Advertisement

Improving Meat Safety Through Reformulation Strategies: Natural Antioxidants and Antimicrobials

  • Yogesh Kumar
  • Nitin Mehta
  • Rahul K. Anurag
  • Swati Sethi
  • Akhoon A. Bashir
  • Vikas Kumar
  • Kairam Narsaiah
Chapter

Abstract

The quality of fresh and processed meat products deteriorates due to the oxidation of lipids and growth of microorganisms during processing and storage conditions. The oxidation of lipids alters the nutritional and sensorial quality of meat products. The growth of spoilage microorganisms also affects the nutritional and sensorial attributes and lowers the shelf life of products. Moreover, the presence of pathogenic microorganisms is a health hazard and is responsible for food recalls around the world. Antioxidants and antimicrobials are used for the control of lipid oxidation and the growth of microorganisms, respectively. The use of synthetic compounds is now not recommended by the health organizations due to the problem of toxicity and carcinogenicity. Thus, meat industry is now in search of natural compounds that can prevent the development of primary and secondary oxidation products through lipid oxidation as well as retard the growth of microorganisms through various mechanisms of action. The reformulation of ingredients using natural compounds for manufacturing of meat products without altering other quality attributes is a challenge for the meat industry. This chapter provides an elaborate discussion on the use of natural antioxidants and antimicrobials for the development of reformulated meat products with better oxidative and microbial stability.

Keywords

Meat safety Reformulation Natural antioxidant Antimicrobial Laws 

Notes

Conflict of Interest

The authors declare that there is no conflict of interests.

References

  1. Abraham, R., Benitz, K. F., Patil, G., & Lyon, R. (1986). Rapid induction of forestomach tumors in partially hepatectomized wistar rats given butylated hydroxyanisole. Experimental and Molecular Pathology, 44, 14–20.PubMedCrossRefGoogle Scholar
  2. Ahmad, I., Krishnamurthi, K., Arif, J. M., Ashquin, M., Mahmood, N., Athar, M., & Rahman, Q. (1995). Augmentation of chrysotile-induced oxidative stress by bha in mice lungs. Food and Chemical Toxicology, 33, 209–215.PubMedCrossRefGoogle Scholar
  3. Ahmad Mir, S., Ahmad Masoodi, F., & Raja, J. (2017). Influence of natural antioxidants on microbial load, lipid oxidation and sensorial quality of rista—A traditional meat product of India. Food Bioscience, 20, 79–87.CrossRefGoogle Scholar
  4. Alcaraz, L. E., Blanco, S. E., Puig, O. N., TomÁS, F., & Ferretti, F. H. (2000). Antibacterial activity of flavonoids against methicillin-resistant Staphylococcus aureus strains. Journal of Theoretical Biology, 205, 231–240.PubMedCrossRefGoogle Scholar
  5. Badr, H. M., & Mahmoud, K. A. (2011). Antioxidant activity of carrot juice in gamma irradiated beef sausage during refrigerated and frozen storage. Food Chemistry, 127, 1119–1130.PubMedCrossRefGoogle Scholar
  6. Baer, A. A., & Dilger, A. C. (2014). Effect of fat quality on sausage processing, texture, and sensory characteristics. Meat Science, 96, 1242–1249.PubMedCrossRefGoogle Scholar
  7. Bajpai, V. K., et al. (2019). Antioxidant and antimicrobial efficacy of a biflavonoid, amentoflavone from Nandina domestica in vitro and in minced chicken meat and apple juice food models. Food Chemistry, 271, 239–247.PubMedCrossRefGoogle Scholar
  8. Barros, F., Dykes, L., Awika, J. M., & Rooney, L. W. (2013). Accelerated solvent extraction of phenolic compounds from sorghum brans. Journal of Cereal Science, 58, 305–312.CrossRefGoogle Scholar
  9. Ben Hsouna, A., Ben Halima, N., Smaoui, S., & Hamdi, N. (2017). Citrus lemon essential oil: Chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids in Health and Disease, 16, 146–156.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Berasategi, I., Navarro-Blasco, Í., Calvo, M. I., Cavero, R. Y., Astiasarán, I., & Ansorena, D. (2014). Healthy reduced-fat bologna sausages enriched in ala and dha and stabilized with Melissa officinalis extract. Meat Science, 96, 1185–1190.PubMedCrossRefGoogle Scholar
  11. Berdahl, D. R., Nahas, R. I., & Barren, J. P. (2010). 12 – synthetic and natural antioxidant additives in food stabilization: Current applications and future research. In: E. A. Decker (Ed.) Oxidation in foods and beverages and antioxidant applications (pp. 272–320). Woodhead Publishing .  https://doi.org/10.1533/9780857090447.2.272.CrossRefGoogle Scholar
  12. Biswas, A. K., Chatli, M. K., & Sahoo, J. (2012). Antioxidant potential of curry (Murraya koenigii L.) and mint (Mentha spicata) leaf extracts and their effect on colour and oxidative stability of raw ground pork meat during refrigeration storage. Food Chemistry, 133, 467–472.PubMedCrossRefGoogle Scholar
  13. Borges, A., Saavedra, M. J., & Simões, M. (2012). The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling, 28, 755–767.PubMedCrossRefGoogle Scholar
  14. Borges, A., Ferreira, C., Saavedra, M. J., & Simões, M. (2013). Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microbial Drug Resistance, 19, 256–265.PubMedCrossRefGoogle Scholar
