Cancer Stem Cells and Stem Cell Tumors in Drosophila

  • Shree Ram Singh
  • Poonam Aggarwal
  • Steven X. HouEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1167)


Accumulative studies suggest that a fraction of cells within a tumor, known as cancer stem cells (CSCs) that initiate tumors, show resistance to most of the therapies, and causes tumor recurrence and metastasis. CSCs could be either transformed normal stem cells or reprogrammed differentiated cells. The eventual goal of CSC research is to identify pathways that selectively regulate CSCs and then target these pathways to eradicate CSCs. CSCs and normal stem cells share some common features, such as self-renewal, the production of differentiated progeny, and the expression of stem-cell markers, however, CSCs vary from normal stem cells in forming tumors. Specifically, CSCs are normally resistant to standard therapies. In addition, CSCs and non-CSCs can be mutually convertible in response to different signals or microenvironments. Even though CSCs are involved in human cancers, the biology of CSCs, is still not well understood, there are urgent needs to study CSCs in model organisms. In the last several years, discoveries in Drosophila have greatly contributed to our understanding of human cancer. Stem-cell tumors in Drosophila share various properties with human CSCs and maybe used to understand the biology of CSCs. In this chapter, we first briefly review CSCs in mammalian systems, then discuss stem-cell tumors in the Drosophila posterior midgut and Malpighian tubules (kidney) and their unique properties as revealed by studying oncogenic Ras protein (RasV12)-transformed stem-cell tumors in the Drosophila kidney and dominant-negative Notch (NDN)-transformed stem-cell tumors in the Drosophila intestine. At the end, we will discuss potential approaches to eliminate CSCs and achieve tumor regression. In future, by screening adult Drosophila neoplastic stem-cell tumor models, we hope to identify novel and efficacious compounds for the treatment of human cancers.


Cancer stem cell Stem cell tumor Transformed stem cell Drosophila Intestinal stem cells Renal and nephric stem cells 


  1. 1.
    Agudo J, Park ES, Rose SA, Alibo E, Sweeney R, Dhainaut M, Kobayashi KS, Sachidanandam R, Baccarini A, Merad M, Brown BD (2018) Quiescent tissue stem cells evade immune surveillance. Immunity 48(2):271–285.e5PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Apidianakis Y, Pitsouli C, Perrimon N, Rahme L (2009) Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proc Natl Acad Sci U S A 106:20883–20888CrossRefGoogle Scholar
  3. 3.
    Barbacid M (1987) ras genes. Annu Rev Biochem 56:779–827PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Batlle E, Clevers H (2017) Cancer stem cells revisited. Nat Med 23(10):1124–1134PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Beller M, Sztalryd C, Southall N, Bell M, Jäckle H, Auld DS, Oliver B (2008) COPI complex is a regulator of lipid homeostasis. PLoS Biol 6(11):e292PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Blanpain C, Mohrin M, Sotiropoulou PA, Passegué E (2011) DNA-damage response in tissue-specific and cancer stem cells. Cell Stem Cell 8:16–29PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Bohère J, Mancheno-Ferris A, Al Hayek S, Zanet J, Valenti P, Akino K, Yamabe Y, Inagaki S, Chanut-Delalande H, Plaza S, Kageyama Y, Osman D, Polesello C, Payre F (2018) Shavenbaby and Yorkie mediate Hippo signaling to protect adult stem cells from apoptosis. Nat Commun 9(1):5123Google Scholar
  8. 8.
    Borah A, Raveendran S, Rochani A, Maekawa T, Kumar DS (2015) Targeting self-renewal pathways in cancer stem cells: clinical implications for cancer therapy. Oncogenesis 4(11):e177PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Brumby AM, Richardson HE (2005) Using Drosophila melanogaster to map human cancer pathways. Nat Rev Cancer 5:626–639CrossRefGoogle Scholar
  10. 10.
    Cayrefourcq L, Mazard T, Joosse S, Solassol J, Ramos J, Assenat E, Schumacher U, Costes V, Maudelonde T, Pantel K, Alix-Panabières C (2015) Establishment and characterization of a cell line from human circulating colon cancer cells. Cancer Res 75(5):892–901PubMedCrossRefGoogle Scholar
  11. 11.
    Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17(3):313–319PubMedCrossRefGoogle Scholar
  12. 12.
    Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, Rimm DL, Wong H, Rodriguez A, Herschkowitz JI, Fan C, Zhang X, He X, Pavlick A, Gutierrez MC, Renshaw L, Larionov AA, Faratian D, Hilsenbeck SG, Perou CM, Lewis MT, Rosen JM, Chang JC (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A 106:13820–13825PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Daley GQ, Van Etten RA, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247(4944):824–830PubMedCrossRefGoogle Scholar
  14. 14.
    Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270CrossRefGoogle Scholar
  15. 15.
    Dufour C, Cadusseau J, Varlet P, Surena AL, de Faria GP, Dias-Morais A, et al (2009) Astrocytes reverted to a neural progenitor-like state with transforming growth factor alpha are sensitized to cancerous transformation. Stem Cells 27:2373–2382PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Essers MA, Trumpp A (2010) Targeting leukemic stem cells by breaking their dormancy. Mol Oncol 4(5):443–450PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Fox DT, Spradling AC (2009) The Drosophila hindgut lacks constitutively active adult stem cells but proliferates in response to tissue damage. Cell Stem Cell 5:290–297PubMedCrossRefGoogle Scholar
  18. 18.
    Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, Ellisman MH, Verma IM (2012) Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338:1080–1084PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ghiaur G, Gerber J, Jones RJ (2012) Concise review: cancer stem cells and minimal residual disease. Stem Cells 30:89–93PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Giambra V, Jenkins CR, Wang H, Lam SH, Shevchuk OO, Nemirovsky O, Wai C, Gusscott S, Chiang MY, Aster JC, Humphries RK, Eaves C, Weng AP (2012) NOTCH1 promotes T cell leukemia-initiating activity by RUNX-mediated regulation of PKC-θ and reactive oxygen species. Nat Med 18(11):1693–1698PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Gkountela S, Castro-Giner F, Szczerba BM, Vetter M, Landin J, Scherrer R, Krol I, Scheidmann MC, Beisel C, Stirnimann CU, Kurzeder C, Heinzelmann-Schwarz V, Rochlitz C, Weber WP, Aceto N (2019) Circulating Tumor Cell Clustering Shapes DNA Methylation to Enable Metastasis Seeding. Cell 176(1–2):98–112.e14PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Goddard ET, Bozic I, Riddell SR, Ghajar CM (2018) Dormant tumour cells, their niches and the influence of immunity. Nat Cell Biol 20(11):1240–1249PubMedCrossRefGoogle Scholar
  23. 23.
    Grillet F, Bayet E, Villeronce O, Zappia L (2017) Circulating tumour cells from patients with colorectal cancer have cancer stem cell hallmarks in ex vivo culture. Gut 66(10):1802–1810PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Guo Z, Ohlstein B (2015) Stem cell regulation. Bidirectional Notch signaling regulates Drosophila intestinal stem cell multipotency. Science 350:aab0988PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Hakim RS, Baldwin K, Smagghe G (2010) Regulation of midgut growth, development, and metamorphosis. Annu Rev Entomol 55:593–608PubMedCrossRefGoogle Scholar
  26. 26.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefGoogle Scholar
  27. 27.
    Hansel G, Schonlebe J, Haroske G, et al (2010) Late recurrence (10 years or more) of malignant melanoma in south-east Germany (Saxony). A single-centre analysis of 1881 patients with a follow-up of 10 years or more. J Eur Acad Dermatol Venereol 24(7):833–836PubMedCrossRefGoogle Scholar
  28. 28.
    Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA (2009) Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137:1343–1355PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Jiang H, Grenley MO, Bravo MJ, Blumhagen RZ, Edgar BA (2011) EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell 8:84–95PubMedCrossRefGoogle Scholar
  30. 30.
    Jones CL, Stevens BM, D’Alessandro A, Reisz JA, Culp-Hill R, Nemkov T, Pei S, Khan N, Adane B, Ye H, Krug A, Reinhold D, Smith C, DeGregori J, Pollyea DA, Jordan CT (2018) Inhibition of Amino Acid Metabolism Selectively Targets Human Leukemia Stem Cells. Cancer Cell 34(5):724–740PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kaufman CK, Mosimann C, Fan ZP, Yang S, Thomas AJ, Ablain J, Tan JL, Fogley RD, van Rooijen E, Hagedorn EJ, Ciarlo C, White RM, Matos DA, Puller AC, Santoriello C, Liao EC, Young RA, Zon LI (2016) A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science 351(6272):aad2197PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Korkaya H, Wicha MS (2007) Selective targeting of cancer stem cells: a new concept in cancer therapeutics. BioDrugs 21:299–310PubMedCrossRefGoogle Scholar
  33. 33.
    Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Nomenclature Committee on Cell Death 2009. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16(1):3–11CrossRefGoogle Scholar
  34. 34.
