Music and Mirror Neuron System

  • Arturo Nuara


Musical abilities arise from an extensive practice—starting in childhood and going on throughout musician’s lifetime—engaging perceptual, motor, and cognitive domains. The shaping of brain networks that induces music skills development is sustained by the growing capability to transform auditory stimuli into their motor representation. As a result of this reiterated coupling, musicians reinforce their audio-motor integration proficiency, progressively expanding their sensory-motor repertoire. The discovery of the mirror neurons—a particular class of neurons that discharge both during the performance of a given motor act and during the observation of another person performing a motor act with a similar goal—offered a new perspective to Neuroscience to study brain mechanisms underlying musical activities. Indeed, musicians, while listening to music, activate the same brain motor areas they could have recruited during active musical performance. This peculiar ability plays a fundamental role in audio-motor consolidation occurring in music learning as in sensorimotor conversation during ensemble performances. Such audio-motor properties of human mirror neuron system could be additionally exploited in neurological rehabilitation in music-based interventions, such as melodic intonation therapy in aphasic patients and sonification-movement approaches in people suffering from upper limbs motor impairment.


Mirror neurons Mirror mechanism Audio-motor integration Audio-motor resonance Music Musicians Music interplay 



I gratefully acknowledge Prof. Rizzolatti for his helpful and valuable suggestions on the manuscript and Dr. Dacia Dalla Libera for her encouragement and help in English revision.


  1. 1.
    Celibidache S. Lessons of music phenomenology. Radio Televisione della Svizzera Italiana; 1974.Google Scholar
  2. 2.
    Blood AJ, Zatorre RJ. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci U S A. 2001;98(20):11818–23.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Patel AD. The evolutionary biology of musical rhythm: was Darwin wrong? PLoS Biol. 2014;12(3):e1001821.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G. Understanding motor events: a neurophysiological study. Exp Brain Res. 1992;91(1):176–80.PubMedCrossRefGoogle Scholar
  5. 5.
    Gallese V, Fadiga L, Fogassi L, Rizzolatti G. Action recognition in the premotor cortex. Brain. 1996;119(Pt 2):593–609.PubMedCrossRefGoogle Scholar
  6. 6.
    Fabbri-Destro M, Rizzolatti G. Mirror neurons and mirror systems in monkeys and humans. Physiology (Bethesda). 2008;23:171–9.Google Scholar
  7. 7.
    Rizzolatti G, Cattaneo L, Fabbri-Destro M, Rozzi S. Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding. Physiol Rev. 2014;94(2):655–706.PubMedCrossRefGoogle Scholar
  8. 8.
    Rizzolatti G, Fogassi L, Gallese V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci. 2001;2(9):661–70.PubMedCrossRefGoogle Scholar
  9. 9.
    Haueisen J, Knösche TR. Involuntary motor activity in pianists evoked by music perception. J Cogn Neurosci. 2001;13(6):786–92.PubMedCrossRefGoogle Scholar
  10. 10.
    Bangert M, Peschel T, Schlaug G, Rotte M, Drescher D, Hinrichs H, et al. Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. NeuroImage. 2006;30(3):917–26.PubMedCrossRefGoogle Scholar
  11. 11.
    Bangert M, Altenmüller EO. Mapping perception to action in piano practice: a longitudinal DC-EEG study. BMC Neurosci. 2003;4:26.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Haslinger B, Erhard P, Altenmuller E, Schroeder U, Boecker H, Ceballos-Baumann AO. Transmodal sensorimotor networks during action observation in professional pianists. J Cogn Neurosci. 2005;17(2):12.CrossRefGoogle Scholar
  13. 13.
    Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G. Parietal lobe: from action organization to intention understanding. Science. 2005;308(5722):662–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Rizzolatti G, Craighero L. The mirror-neuron system. Annu Rev Neurosci. 2004;27:169–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Umiltà MA, Kohler E, Gallese V, Fogassi L, Fadiga L, Keysers C, et al. I know what you are doing. A neurophysiological study. Neuron. 2001;31(1):155–65.PubMedCrossRefGoogle Scholar
  16. 16.
    Kohler E, Keysers C, Umiltà MA, Fogassi L, Gallese V, Rizzolatti G. Hearing sounds, understanding actions: action representation in mirror neurons. Science. 2002;297(5582):846–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Mooney R. Neural mechanisms for learned birdsong. Learn Mem. 2009;16(11):655–69.PubMedCrossRefGoogle Scholar
  18. 18.
    Doupe AJ, Kuhl PK. Birdsong and human speech: common themes and mechanisms. Annu Rev Neurosci. 1999;22:567–631.PubMedCrossRefGoogle Scholar
  19. 19.