  15. Bozkurt, H. (2006). Utilization of natural antioxidants: Green tea extract and Thymbra spicata oil in turkish dry-fermented sausage. Meat Science, 73, 442–450.PubMedCrossRefGoogle Scholar
  16. Brettonnet, A., Hewavitarana, A., DeJong, S., & Lanari, M. C. (2010). Phenolic acids composition and antioxidant activity of canola extracts in cooked beef, chicken and pork. Food Chemistry, 121, 927–933.CrossRefGoogle Scholar
  17. Brewer, M. S. (2011). Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Comprehensive Reviews in Food Science and Food Safety, 10, 221–247.CrossRefGoogle Scholar
  18. Bryhni, E. A., et al. (2002). Consumer perceptions of pork in Denmark, Norway and Sweden. Food Quality and Preference, 13, 257–266.CrossRefGoogle Scholar
  19. Busatta, C., et al. (2008). Application of Origanum majorana L. Essential oil as an antimicrobial agent in sausage. Food Microbiology, 25, 207–211.PubMedCrossRefGoogle Scholar
  20. Cadet, M., Williams, S. K., Simonne, A., & Sharma, C. S. (2013). Antimicrobial efficacy of Alpinia galanga (Linn.) Swartz flower extract against Listeria monocytogenes and Staphylococcus aureus in a ready-to-eat turkey ham product. International Journal of Poultry Science, 12, 335–340.CrossRefGoogle Scholar
  21. Carballo, D. E., Caro, I., Andrés, S., Giráldez, F. J., & Mateo, J. (2018). Assessment of the antioxidant effect of astaxanthin in fresh, frozen and cooked lamb patties. Food Research International, 111, 342–350.PubMedCrossRefGoogle Scholar
  22. Casaburi, A., Di Martino, V., Ercolini, D., Parente, E., & Villani, F. (2015). Antimicrobial activity of Myrtus communis L. Water-ethanol extract against meat spoilage strains of brochothrix thermosphacta and pseudomonas fragi in vitro and in meat. Annals of Microbiology, 65, 841–850.CrossRefGoogle Scholar
  23. Chan, K. M., Decker, E. A., & Feustman, C. (1994). Endogenous skeletal muscle antioxidants. Critical Reviews in Food Science and Nutrition, 34, 403–426.PubMedCrossRefGoogle Scholar
  24. Choe, J., Kim, Y. H. B., Kim, H.-Y., & Kim, C.-J. (2017). Evaluations of physicochemical and anti-oxidant properties of powdered leaves from lotus, shepherd’s purse and goldenrod in restructured duck/pork patties. Journal of Food Science and Technology, 54, 2494–2502.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Ciriano, M. G.-I., García-Herreros, C., Larequi, E., Valencia, I., Ansorena, D., & Astiasarán, I. (2009). Use of natural antioxidants from lyophilized water extracts of Borago officinalis in dry fermented sausages enriched in ω-3 pufa. Meat Science, 83, 271–277.PubMedCrossRefGoogle Scholar
  26. Ciriano, M. G.-I., Rehecho, S., Calvo, M. I., Cavero, R. Y., Navarro, Í., Astiasarán, I., & Ansorena, D. (2010). Effect of lyophilized water extracts of Melissa officinalis on the stability of algae and linseed oil-in-water emulsion to be used as a functional ingredient in meat products. Meat Science, 85, 373–377.PubMedCrossRefGoogle Scholar
  27. Cui, Y., et al. (2012). Afm study of the differential inhibitory effects of the green tea polyphenol (−)-epigallocatechin-3-gallate (egcg) against gram-positive and gram-negative bacteria. Food Microbiology, 29, 80–87.PubMedCrossRefGoogle Scholar
  28. Cunha, L. C. M., Monteiro, M. L. G., Lorenzo, J. M., Munekata, P. E. S., Muchenje, V., de Carvalho, F. A. L., & Conte-Junior, C. A. (2018). Natural antioxidants in processing and storage stability of sheep and goat meat products. Food Research International, 111, 379–390.PubMedCrossRefGoogle Scholar
  29. Delehanty, J. B., Johnson, B. J., Hickey, T. E., Pons, T., & Ligler, F. S. (2007). Binding and neutralization of lipopolysaccharides by plant proanthocyanidins. Journal of Natural Products, 70, 1718–1724.PubMedCrossRefGoogle Scholar
  30. Dorman, H. J. D., & Deans, S. G. (2000). Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88, 308–316.PubMedCrossRefGoogle Scholar
  31. dos Reis, F. B., de Souza, V. M., Thomaz, M. R. S., Fernandes, L. P., de Oliveira, W. P., & De Martinis, E. C. P. (2011). Use of carnobacterium maltaromaticum cultures and hydroalcoholic extract of lippia sidoides Cham. Against Listeria monocytogenes in fish model systems. International Journal of Food Microbiology, 146, 228–234.PubMedCrossRefGoogle Scholar
  32. Dussault, D., Vu, K. D., & Lacroix, M. (2014). In vitro evaluation of antimicrobial activities of various commercial essential oils, oleoresin and pure compounds against food pathogens and application in ham. Meat Science, 96, 514–520.PubMedCrossRefGoogle Scholar
  33. Echegaray, N., et al. (2018). Chestnuts and by-products as source of natural antioxidants in meat and meat products: A review. Trends in Food Science and Technology, 82, 110–121.CrossRefGoogle Scholar
  34. Eltilib, H. H. A. B., Elgasim, E. A., & Mohamed Ahmed, I. A. (2016). Effect of incorporation of Cyperus rotundus L. Rhizome powder on quality attributes of minced beef meat. Journal of Food Science and Technology, 53, 3446–3454.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Engels, C., Knödler, M., Zhao, Y.-Y., Carle, R., Gänzle, M. G., & Schieber, A. (2009). Antimicrobial activity of gallotannins isolated from mango (Mangifera indica L.) kernels. Journal of Agricultural and Food Chemistry, 57, 7712–7718.PubMedCrossRefGoogle Scholar