    Lagadec C, Vlashi E, Della Donna L, Dekmezian C, Pajonk F (2012) Radiation-induced reprogramming of breast cancer cells. Stem Cells 30(5):833–844PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22(3):451–461PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Lee MC, Miller EA, Goldberg J, Orci L, Schekman R (2004) Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 20:87–123PubMedCrossRefGoogle Scholar
  37. 37.
    Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, Wong H, Rosen J, Chang JC (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100:672–679PubMedCrossRefGoogle Scholar
  38. 38.
    Li Z, Liu S, Cai Y (2015) EGFR/MAPK signaling regulates the proliferation of Drosophila renal and nephric stem cells. J Genet Genomics 42(1):9–20PubMedCrossRefGoogle Scholar
  39. 39.
    Liu W, Singh SR, Hou SX (2010) JAK-STAT is restrained by Notch to control cell proliferation of the Drosophila intestinal stem cells. J Cell Biochem 109(5):992–999Google Scholar
  40. 40.
    Lohr JG, Adalsteinsson VA, Cibulskis K, Choudhury AD, Rosenberg M, Cruz-Gordillo P, Francis JM, Zhang CZ, Shalek AK, Satija R, Trombetta JJ, Lu D, Tallapragada N, Tahirova N, Kim S, Blumenstiel B, Sougnez C, Lowe A, Wong B, Auclair D, Van Allen EM, Nakabayashi M, Lis RT, Lee GS, Li T, Chabot MS, Ly A, Taplin ME, Clancy TE, Loda M, Regev A, Meyerson M, Hahn WC, Kantoff PW, Golub TR, Getz G, Boehm JS, Love JC (2014) Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol 32(5):479–484Google Scholar
  41. 41.
    Magee JA, Piskounova E, Morrison SJ (2012) Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21(3):283–296PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Malanchi I, Santamaria-Martínez A, Susanto E, Peng H, Lehr HA, Delaloye JF, Huelsken J (2012) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481:85–89PubMedCrossRefGoogle Scholar
  43. 43.
    Malladi S, Macalinao DG, Jin X, He L, Basnet H, Zou Y, de Stanchina E, Massagué J (2016) Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell 165(1):45–60PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Medema JP (2013) Cancer stem cells: the challenges ahead. Nat Cell Biol 15:338–344PubMedCrossRefGoogle Scholar
  45. 45.
    Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, Beitsch PD, Leitch M, Hoover S, Euhus D, Haley B, Morrison L, Fleming TP, Herlyn D, Terstappen LW, Fehm T, Tucker TF, Lane N, Wang J, Uhr JW (2004) Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 10(24):8152–8162Google Scholar
  46. 46.
    Micchelli CA, Perrimon N (2006) Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439:475–479PubMedCrossRefGoogle Scholar
  47. 47.
    Min KT, Benzer S (1999) Preventing neurodegeneration in the Drosophila mutant bubblegum.Science 284(5422):1985–1988PubMedCrossRefGoogle Scholar
  48. 48.
    Mohme M, Riethdorf S, Pantel K (2017) Circulating and disseminated tumour cells – mechanisms of immune surveillance and escape. Nat Rev Clin Oncol 14(3):155–167PubMedCrossRefGoogle Scholar
  49. 49.
    Mueller MT, Hermann PC, Witthauer J, Rubio-Viqueira B, Leicht SF, Huber S, Ellwart JW, Mustafa M, Bartenstein P, D’Haese JG, Schoenberg MH, Berger F, Jauch KW, Hidalgo M, Heeschen C (2009) Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology 137:1102–1113PubMedCrossRefGoogle Scholar
  50. 50.
    Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y, Nakao S, Motoyama N, Hirao A (2010) TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 463:676–680PubMedCrossRefGoogle Scholar
  51. 51.
    Nguyen LV, Vanner R, Dirks P, Eaves CJ (2012) Cancer stem cells: an evolving concept. Nat Rev Cancer 12(2):133–143PubMedCrossRefGoogle Scholar
  52. 52.
    Ohashi Y, Iijima H, Yamaotsu N, Yamazaki K, Sato S, Okamura M, Sugimoto K, Dan S, Hirono S, Yamori T (2012) AMF-26, a novel inhibitor of the Golgi system, targeting ADP-ribosylation factor 1 (Arf1) with potential for cancer therapy. J Biol Chem 287(6):3885–3897PubMedCrossRefGoogle Scholar
  53. 53.
    Ohlstein B, Spradling A (2006) The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439:470–474PubMedCrossRefGoogle Scholar
  54. 54.
    Ohlstein B, Spradling A (2007) Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science 315:988–992PubMedCrossRefGoogle Scholar
  55. 55.