    Konishi M. Birdsong: from behaviour to neuron. Annu Rev Neurosci. 1985;8:125–70.PubMedCrossRefGoogle Scholar
  20. 20.
    Marler P. Birdsong and speech development: could there be parallels? Am Sci. 1970;58(6):669–73.PubMedGoogle Scholar
  21. 21.
    Nottebohm F, Stokes TM, Leonard CM. Central control of song in the canary, Serinus canarius. J Comp Neurol. 1976 15;165(4):457–86.PubMedCrossRefGoogle Scholar
  22. 22.
    Mooney R. Auditory-vocal mirroring in songbirds. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369(1644):20130179.CrossRefGoogle Scholar
  23. 23.
    Brenowitz EA. Altered perception of species-specific song by female birds after lesions of a forebrain nucleus. Science. 1991;251(4991):303–5.PubMedCrossRefGoogle Scholar
  24. 24.
    McCasland JS, Konishi M. Interaction between auditory and motor activities in an avian song control nucleus. Proc Natl Acad Sci U S A. 1981;78(12):7815–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Prather JF, Peters S, Nowicki S, Mooney R. Precise auditory-vocal mirroring in neurons for learned vocal communication. Nature. 2008;451(7176):305–10.PubMedCrossRefGoogle Scholar
  26. 26.
    Caspers S, Zilles K, Laird AR, Eickhoff SB. ALE meta-analysis of action observation and imitation in the human brain. NeuroImage. 2010;50(3):1148–67.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Rizzolatti G, Sinigaglia C. The mirror mechanism: a basic principle of brain function. Nat Rev Neurosci. 2016;17(12):757–65.PubMedCrossRefGoogle Scholar
  28. 28.
    Gastaut HJ, Bert J. EEG changes during cinematographic presentation; moving picture activation of the EEG. Electroencephalogr Clin Neurophysiol. 1954;6(3):433–44.PubMedCrossRefGoogle Scholar
  29. 29.
    Gastaut H, Terzian H, Gastaut Y. Etude d’une activité électroencéphalographique mécconue: ‘Le rythme rolandique en arceau’. Mars Med. 1952;89:296–310.PubMedGoogle Scholar
  30. 30.
    Cochin S, Barthelemy C, Lejeune B, Roux S, Martineau J. Perception of motion and qEEG activity in human adults. Electroencephalogr Clin Neurophysiol. 1998;107(4):287–95.PubMedCrossRefGoogle Scholar
  31. 31.
    Babiloni C, Babiloni F, Carducci F, Cincotti F, Cocozza G, Del Percio C, et al. Human cortical electroencephalography (EEG) rhythms during the observation of simple aimless movements: a high-resolution EEG study. NeuroImage. 2002;17(2):559–72.PubMedCrossRefGoogle Scholar
  32. 32.
    Avanzini P, Fabbri-Destro M, Dalla Volta R, Daprati E, Rizzolatti G, Cantalupo G. The dynamics of sensorimotor cortical oscillations during the observation of hand movements: an EEG study. PLoS One. 2012;7(5):e37534.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Fadiga L, Fogassi L, Pavesi G, Rizzolatti G. Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol. 1995;73(6):2608–11.PubMedCrossRefGoogle Scholar
  34. 34.
    Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Cortical mechanisms of human imitation. Science. 1999;286(5449):2526–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Buccino G, Vogt S, Ritzl A, Fink GR, Zilles K, Freund H-J, et al. Neural circuits underlying imitation learning of hand actions: an event-related fMRI study. Neuron. 2004;42(2):323–34.PubMedCrossRefGoogle Scholar
  36. 36.
    Fadiga L, Craighero L, Buccino G, Rizzolatti G. Speech listening specifically modulates the excitability of tongue muscles: a TMS study. Eur J Neurosci. 2002;15(2):399–402.PubMedCrossRefGoogle Scholar
  37. 37.
    Watkins KE, Strafella AP, Paus T. Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia. 2003;41(8):989–94.PubMedCrossRefGoogle Scholar
  38. 38.
    Liberman AM, Mattingly IG. The motor theory of speech perception revised. Cognition. 1985;21(1):1–36.PubMedCrossRefGoogle Scholar
  39. 39.
    Tremblay P, Small SL. From language comprehension to action understanding and back again. Cereb Cortex. 2011;21(5):1166–77.PubMedCrossRefGoogle Scholar
  40. 40.