  36. Ergezer, H., & Serdaroğlu, M. (2018). Antioxidant potential of artichoke (Cynara scolymus L.) byproducts extracts in raw beef patties during refrigerated storage. Journal of Food Measurement and Characterization, 12, 982–991.CrossRefGoogle Scholar
  37. Estévez, M., & Lorenzo, J. M. (2018). Impact of antioxidants on oxidized proteins and lipids in processed meat. In: Reference module in food science. Elsevier .  https://doi.org/10.1016/B978-0-08-100596-5.21501-1.CrossRefGoogle Scholar
  38. Faine, L. A., Rodrigues, H. G., Galhardi, C. M., Ebaid, G. M. X., Diniz, Y. S., Fernandes, A. A. H., & Novelli, E. L. B. (2006). Butyl hydroxytoluene (bht)-induced oxidative stress: Effects on serum lipids and cardiac energy metabolism in rats. Experimental and Toxicologic Pathology, 57, 221–226.PubMedCrossRefGoogle Scholar
  39. Fan, X.-J., Liu, S.-Z., Li, H.-H., He, J., Feng, J.-T., Zhang, X., & Yan, H. (2019). Effects of Portulaca oleracea L. Extract on lipid oxidation and color of pork meat during refrigerated storage. Meat Science, 147, 82–90.PubMedCrossRefGoogle Scholar
  40. Fasseas, M. K., Mountzouris, K. C., Tarantilis, P. A., Polissiou, M., & Zervas, G. (2008). Antioxidant activity in meat treated with oregano and sage essential oils. Food Chemistry, 106, 1188–1194.CrossRefGoogle Scholar
  41. Fayemi, P. O., Öztürk, I., Özcan, C., Muguruma, M., Yetim, H., Sakata, R., & Ahhmed, A. (2017). Antimicrobial activity of extracts of Callistemon citrinus flowers and leaves against Listeria monocytogenes in beef burger. Journal of Food Measurement and Characterization, 11, 924–929.CrossRefGoogle Scholar
  42. Fernandes, R. P. P., et al. (2016). Evaluation of antioxidant capacity of 13 plant extracts by three different methods: Cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers. Journal of Food Science and Technology, 53, 451–460.PubMedCrossRefGoogle Scholar
  43. Gadang, V. P., Hettiarachchy, N. S., Johnson, M. G., & Owens, C. (2008). Evaluation of antibacterial activity of whey protein isolate coating incorporated with nisin, grape seed extract, malic acid, and edta on a turkey frankfurter system. Journal of Food Science, 73, M389–M394.PubMedCrossRefGoogle Scholar
  44. Gallo, M., Ferracane, R., & Naviglio, D. (2012). Antioxidant addition to prevent lipid and protein oxidation in chicken meat mixed with supercritical extracts of Echinacea angustifolia. Journal of Supercritical Fluids, 72, 198–204.CrossRefGoogle Scholar
  45. Ganhão, R., Morcuende, D., & Estévez, M. (2010). Protein oxidation in emulsified cooked burger patties with added fruit extracts: Influence on colour and texture deterioration during chill storage. Meat Science, 85, 402–409.PubMedCrossRefGoogle Scholar
  46. Garrido, M. D., Auqui, M., Martí, N., & Linares, M. B. (2011). Effect of two different red grape pomace extracts obtained under different extraction systems on meat quality of pork burgers. LWT-Food Science and Technology, 44, 2238–2243.CrossRefGoogle Scholar
  47. Gniewosz, M., & Stobnicka, A. (2018). Bioactive components content, antimicrobial activity, and foodborne pathogen control in minced pork by cranberry pomace extracts. Journal of Food Safety, 38, e12398.CrossRefGoogle Scholar
  48. Gochev, V., Dobreva, A., Girova, T., & Stoyanova, A. (2010). Antimicrobial activity of essential oil from Rosa alba. Biotechnology & Biotechnological Equipment, 24, 512–515.CrossRefGoogle Scholar
  49. Gómez, M., & Lorenzo, J. M. (2012). Effect of packaging conditions on shelf-life of fresh foal meat. Meat Science, 91, 513–520.PubMedCrossRefGoogle Scholar
  50. González-Centeno, M. R., Knoerzer, K., Sabarez, H., Simal, S., Rosselló, C., & Femenia, A. (2014). Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) – A response surface approach. Ultrasonics Sonochemistry, 21, 2176–2184.PubMedCrossRefGoogle Scholar
  51. Gopu, V., Meena, C. K., & Shetty, P. H. (2015). Quercetin influences quorum sensing in food borne bacteria: In-vitro and in-silico evidence. PLoS One, 10, e0134684.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gülçin, İ. (2012). Antioxidant activity of food constituents: An overview. Archives of Toxicology, 86, 345–391.PubMedCrossRefGoogle Scholar
  53. Gyawali, R., & Ibrahim, S. A. (2014). Natural products as antimicrobial agents. Food Control, 46, 412–429.CrossRefGoogle Scholar
  54. Habib, H., Siddiqi, R. A., Dar, A. H., Dar, M. A., Gul, K., Rashid, N., & Siddiqi, U. S. (2018). Quality characteristics of carabeef nuggets as affected by pomegranate rind powder. Journal of Food Measurement and Characterization, 12, 2164–2173.CrossRefGoogle Scholar
  55. Hać-Szymańczuk, E., Cegiełka, A., Chmiel, M., & Czaja, K. (2017). Antioxidant and antimicrobial effects of oregano on quality characteristics of model pork batters. Journal of Food Processing & Preservation, 41, e12796.CrossRefGoogle Scholar
  56. Hać-Szymańczuk, E., Cegiełka, A., Karkos, M., Gniewosz, M., & Piwowarek, K. (2018). Evaluation of antioxidant and antimicrobial activity of oregano (Origanum vulgare L.) preparations during storage of low-pressure mechanically separated meat (baader meat) from chickens. Food Science and Biotechnology.  https://doi.org/10.1007/s10068-10018-10491-10061.
