:472–483PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of GeneticsBlavatnik Institute, Harvard Medical SchoolBostonUSA
  2. 2.Howard Hughes Medical InstituteBostonUSA

Personalised recommendations