    Zarr N, Ferguson R, Glenberg AM. Language comprehension warps the mirror neuron system. Front Hum Neurosci. 2013;7:870.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Buccino G, Lui F, Canessa N, Patteri I, Lagravinese G, Benuzzi F, et al. Neural circuits involved in the recognition of actions performed by nonconspecifics: an FMRI study. J Cogn Neurosci. 2004;16(1):114–26.PubMedCrossRefGoogle Scholar
  42. 42.
    Ramón y Cajal S. Textura del sistema nervios del hombre y de los vertebrados: estudios sobre el plan estructural y composición histológica de los centros nerviosos adicionados de consideraciones fisiológicas fundadas en los nuevos descubrimientos. Zaragoza: Gobierno de Aragón; 2002.Google Scholar
  43. 43.
    Clarke EF. Ways of listening: an ecological approach to the perception of musical meaning. Oxford: Oxford University Press; 2005. 237 pGoogle Scholar
  44. 44.
    Baumann S, Koeneke S, Schmidt CF, Meyer M, Lutz K, Jancke L. A network for audio–motor coordination in skilled pianists and non-musicians. Brain Res. 2007;1161:65–78.PubMedCrossRefGoogle Scholar
  45. 45.
    Lahav A, Saltzman E, Schlaug G. Action representation of sound: audiomotor recognition network while listening to newly acquired actions. J Neurosci. 2007;27(2):308–14.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    D’Ausilio A, Altenmüller E, Olivetti Belardinelli M, Lotze M. Cross-modal plasticity of the motor cortex while listening to a rehearsed musical piece: cross-modal plasticity after learning a piano piece. Eur J Neurosci. 2006;24(3):955–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Ziemann U, Muellbacher W, Hallett M, Cohen LG. Modulation of practice-dependent plasticity in human motor cortex. Brain. 2001;124(Pt 6):1171–81.PubMedCrossRefGoogle Scholar
  48. 48.
    Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, et al. Corticocortical inhibition in human motor cortex. J Physiol Lond. 1993;471:501–19.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Wu CC, Hamm JP, Lim VK, Kirk IJ. Mu rhythm suppression demonstrates action representation in pianists during passive listening of piano melodies. Exp Brain Res. 2016;234(8):2133–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Esteban Munoz E. When gesture sounds: bodily significance in musical performance. Utrecht: Association européenne des conservatoires, académies de musique et Musikhochschulen (AEC); 2007 [cited 2018 Aug 20]. Available from:
  51. 51.
    Zatorre RJ, Halpern AR. Mental concerts: musical imagery and auditory cortex. Neuron. 2005;47(1):9–12.PubMedCrossRefGoogle Scholar
  52. 52.
    Rizzolatti G, Fadiga L, Gallese V, Fogassi L. Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res. 1996;3(2):131–41.PubMedCrossRefGoogle Scholar
  53. 53.
    Rizzolatti G, Arbib MA. Language within our grasp. Trends Neurosci. 1998;21(5):188–94.PubMedCrossRefGoogle Scholar
  54. 54.
    Volpe G, D’Ausilio A, Badino L, Camurri A, Fadiga L. Measuring social interaction in music ensembles. Philos Trans R Soc B Biol Sci. 2016;371(1693):20150377.CrossRefGoogle Scholar
  55. 55.
    Rizzolatti G, Fabbri-Destro M. The mirror system and its role in social cognition. Curr Opin Neurobiol. 2008;18(2):179–84.PubMedCrossRefGoogle Scholar
  56. 56.
    Newman-Norlund RD, van Schie HT, van Zuijlen AMJ, Bekkering H. The mirror neuron system is more active during complementary compared with imitative action. Nat Neurosci. 2007;10:817.PubMedCrossRefGoogle Scholar
  57. 57.
    Novembre G, Ticini LF, Schutz-Bosbach S, Keller PE. Distinguishing self and other in joint action. Evidence from a musical paradigm. Cereb Cortex. 2012;22(12):2894–903.PubMedCrossRefGoogle Scholar
  58. 58.
    Novembre G, Ticini LF, Schütz-Bosbach S, Keller PE. Motor simulation and the coordination of self and other in real-time joint action. Soc Cogn Affect Neurosci. 2014;9(8):1062–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Hadley LV, Novembre G, Keller PE, Pickering MJ. Causal role of motor simulation in turn-taking behavior. J Neurosci. 2015;35(50):16516–20.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Moore GP, Chen J. Timings and interactions of skilled musicians. Biol Cybern. 2010;103(5):401–14.PubMedCrossRefGoogle Scholar
  61. 61.