  57. Hamdi, M., Nasri, R., Dridi, N., Moussa, H., Ashour, L., & Nasri, M. (2018). Improvement of the quality and the shelf life of reduced-nitrites turkey meat sausages incorporated with carotenoproteins from blue crabs shells. Food Control, 91, 148–159.CrossRefGoogle Scholar
  58. Haraguchi, H., Tanimoto, K., Tamura, Y., Mizutani, K., & Kinoshita, T. (1998). Mode of antibacterial action of retrochalcones from glycyrrhiza inflata. Phytochemistry, 48, 125–129.PubMedCrossRefGoogle Scholar
  59. Harpaz, S., Glatman, L., Drabkin, V., & Gelman, A. (2003). Effects of herbal essential oils used to extend the shelf life of freshwater-reared asian sea bass fish (Lates calcarifer). Journal of Food Protection, 66, 410–417.PubMedCrossRefGoogle Scholar
  60. Hashemi, S. M. B., et al. (2017). Efficiency of ohmic assisted hydrodistillation for the extraction of essential oil from oregano (Origanum vulgare subsp. Viride) spices. Innovative Food Science & Emerging Technologies, 41, 172–178.CrossRefGoogle Scholar
  61. Hayrapetyan, H., Hazeleger, W. C., & Beumer, R. R. (2012). Inhibition of Listeria monocytogenes by pomegranate (Punica granatum) peel extract in meat paté at different temperatures. Food Control, 23, 66–72.CrossRefGoogle Scholar
  62. He, L., et al. (2016). Antimicrobial activities of nisin, tea polyphenols, and chitosan and their combinations in chilled mutton. Journal of Food Science, 81, M1466–M1471.PubMedCrossRefGoogle Scholar
  63. Hernández-Hernández, E., Ponce-Alquicira, E., Jaramillo-Flores, M. E., & Guerrero Legarreta, I. (2009). Antioxidant effect rosemary (Rosmarinus officinalis L.) and oregano (Origanum vulgare L.) extracts on tbars and colour of model raw pork batters. Meat Science, 81, 410–417.PubMedCrossRefGoogle Scholar
  64. Hernández-Ochoa, L., Aguirre-Prieto, Y. B., Nevárez-Moorillón, G. V., Gutierrez-Mendez, N., & Salas-Muñoz, E. (2014). Use of essential oils and extracts from spices in meat protection. Journal of Food Science and Technology, 51, 957–963.PubMedCrossRefGoogle Scholar
  65. Hertel, W., Peschel, G., Ozegowski, J.-H., & Müller, P.-J. (2006). Inhibitory effects of triterpenes and flavonoids on the enzymatic activity of hyaluronic acid-splitting enzymes. Archiv der Pharmazie, 339, 313–318.PubMedCrossRefGoogle Scholar
  66. Higginbotham, K. L., Burris, K. P., Zivanovic, S., Davidson, P. M., & Stewart, C. N. (2014). Aqueous extracts of Hibiscus sabdariffa calyces as an antimicrobial rinse on hot dogs against Listeria monocytogenes and methicillin-resistant Staphylococcus aureus. Food Control, 40, 274–277.CrossRefGoogle Scholar
  67. Howell, A. B., Vorsa, N., Marderosian, A. D., & Foo, L. Y. (1998). Inhibition of the adherence of p-fimbriated escherichia coli to uroepithelial-cell surfaces by proanthocyanidin extracts from cranberries. The New England Journal of Medicine, 339, 1085–1086.PubMedCrossRefGoogle Scholar
  68. Huang, B., He, J., Ban, X., Zeng, H., Yao, X., & Wang, Y. (2011). Antioxidant activity of bovine and porcine meat treated with extracts from edible lotus (Nelumbo nucifera) rhizome knot and leaf. Meat Science, 87, 46–53.PubMedCrossRefGoogle Scholar
  69. Issac Abraham, S. V. P., Palani, A., Ramaswamy, B. R., Shunmugiah, K. P., & Arumugam, V. R. (2011). Antiquorum sensing and antibiofilm potential of capparis spinosa. Archives of Medical Research, 42, 658–668.PubMedCrossRefGoogle Scholar
  70. Jayasena, D. D., & Jo, C. (2013). Essential oils as potential antimicrobial agents in meat and meat products: A review. Trends in Food Science and Technology, 34, 96–108.CrossRefGoogle Scholar
  71. Jayathilakan, K., Sharma, G. K., Radhakrishna, K., & Bawa, A. S. (2007). Effect of natural antioxidants on the lipid stability of fluidised bed-dried mutton. Food Chemistry, 100, 662–668.CrossRefGoogle Scholar
  72. Jiao, J., Li, Z.-G., Gai, Q.-Y., Li, X.-J., Wei, F.-Y., Fu, Y.-J., & Ma, W. (2014). Microwave-assisted aqueous enzymatic extraction of oil from pumpkin seeds and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities. Food Chemistry, 147, 17–24.PubMedCrossRefGoogle Scholar
  73. Johnson, B. J., Delehanty, J. B., Lin, B., & Ligler, F. S. (2008). Immobilized proanthocyanidins for the capture of bacterial lipopolysaccharides. Analytical Chemistry, 80, 2113–2117.PubMedCrossRefGoogle Scholar
  74. Kanatt, S. R., Chander, R., & Sharma, A. (2008). Chitosan and mint mixture: A new preservative for meat and meat products. Food Chemistry, 107, 845–852.CrossRefGoogle Scholar
  75. Kanatt, S. R., Arjun, K., & Sharma, A. (2011). Antioxidant and antimicrobial activity of legume hulls. Food Research International, 44, 3182–3187.CrossRefGoogle Scholar
  76. Konishi, K., et al. (1993). Inhibitory effects of tannins on nadh dehydrogenases of various organisms. Biological & Pharmaceutical Bulletin, 16, 716–718.CrossRefGoogle Scholar
  77. Koo, H., et al. (2002). Effects of apigenin and tt-farnesol on glucosyltransferase activity, biofilm viability and caries development in rats. Oral Microbiology and Immunology, 17, 337–343.PubMedCrossRefGoogle Scholar
  78. Kulkarni, V. M., & Rathod, V. K. (2014). Mapping of an ultrasonic bath for ultrasound assisted extraction of mangiferin from Mangifera indica leaves. Ultrasonics Sonochemistry, 21, 606–611.PubMedCrossRefGoogle Scholar
  79. Kumar, Y., & Langoo, B. A. (2016). Effects of aloe, green tea, and amla extracts on microbiological and oxidative parameters of refrigerated raw meat batter. Agricultural Research, 5, 81–88.CrossRefGoogle Scholar