    Palanker L, Tennessen JM, Lam G, Thummel CS (2009) Drosophila HNF4 regulates lipid mobilization and beta-oxidation. Cell Metab 9(3):228–239Google Scholar
  56. 56.
    Pantel K, Schlimok G, Kutter D, Schaller G, Genz T, Wiebecke B, Backmann R, Funke I, Riethmüller G (1991) Frequent down-regulation of major histocompatibility class I antigen expression on individual micrometastatic carcinoma cells. Cancer Res 51(17):4712–4715Google Scholar
  57. 57.
    Pascual G, Avgustinova A, Mejetta S, Martín M, Castellanos A, Attolini CS, Berenguer A, Prats N, Toll A, Hueto JA, Bescós C, Di Croce L, Benitah SA (2017) Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541(7635):41–45PubMedCrossRefGoogle Scholar
  58. 58.
    Patel PH, Dutta D, Edgar BA (2015) Niche appropriation by Drosophila intestinal stem cell tumours. Nat Cell Biol 17:1182–1192PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Pereira G, Yamashita YM (2011) Fly meets yeast: checking the correct orientation of cell division. Trends Cell Biol 21:526–533PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785PubMedCrossRefGoogle Scholar
  61. 61.
    Pommier A, Anaparthy N, Memos N, Kelley ZL, Gouronnec A, Yan R, Auffray C, Albrengues J, Egeblad M, Iacobuzio-Donahue CA, Lyons SK, Fearon DT (2018) Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science 360(6394):eaao4908PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Ramos EK, Hoffmann AD, Gerson SL, Liu H (2017) New opportunities and challenges to defeat cancer stem cells. Trends Cancer 3(11):780–796PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Repasky GA, Chenette EJ, Der CJ (2004) Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol 14:639–647PubMedCrossRefGoogle Scholar
  64. 64.
    Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434(7035):843–850PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Rycaj K, Tang DG (2015) Cell-of-origin of cancer versus cancer stem cells: assays and interpretations. Cancer Res 75:4003–4011PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Ryoo HD, Bergmann A, Gonen H, Ciechanover A, Steller H (2002) Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nat Cell Biol 4:432–438PubMedCrossRefGoogle Scholar
  67. 67.
    Schepers AG, Snippert HJ, Stange DE, van den Born M, van Es JH, van de Wetering M, et al (2012) Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337:730–735PubMedCrossRefGoogle Scholar
  68. 68.
    Shtutman M, Baig M, Levina E, Hurteau G, Lim CU, Broude E, Nikiforov M, Harkins TT, Carmack CS, Ding Y, Wieland F, Buttyan R, Roninson IB (2011) Tumorspecific silencing of COPZ2 gene encoding coatomer protein complex subunit ζ 2 renders tumor cells dependent on its paralogous gene COPZ1. Proc Natl Acad Sci U S A 108(30):12449–12454CrossRefGoogle Scholar
  69. 69.
    Singh SR, Liu W, Hou SX (2007) The adult Drosophila malpighian tubules are maintained by multipotent stem cells. Cell Stem Cell 1:191–203PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Singh SR, Zeng X, Zhao J, Liu Y, Hou G, Liu H, Hou SX (2016) The lipolysis pathway sustains normal and transformed stem cells in adult Drosophila. Nature 538:109–113CrossRefGoogle Scholar
  71. 71.
    Sirko S, Behrendt G, Johansson PA, Tripathi P, Costa M, Bek S, Heinrich C, Tiedt S, Colak D, Dichgans M, Fischer IR, Plesnila N, Staufenbiel M, Haass C, Snapyan M, Saghatelyan A, Tsai LH, Fischer A, Grobe K, Dimou L, Götz M (2013) Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog. Cell Stem Cell 12(4):426–439PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Siudeja K, Nassari S, Gervais L, Skorski P, Lameiras S, Stolfa D, Zande M, Bernard V, Rio Frio T, Bardin AJ (2015) Frequent somatic mutation in adult intestinal stem cells drives neoplasia and genetic mosaicism during aging. Cell Stem Cell 17:663–674PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Soni KG, Mardones GA, Sougrat R, Smirnova E, Jackson CL, Bonifacino JS (2009) Coatomer-dependent protein delivery to lipid droplets. J Cell Sci 122(Pt 11):1834–1841PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Sosa MS, Bragado P, Aguirre-Ghiso JA (2014) Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer 14(9):611–622PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Sözen MA, Armstrong JD, Yang M, Kaiser K, Dow JA (1997) Functional domains are specified to single-cell resolution in a Drosophila epithelium. Proc Natl Acad Sci U S A 94:5207–5212CrossRefGoogle Scholar
  76. 76.