    Glowinski D, Mancini M, Cowie R, Camurri A, Chiorri C, Doherty C. The movements made by performers in a skilled quartet: a distinctive pattern, and the function that it serves. Front Psychol. 2013;4:841.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Badino L, D’Ausilio A, Glowinski D, Camurri A, Fadiga L. Sensorimotor communication in professional quartets. Neuropsychologia. 2014;55:98–104.PubMedCrossRefGoogle Scholar
  63. 63.
    D’Ausilio A, Badino L, Li Y, Tokay S, Craighero L, Canto R, et al. Leadership in orchestra emerges from the causal relationships of movement kinematics. PLoS One. 2012;7(5):e35757.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Donnay GF, Rankin SK, Lopez-Gonzalez M, Jiradejvong P, Limb CJ. Neural substrates of interactive musical improvisation: an fMRI study of ‘trading fours’ in Jazz. PLoS One. 2014;9(2):e88665.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Schutz A. Making music together: a study in social relationship. Soc Res. 1951;18(1):76–97.Google Scholar
  66. 66.
    Arbib MA. From monkey-like action recognition to human language: an evolutionary framework for neurolinguistics. Behav Brain Sci. 2005;28(2):105–24; discussion 125–67.PubMedCrossRefGoogle Scholar
  67. 67.
    Patel AD. Music, language, and the brain. New York: Oxford University Press; 2008. 513 pGoogle Scholar
  68. 68.
    Koelsch S, Rohrmeier M, Torrecuso R, Jentschke S. Processing of hierarchical syntactic structure in music. Proc Natl Acad Sci U S A. 2013;110(38):15443–8.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Wakita M. Broca’s area processes the hierarchical organization of observed action. Front Hum Neurosci. 2013;7:937.PubMedGoogle Scholar
  70. 70.
    Overy K, Nicolson RI, Fawcett AJ, Clarke EF. Dyslexia and music: measuring musical timing skills. Dyslexia. 2003;9(1):18–36.PubMedCrossRefGoogle Scholar
  71. 71.
    Fawcett AJ, Nicolson RI. Persistent deficits in motor skill of children with dyslexia. J Mot Behav. 1995;27(3):235–40.CrossRefGoogle Scholar
  72. 72.
    Alajouanine T. Aphasia and artistic realization. Brain. 1948;71(Pt 3):229–41.PubMedCrossRefGoogle Scholar
  73. 73.
    Amaducci L, Grassi E, Boller F. Maurice Ravel and right-hemisphere musical creativity: influence of disease on his last musical works? Eur J Neurol. 2002;9(1):75–82.PubMedCrossRefGoogle Scholar
  74. 74.
    Özdemir E, Norton A, Schlaug G. Shared and distinct neural correlates of singing and speaking. NeuroImage. 2006;33(2):628–35.PubMedCrossRefGoogle Scholar
  75. 75.
    Stahl B, Henseler I, Turner R, Geyer S, Kotz SA. How to engage the right brain hemisphere in aphasics without even singing: evidence for two paths of speech recovery. Front Hum Neurosci. 2013;7:35.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Albert ML, Sparks RW, Helm NA. Melodic intonation therapy for aphasia. Arch Neurol. 1973;29(2):130–1.PubMedCrossRefGoogle Scholar
  77. 77.
    van der Meulen I, van de Sandt-Koenderman WME, Heijenbrok-Kal MH, Visch-Brink EG, Ribbers GM. The efficacy and timing of melodic intonation therapy in subacute aphasia. Neurorehabil Neural Repair. 2014;28(6):536–44.PubMedCrossRefGoogle Scholar
  78. 78.
    Sihvonen AJ, Särkämö T, Leo V, Tervaniemi M, Altenmüller E, Soinila S. Music-based interventions in neurological rehabilitation. Lancet Neurol. 2017;16(8):648–60.PubMedCrossRefGoogle Scholar
  79. 79.
    Belin P, Van Eeckhout P, Zilbovicius M, Remy P, François C, Guillaume S, et al. Recovery from nonfluent aphasia after melodic intonation therapy: a PET study. Neurology. 1996;47(6):1504–11.PubMedCrossRefGoogle Scholar
  80. 80.
    Overy K, Norton A, Ozdemir E, Helm-Estabrooks N, Schlauh G. Activation of left inferior frontal gyrus after melodic intonation therapy in a Broca’s aphasia patient. Washington, DC: Society for Neuroscience; 2005.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Arturo Nuara
    • 1
    • 2
  1. 1.Istituto di NeuroscienzeConsiglio Nazionale delle RicercheParmaItaly
  2. 2.Dipartimento di Scienze Biomediche, Metaboliche e NeuroscienzeUniversità di Modena e Reggio EmiliaModenaItaly

Personalised recommendations