  80. Kumar, M. S. Y., Dutta, R., Prasad, D., & Misra, K. (2011). Subcritical water extraction of antioxidant compounds from seabuckthorn (Hippophae rhamnoides) leaves for the comparative evaluation of antioxidant activity. Food Chemistry, 127, 1309–1316.PubMedCrossRefGoogle Scholar
  81. Kumar, Y., Yadav, D. N., Ahmad, T., & Narsaiah, K. (2015). Recent trends in the use of natural antioxidants for meat and meat products. Comprehensive Reviews in Food Science and Food Safety, 14, 796–812.CrossRefGoogle Scholar
  82. Kumar, Y., Kaur, K., Shahi, A. K., Kairam, N., & Tyagi, S. K. (2017). Antilisterial, antimicrobial and antioxidant effects of pediocin and Murraya koenigii berry extract in refrigerated goat meat emulsion. LWT-Food Science and Technology, 79, 135–144.CrossRefGoogle Scholar
  83. Kumudavally, K. V., Phanindrakumar, H. S., Tabassum, A., Radhakrishna, K., & Bawa, A. S. (2008). Green tea – A potential preservative for extending the shelf life of fresh mutton at ambient temperature (25±2°c). Food Chemistry, 107, 426–433.CrossRefGoogle Scholar
  84. Lara-Lledó, M., Olaimat, A., & Holley, R. A. (2012). Inhibition of Listeria monocytogenes on bologna sausages by an antimicrobial film containing mustard extract or sinigrin. International Journal of Food Microbiology, 156, 25–31.PubMedCrossRefGoogle Scholar
  85. Lee, M.-A., et al. (2010). The antioxidative properties of mustard leaf (Brassica juncea) kimchi extracts on refrigerated raw ground pork meat against lipid oxidation. Meat Science, 84, 498–504.PubMedCrossRefGoogle Scholar
  86. Lee, J.-H., Regmi, S. C., Kim, J.-A., Cho, M. H., Yun, H., Lee, C.-S., & Lee, J. (2011a). Apple flavonoid phloretin inhibits Escherichia coli O157:H7 biofilm formation and ameliorates colon inflammation in rats. Infection and Immunity, 79, 4819–4827.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lee, M.-A., et al. (2011b). Effects of kimchi ethanolic extracts on oxidative stability of refrigerated cooked pork. Meat Science, 89, 405–411.PubMedCrossRefGoogle Scholar
  88. Lee, N.-K., Jung, B. S., Na, D. S., Yu, H. H., Kim, J.-S., & Paik, H.-D. (2016). The impact of antimicrobial effect of chestnut inner shell extracts against campylobacter jejuni in chicken meat. LWT-Food Science and Technology, 65, 746–750.CrossRefGoogle Scholar
  89. López-Romero, J. C., Ayala-Zavala, J. F., Peña-Ramos, E. A., Hernández, J., & González-Ríos, H. (2018). Antioxidant and antimicrobial activity of Agave angustifolia extract on overall quality and shelf life of pork patties stored under refrigeration. Journal of Food Science and Technology, 55, 4413–4423.PubMedCrossRefGoogle Scholar
  90. Lorenzo, J. M., et al. (2018). Berries extracts as natural antioxidants in meat products: A review. Food Research International, 106, 1095–1104.PubMedCrossRefGoogle Scholar
  91. Lu, H., Shao, X., Cao, J., Ou, C., & Pan, D. (2016). Antimicrobial activity of eucalyptus essential oil against pseudomonas in vitro and potential application in refrigerated storage of pork meat. International Journal of Food Science and Technology, 51, 994–1001.CrossRefGoogle Scholar
  92. Lu, F., Kuhnle, G. K., & Cheng, Q. (2018). The effect of common spices and meat type on the formation of heterocyclic amines and polycyclic aromatic hydrocarbons in deep-fried meatballs. Food Control, 92, 399–411.CrossRefGoogle Scholar
  93. Lucera, A., Costa, C., Conte, A., & Del Nobile, M. A. (2012). Food applications of natural antimicrobial compounds. Frontiers in Microbiology, 3, 287–287.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Mahgoub, S. A. M., Osman, A., & Ramadan, M. F. (2017). Inhibitory effect of Nigella sativa oil against Listeria monocytogenes and salmonella enteritidis inoculated in minced beef meat. Journal of Food Measurement and Characterization, 11, 2043–2051.CrossRefGoogle Scholar
  95. Marques, J. L., Volcão, L. M., Funck, G. D., Kroning, I. S., da Silva, W. P., Fiorentini, Â. M., & Ribeiro, G. A. (2015). Antimicrobial activity of essential oils of Origanum vulgare L. and Origanum majorana L. against Staphylococcus aureus isolated from poultry meat. Industrial Crops and Products, 77, 444–450.CrossRefGoogle Scholar
  96. Mhalla, D., et al. (2017). Antimicrobial activity and bioguided fractionation of rumex tingitanus extracts for meat preservation. Meat Science, 125, 22–29.PubMedCrossRefGoogle Scholar
  97. Mielnik, M. B., Sem, S., Egelandsdal, B., & Skrede, G. (2008). By-products from herbs essential oil production as ingredient in marinade for turkey thighs. LWT-Food Science and Technology, 41, 93–100.CrossRefGoogle Scholar
  98. Moradi, M., Tajik, H., Razavi Rohani, S. M., & Oromiehie, A. R. (2011). Effectiveness of Zataria multiflora boiss essential oil and grape seed extract impregnated chitosan film on ready-to-eat mortadella-type sausages during refrigerated storage. Journal of the Science of Food and Agriculture, 91, 2850–2857.PubMedCrossRefGoogle Scholar
  99. Moreira, M. R., Ponce, A. G., del Valle, C. E., & Roura, S. I. (2005). Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT-Food Science and Technology, 38, 565–570.CrossRefGoogle Scholar
  100. Muíño, I., et al. (2017). Valorisation of an extract from olive oil waste as a natural antioxidant for reducing meat waste resulting from oxidative processes. Journal of Cleaner Production, 140, 924–932.CrossRefGoogle Scholar