    Takashima S, Mkrtchyan M, Younossi-Hartenstein A, Merriam JR, Hartenstein V (2008) The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signaling. Nature 454:651–655PubMedCrossRefGoogle Scholar
  77. 77.
    Timmons AK, Meehan TL, Gartmond TD, McCall K (2013) Use of necrotic markers in the Drosophila ovary. Methods Mol Biol 1004:215–228Google Scholar
  78. 78.
    Trumpp A, Wiestler OD (2008) Mechanisms of disease: cancer stem cells–targeting the evil twin. Nat Clin Pract Oncol 5:337–347PubMedCrossRefGoogle Scholar
  79. 79.
    Valent P, Bonnet D, De Maria R, Lapidot T, Copland M, Melo JV, Chomienne C, Ishikawa F, Schuringa JJ, Stassi G, Huntly B, Herrmann H, Soulier J, Roesch A, Schuurhuis GJ, Wöhrer S, Arock M, Zuber J, Cerny-Reiterer S, Johnsen HE, Andreeff M, Eaves C (2012) Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Cancer 12(11):767–775PubMedCrossRefGoogle Scholar
  80. 80.
    Visvader JE, Lindeman GJ (2012) Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10(6):717–728PubMedCrossRefGoogle Scholar
  81. 81.
    Wessing A, Eichelberg D (1978) Malpighian tubules, rectal papillae and excretion. In: Ashburner A, Wright TRF (eds) The genetics and biology of Drosophila 2c. Academic, London, pp 1–42Google Scholar
  82. 82.
    Wu M, Pastor-Pareja JC, Xu T (2010) Interaction between Ras(V12) and scribbled clones induces tumour growth and invasion. Nature 463:545–548PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Xing Y, Su TT, Ruohola-Baker H (2015) Tie-mediated signal from apoptotic cells protects stem cells in Drosophila melanogaster. Nat Commun 6:7058PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Xu K, Liu X, Wang Y, Wong C, Song Y (2018) Temporospatial induction of homeodomain gene cut dictates natural lineage reprogramming. Elife 7. pii: e33934Google Scholar
  85. 85.
    Ye H, Adane B, Khan N, Sullivan T, Minhajuddin M, Gasparetto M, Stevens B, Pei S, Balys M, Ashton JM, Klemm DJ, Woolthuis CM, Stranahan AW, Park CY, Jordan CT (2016) Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell 19(1):23–37PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E (2007) Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131:1109–1123CrossRefGoogle Scholar
  87. 87.
    Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, Desai R, Zhu H, Comaills V, Zheng Z, Wittner BS, Stojanov P, Brachtel E, Sgroi D, Kapur R, Shioda T, Ting DT, Ramaswamy S, Getz G, Iafrate AJ, Benes C, Toner M, Maheswaran S, Haber DA (2014) Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 345(6193):216–220PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Zeng X, Hou SX (2015) Enteroendocrine cells are generated from stem cells through a distinct progenitor in the adult Drosophila posterior midgut. Development 142:644–653PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Zeng X, Singh SR, Hou D, Hou SX (2010) Tumor suppressors Sav/Scrib and oncogene Ras regulate stem-cell transformation in adult Drosophila malpighian tubules. J Cell Physiol 224:766–774PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Zeng X, Chauhan C, Hou SX (2013) Stem cells in the Drosophila digestive system. Adv Exp Med Biol 786:63–78Google Scholar
  91. 91.
    Zeng X, Han L, Singh SR, Liu H, Neumüller RA, Yan D, Hu Y, Liu Y, Liu W, Lin X, Hou SX (2015) Genome-wide RNAi screen identifies networks involved in intestinal stem cell regulation in Drosophila. Cell Rep 10:1226–1238PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Zhang Y, Chen D, Wang Z (2009) Analyses of mental dysfunction-related ACSl4 in Drosophila reveal its requirement for Dpp/BMP production and visual wiring in the brain. Hum Mol Genet 18(20):3894–3905PubMedCrossRefGoogle Scholar
  93. 93.
    Zielke N, Korzelius J, van Straaten M, Bender K, Schuhknecht GF, Dutta D, Xiang J, Edgar BA (2014) Fly-FUCCI: a versatile tool for studying cell proliferation in complex tissues. Cell Rep 7:588–598PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shree Ram Singh
    • 1
  • Poonam Aggarwal
    • 1
  • Steven X. Hou
    • 1
    Email author
  1. 1.The Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of HealthFrederickUSA

Personalised recommendations