  101. Naveena, B. M., Sen, A. R., Vaithiyanathan, S., Babji, Y., & Kondaiah, N. (2008). Comparative efficacy of pomegranate juice, pomegranate rind powder extract and bht as antioxidants in cooked chicken patties. Meat Science, 80, 1304–1308.PubMedCrossRefGoogle Scholar
  102. Nikmaram, N., Budaraju, S., Barba, F. J., Lorenzo, J. M., Cox, R. B., Mallikarjunan, K., & Roohinejad, S. (2018). Application of plant extracts to improve the shelf-life, nutritional and health-related properties of ready-to-eat meat products. Meat Science, 145, 245–255.PubMedCrossRefGoogle Scholar
  103. Nishad, J., Koley, T. K., Varghese, E., & Kaur, C. (2018). Synergistic effects of nutmeg and citrus peel extracts in imparting oxidative stability in meat balls. Food Research International, 106, 1026–1036.PubMedCrossRefGoogle Scholar
  104. Nohynek, L. J., Alakomi, H.-L., Kähkönen, M. P., Heinonen, M., Helander, I. M., Oksman-Caldentey, K.-M., & Puupponen-Pimiä, R. H. (2006). Berry phenolics: Antimicrobial properties and mechanisms of action against severe human pathogens. Nutrition and Cancer, 54, 18–32.PubMedCrossRefGoogle Scholar
  105. Nuñez de Gonzalez, M. T., Hafley, B. S., Boleman, R. M., Miller, R. K., Rhee, K. S., & Keeton, J. T. (2008). Antioxidant properties of plum concentrates and powder in precooked roast beef to reduce lipid oxidation. Meat Science, 80, 997–1004.PubMedCrossRefGoogle Scholar
  106. Odedina, G. F., Vongkamjan, K., & Voravuthikunchai, S. P. (2016). Use of Rhodomyrtus tomentosa ethanolic leaf extract for the bio-control of Listeria monocytogenes post-cooking contamination in cooked chicken meat. Journal of Food Science and Technology, 53, 4234–4243.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Olaimat, A. N., & Holley, R. A. (2015). Control of salmonella on fresh chicken breasts by κ-carrageenan/chitosan-based coatings containing allyl isothiocyanate or deodorized oriental mustard extract plus EDTA. Food Microbiology, 48, 83–88.PubMedCrossRefGoogle Scholar
  108. Olaimat, A. N., & Holley, R. A. (2016). Inhibition of Listeria monocytogenes on cooked cured chicken breasts by acidified coating containing allyl isothiocyanate or deodorized oriental mustard extract. Food Microbiology, 57, 90–95.PubMedCrossRefGoogle Scholar
  109. Olaimat, A. N., Fang, Y., & Holley, R. A. (2014). Inhibition of campylobacter jejuni on fresh chicken breasts by κ-carrageenan/chitosan-based coatings containing allyl isothiocyanate or deodorized oriental mustard extract. International Journal of Food Microbiology, 187, 77–82.PubMedCrossRefGoogle Scholar
  110. Opoku-Temeng, C., & Sintim, H. O. (2016). Inhibition of cyclic diadenylate cyclase, disa, by polyphenols. Scientific Reports, 6, 25445.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Oswell, N. J., Thippareddi, H., & Pegg, R. B. (2018). Practical use of natural antioxidants in meat products in the U.S.: A review. Meat Science, 145, 469–479.PubMedCrossRefGoogle Scholar
  112. Oussalah, M., Caillet, S., Salmiéri, S., Saucier, L., & Lacroix, M. (2004). Antimicrobial and antioxidant effects of milk protein-based film containing essential oils for the preservation of whole beef muscle. Journal of Agricultural and Food Chemistry, 52, 5598–5605.PubMedCrossRefGoogle Scholar
  113. Özünlü, O., Ergezer, H., & Gökçe, R. (2018). Improving physicochemical, antioxidative and sensory quality of raw chicken meat by using acorn extracts. LWT-Food Science and Technology, 98, 477–484.CrossRefGoogle Scholar
  114. Papuc, C., Goran, G. V., Predescu, C. N., Nicorescu, V., & Stefan, G. (2017). Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Comprehensive Reviews in Food Science and Food Safety, 16, 1243–1268.CrossRefGoogle Scholar
  115. Park, H. J., Park, K.-C., & Yoon, K. S. (2014). Effect of rooibos (Aspalathus linearis) on growth control of clostridium perfringens and lipid oxidation of ready-to-eat jokbal (pig’s trotters). Journal of Food Science, 79, M2507–M2515.PubMedCrossRefGoogle Scholar
  116. Pateiro, M., et al. (2018). Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review. Food Research International, 113, 156–166.PubMedCrossRefGoogle Scholar
  117. Pereira, P., Bernardo-Gil, M. G., Cebola, M. J., Mauricio, E., & Romano, A. (2013). Supercritical fluid extracts with antioxidant and antimicrobial activities from myrtle (Myrtus communis L.) leaves. Response surface optimization. Journal of Supercritical Fluids, 83, 57–64.CrossRefGoogle Scholar
  118. Perumalla, A. V. S., et al. (2013). Effect of partial replacement of potassium lactate and sodium diacetate by natural green tea and grape seed extracts and postpackaging thermal treatment on the growth of Listeria monocytogenes in hotdog model system. International Journal of Food Science & Technology, 48, 918–926.CrossRefGoogle Scholar
  119. Piskernik, S., Klančnik, A., Riedel, C. T., Brøndsted, L., & Možina, S. S. (2011). Reduction of campylobacter jejuni by natural antimicrobials in chicken meat-related conditions. Food Control, 22, 718–724.CrossRefGoogle Scholar
  120. Pisoschi, A. M., Pop, A., Georgescu, C., Turcuş, V., Olah, N. K., & Mathe, E. (2018). An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry, 143, 922–935.PubMedCrossRefGoogle Scholar
  121. Pogorzelska, E., Godziszewska, J., Brodowska, M., & Wierzbicka, A. (2018). Antioxidant potential of Haematococcus pluvialis extract rich in astaxanthin on colour and oxidative stability of raw ground pork meat during refrigerated storage. Meat Science, 135, 54–61.PubMedCrossRefGoogle Scholar
  122. Price, A., Díaz, P., Bañón, S., & Garrido, M. D. (2013). Natural extracts versus sodium ascorbate to extend the shelf life of meat-based ready-to-eat meals. Food Science and Technology International, 19, 427–438.PubMedCrossRefGoogle Scholar
  123. Püssa, T., Pällin, R., Raudsepp, P., Soidla, R., & Rei, M. (2008). Inhibition of lipid oxidation and dynamics of polyphenol content in mechanically deboned meat supplemented with sea buckthorn (Hippophae rhamnoides) berry residues. Food Chemistry, 107, 714–721.CrossRefGoogle Scholar
  124. Qi, S., Huang, H., Huang, J., Wang, Q., & Wei, Q. (2015). Lychee (Litchi chinensis Sonn.) seed water extract as potential antioxidant and anti-obese natural additive in meat products. Food Control, 50, 195–201.CrossRefGoogle Scholar
  125. Rajeev, P. S., Johannah, N. M., Gopakumar, G., Maliakel, B., & Krishnakumar, I. M. (2017). Optimization of antioxidant efficacy of a deflavored and decolorized rosemary extract: Effect of carnosol content on the oxidative stability of paprika colored beef patties. Journal of Food Science and Technology, 54, 1665–1677.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Ribeiro, J. S., Santos, M. J. M. C., Silva, L. K. R., Pereira, L. C. L., Santos, I. A., da Silva Lannes, S. C., & da Silva, M. V. (2019). Natural antioxidants used in meat products: A brief review. Meat Science, 148, 181–188.PubMedCrossRefGoogle Scholar
  127. Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology & Medicine, 20, 933–956.CrossRefGoogle Scholar
  128. Saito, S., Okamoto, Y., & Kawabata, J. (2004). Effects of alcoholic solvents on antiradical abilities of protocatechuic acid and its alkyl esters. Bioscience, Biotechnology, and Biochemistry, 68, 1221–1227.PubMedCrossRefGoogle Scholar
  129. Sáyago-Ayerdi, S. G., Brenes, A., & Goñi, I. (2009). Effect of grape antioxidant dietary fiber on the lipid oxidation of raw and cooked chicken hamburgers. LWT-Food Science and Technology, 42, 971–976.CrossRefGoogle Scholar
  130. Scalbert, A. (1991). Antimicrobial properties of tannins. Phytochemistry, 30, 3875–3883.CrossRefGoogle Scholar
  131. Selani, M. M., Contreras-Castillo, C. J., Shirahigue, L. D., Gallo, C. R., Plata-Oviedo, M., & Montes-Villanueva, N. D. (2011). Wine industry residues extracts as natural antioxidants in raw and cooked chicken meat during frozen storage. Meat Science, 88, 397–403.PubMedCrossRefGoogle Scholar
  132. Singh, A., Singh, R. K., Bhunia, A. K., & Singh, N. (2003). Efficacy of plant essential oils as antimicrobial agents against Listeria monocytogenes in hotdogs. LWT-Food Science and Technology, 36, 787–794.CrossRefGoogle Scholar
  133. Sivarooban, T., Hettiarachchy, N. S., & Johnson, M. G. (2007). Inhibition of Listeria monocytogenes using nisin with grape seed extract on Turkey frankfurters stored at 4 and 10°c. Journal of Food Protection, 70, 1017–1020.PubMedCrossRefGoogle Scholar
  134. Skandamis, P., Tsigarida, E., & Nychas, G. J. E. (2002). The effect of oregano essential oil on survival/death of salmonella typhimurium in meat stored at 5°c under aerobic, vp/map conditions. Food Microbiology, 19, 97–103.CrossRefGoogle Scholar
  135. Soriano, A., Alañón, M. E., Alarcón, M., García-Ruíz, A., Díaz-Maroto, M. C., & Pérez-Coello, M. S. (2018). Oak wood extracts as natural antioxidants to increase shelf life of raw pork patties in modified atmosphere packaging. Food Research International, 111, 524–533.PubMedCrossRefGoogle Scholar
  136. Stobnicka, A., & Gniewosz, M. (2018). Antimicrobial protection of minced pork meat with the use of swamp cranberry (Vaccinium oxycoccos L.) fruit and pomace extracts. Journal of Food Science and Technology, 55, 62–71.PubMedCrossRefGoogle Scholar
  137. Stojanović-Radić, Z., et al. (2018). Inhibition of salmonella enteritidis growth and storage stability in chicken meat treated with basil and rosemary essential oils alone or in combination. Food Control, 90, 332–343.CrossRefGoogle Scholar
  138. Stojković, D., Petrović, J., Soković, M., Glamočlija, J., Kukić-Marković, J., & Petrović, S. (2013). In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems. Journal of the Science of Food and Agriculture, 93, 3205–3208.PubMedCrossRefGoogle Scholar
  139. Sun, W., Zhao, M., Cui, C., Zhao, Q., & Yang, B. (2010). Effect of maillard reaction products derived from the hydrolysate of mechanically deboned chicken residue on the antioxidant, textural and sensory properties of cantonese sausages. Meat Science, 86, 276–282.PubMedCrossRefGoogle Scholar
  140. Theivendran, S., Hettiarachchy, N. S., & Johnson, M. G. (2006). Inhibition of Listeria monocytogenes by nisin combined with grape seed extract or green tea extract in soy protein film coated on Turkey frankfurters. Journal of Food Science, 71, M39–M44.CrossRefGoogle Scholar
  141. Trindade, R. A., Mancini-Filho, J., & Villavicencio, A. L. C. H. (2010). Natural antioxidants protecting irradiated beef burgers from lipid oxidation. LWT-Food Science and Technology, 43, 98–104.CrossRefGoogle Scholar
  142. Ulrey, R. K., Barksdale, S. M., Zhou, W., & van Hoek, M. L. (2014). Cranberry proanthocyanidins have anti-biofilm properties against pseudomonas aeruginosa. BMC Complementary and Alternative Medicine, 14, 499.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Ultee, A., Slump, R. A., Steging, G., & Smid, E. J. (2000). Antimicrobial activity of carvacrol toward Bacillus cereus on rice. Journal of Food Protection, 63, 620–624.PubMedCrossRefGoogle Scholar
  144. Vaithiyanathan, S., Naveena, B. M., Muthukumar, M., Girish, P. S., & Kondaiah, N. (2011). Effect of dipping in pomegranate (Punica granatum) fruit juice phenolic solution on the shelf life of chicken meat under refrigerated storage (4 °c). Meat Science, 88, 409–414.PubMedCrossRefGoogle Scholar
  145. Veggi, P. C., Cavalcanti, R. N., & Meireles, M. A. A. (2014). Production of phenolic-rich extracts from brazilian plants using supercritical and subcritical fluid extraction: Experimental data and economic evaluation. Journal of Food Engineering, 131, 96–109.CrossRefGoogle Scholar
  146. Vodnar, D. C. (2012). Inhibition of Listeria monocytogenes atcc 19115 on ham steak by tea bioactive compounds incorporated into chitosan-coated plastic films. Chemistry Central Journal, 6, 74.PubMedPubMedCentralGoogle Scholar
  147. Wagh, R. V., & Chatli, M. K. (2017). Response surface optimization of extraction protocols to obtain phenolic rich antioxidant from sea buckthorn and their potential application into model meat system. Journal of Food Science and Technology, 54, 1565–1576.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Weerakkody, N. S., Caffin, N., Dykes, G. A., & Turner, M. S. (2011). Effect of antimicrobial spice and herb extract combinations on Listeria monocytogenes, staphylococcus aureus, and spoilage microflora growth on cooked ready-to-eat vacuum-packaged shrimp. Journal of Food Protection, 74, 1119–1125.PubMedCrossRefGoogle Scholar
  149. Wong, P. Y. Y., & Kitts, D. D. (2006). Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chemistry, 97, 505–515.CrossRefGoogle Scholar
  150. Xiao, Z.-T., Zhu, Q., & Zhang, H.-Y. (2014). Identifying antibacterial targets of flavonoids by comparative genomics and molecular modeling. Open Journal of Genomics, 3, 1.CrossRefGoogle Scholar
  151. Xu, F., Wang, C., Wang, H., Xiong, Q., Wei, Y., & Shao, X. (2018). Antimicrobial action of flavonoids from Sedum aizoon l. Against lactic acid bacteria in vitro and in refrigerated fresh pork meat. Journal of Functional Foods, 40, 744–750.CrossRefGoogle Scholar
  152. Xue, J., Davidson, P. M., & Zhong, Q. (2013). Thymol nanoemulsified by whey protein-maltodextrin conjugates: The enhanced emulsifying capacity and antilisterial properties in milk by propylene glycol. Journal of Agricultural and Food Chemistry, 61, 12720–12726.PubMedCrossRefGoogle Scholar
  153. Yi, S., et al. (2014). Antimicrobial effect and membrane-active mechanism of tea polyphenols against serratia marcescens. World Journal of Microbiology and Biotechnology, 30, 451–460.PubMedCrossRefGoogle Scholar
  154. Yoda, Y., Hu, Z.-Q., Shimamura, T., & Zhao, W.-H. (2004). Different susceptibilities of staphylococcus and gram-negative rods to epigallocatechin gallate. Journal of Infection and Chemotherapy, 10, 55–58.PubMedCrossRefGoogle Scholar
  155. Yogesh, K., & Ali, J. (2014). Antioxidant potential of thuja (Thuja occidentalis) cones and peach (Prunus persia) seeds in raw chicken ground meat during refrigerated (4 ± 1 °c) storage. Journal of Food Science and Technology, 51, 1547–1553.PubMedCrossRefGoogle Scholar
  156. Yogesh, K., Jha, S. N., & Ahmad, T. (2012a). Antioxidant potential of aqueous extract of some food grain powder in meat model system. Journal of Food Science and Technology, 51, 3446-3451.Google Scholar
  157. Yogesh, K., Jha, S. N., & Yadav, D. N. (2012b). Antioxidant activities of Murraya koenigii (L.) Spreng berry extract: Application in refrigerated (4 ± 1 °c) stored meat homogenates. Agricultural Research, 1, 183–189.CrossRefGoogle Scholar
  158. Zhang, G., Hu, M., He, L., Fu, P., Wang, L., & Zhou, J. (2013). Optimization of microwave-assisted enzymatic extraction of polyphenols from waste peanut shells and evaluation of its antioxidant and antibacterial activities in vitro. Food and Bioproducts Processing, 91, 158–168.CrossRefGoogle Scholar
  159. Zhang, J., Rui, X., Wang, L., Guan, Y., Sun, X., & Dong, M. (2014). Polyphenolic extract from Rosa rugosa tea inhibits bacterial quorum sensing and biofilm formation. Food Control, 42, 125–131.CrossRefGoogle Scholar
  160. Zhang, H., Wu, J., & Guo, X. (2016). Effects of antimicrobial and antioxidant activities of spice extracts on raw chicken meat quality. Food Science and Human Wellness, 5, 39–48.CrossRefGoogle Scholar
  161. Zhao, W.-H., Hu, Z.-Q., Hara, Y., & Shimamura, T. (2002). Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 46, 2266–2268.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Zivanovic, S., Chi, S., & Draughon, A. F. (2005). Antimicrobial activity of chitosan films enriched with essential oils. Journal of Food Science, 70, M45–M51.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yogesh Kumar
    • 1
  • Nitin Mehta
    • 2
  • Rahul K. Anurag
    • 1
  • Swati Sethi
    • 1
  • Akhoon A. Bashir
    • 1
  • Vikas Kumar
    • 1
  • Kairam Narsaiah
    • 1
  1. 1.ICAR-Central Institute of Post-Harvest Engineering and Technology (CIPHET)LudhianaIndia
  2. 2.College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU)LudhianaIndia

Personalised recommendations