Advertisement

Multiplicative Slices, Relativistic Toda and Shifted Quantum Affine Algebras

  • Michael Finkelberg
  • Alexander Tsymbaliuk
Chapter
Part of the Progress in Mathematics book series (PM, volume 330)

Abstract

We introduce the shifted quantum affine algebras. They map homomorphically into the quantized K-theoretic Coulomb branches of \(3d\ {\mathcal N}=4\) SUSY quiver gauge theories. In type A, they are endowed with a coproduct, and they act on the equivariant K-theory of parabolic Laumon spaces. In type A1, they are closely related to the type A open relativistic quantum Toda system.

Mathematics Subject Classification

17B37 81R10 81T13 

Notes

Acknowledgements

We are deeply grateful to M. Bershtein, R. Bezrukavnikov, A. Braverman, A. Brochier, S. Cautis, S. Cherkis, T. Dimofte, P. Etingof, B. Feigin, S. Gautam, M. Gekhtman, V. Ginzburg, D. Hernandez, D. Jordan, J. Kamnitzer, S. Khoroshkin, A. Marshakov, A. Molev, H. Nakajima, V. Pestun, L. Rybnikov, A. Shapiro, A. Weekes, M. Yakimov, whose generous help and advice was crucial in the process of our work. We also thank the anonymous referee.

M.F. was partially funded within the framework of the HSE University Basic Research Program and the Russian Academic Excellence Project ‘5-100’.

A.T. gratefully acknowledges support from the Simons Center for Geometry and Physics, Stony Brook University and is extremely grateful to IHES for invitation and wonderful working conditions in the summer 2017, where most of the research for this paper was performed. A.T. also thanks Yale University and Max Planck Institute for Mathematics in Bonn for the hospitality and support in the summer 2018, where the final version of this paper was completed. A.T. was partially supported by the NSF Grants DMS–1502497, DMS–1821185.

References

  1. 1.
    M. Atiyah, N. Hitchin, The geometry and dynamics of magnetic monopoles, Princeton University Press (1988).Google Scholar
  2. 2.
    A. Alekseev, A. Malkin, E. Meinrenken, Lie group valued moment maps, J. Differential Geom. 48 (1998), no. 3, 445–495.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    A. Beilinson, Coherent sheaves on \({\mathbb {P}}^n\) and problems in linear algebra, Funct. Anal. Appl. 12 (1978), no. 3, 214–216.MathSciNetCrossRefGoogle Scholar
  4. 4.
    M. Bullimore, T. Dimofte, D. Gaiotto, J. Hilburn, H. Kim, Vortices and Vermas, Adv. Theor. Math. Phys. 22 (2018), no. 4, 803–917.MathSciNetCrossRefGoogle Scholar
  5. 5.
    V. Baranovsky, S. Evens, V. Ginzburg, Representations of quantum tori and double-affine Hecke algebras, preprint, arXiv:math/0005024; an abridged version Representations of quantum tori and G-bundles on elliptic curves published in Progr. Math. 213 (2003), 29–48.zbMATHGoogle Scholar
  6. 6.
    A. Braverman, M. Finkelberg, Finite difference quantum Toda lattice via equivariant K-theory, Transf. Groups 10 (2005), no. 3–4, 363–386.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    A. Braverman, B. Feigin, M. Finkelberg, L. Rybnikov, A finite analog of the AGT relation I: Finite W-algebras and quasimaps’ spaces, Comm. Math. Phys. 308 (2011), no. 2, 457–478.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    R. Bezrukavnikov, M. Finkelberg, I. Mirković, Equivariant homology and K-theory of affine Grassmannians and Toda lattices, Compos. Math. 141 (2005), no. 3, 746–768.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    A. Braverman, M. Finkelberg, H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional \({\mathcal {N}}=4\) gauge theories, II, Adv. Theor. Math. Phys. 22 (2018), no. 5, 1071–1147; arXiv:1601.03586.Google Scholar
  10. 10.
    A. Braverman, M. Finkelberg, H. Nakajima, Coulomb branches of 3d \({\mathcal {N}}=4\) quiver gauge theories and slices in the affine Grassmannian (with appendices by Alexander Braverman, Michael Finkelberg, Joel Kamnitzer, Ryosuke Kodera, Hiraku Nakajima, Ben Webster, Alex Weekes), preprint, arXiv:1604.03625.Google Scholar
  11. 11.
    M. Bertola, M. Gekhtman, Biorthogonal Laurent polynomials, Töplitz determinants, minimal Toda orbits and isomonodromic tau functions, Constr. Approx. 26 (2007), no. 3, 383–430.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    J. Brundan and A. Kleshchev, Shifted Yangians and finite W-algebras, Adv. Math. 200 (2006), no. 1, 136–195.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    I. Cherednik, B. Feigin, Rogers-Ramanujan type identities and Nil-DAHA, Adv. Math. 248 (2013), 1050–1088.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    S. Cherkis, A. Kapustin, Periodic monopoles with singularities and \({\mathcal {N}}=2\) super-QCD, Comm. Math. Phys. 234 (2003), no. 1, 1–35.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    S. Cautis, H. Williams, Cluster theory of the coherent Satake category, preprint, arXiv:1801.08111.Google Scholar
  16. 16.
    V. Drinfeld, A New realization of Yangians and quantized affine algebras, Sov. Math. Dokl. 36 (1988), no. 2, 212–216.Google Scholar
  17. 17.
    J. Ding, I. Frenkel, Isomorphism of two realizations of quantum affine algebra \(U_q(\widehat {\mathfrak {gl}(n)})\), Comm. Math. Phys. 156 (1993), no. 2, 277–300.Google Scholar
  18. 18.
    P. Di Francesco, R. Kedem, Quantum Q-systems: from cluster algebras to quantum current algebras, Lett. Math. Phys 107 (2017), no. 2, 301–341.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    P. Etingof, Whittaker functions on quantum groups and q-deformed Toda operators, Amer. Math. Soc. Transl. Ser. 2 194 (1999), 9–25.MathSciNetzbMATHGoogle Scholar
  20. 20.
    S. Evens, J.-H. Lu, Poisson geometry of the Grothendieck resolution of a complex semisimple group, Moscow Math. Journal 7 (2007), no. 4, 613–642.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    L. Faybusovich, M. Gekhtman, Elementary Toda orbits and integrable lattices, J. Math. Phys. 41 (2000), no. 5, 2905–2921.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    B. Feigin, E. Feigin, M. Jimbo, T. Miwa, E. Mukhin, Fermionic formulas for eigenfunctions of the difference Toda Hamiltonian, Lett. Math. Phys. 88 (2009), no. 1–3, 39–77; correction to “Fermionic formulas for eigenfunctions of the difference Toda Hamiltonian”, Lett. Math. Phys. 108 (2018), no. 7, 1779–1781.Google Scholar
  23. 23.
    B. Feigin, M. Finkelberg, A. Negut, L. Rybnikov, Yangians and cohomology rings of Laumon spaces, Selecta Math. (N.S.) 17 (2011), no. 3, 573–607.Google Scholar
  24. 24.
    M. Finkelberg, J. Kamnitzer, K. Pham, L. Rybnikov, A. Weekes, Comultiplication for shifted Yangians and quantum open Toda lattice, Adv. Math. 327 (2018), 349–389.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    M. Finkelberg, A. Kuznetsov, L. Rybnikov, Towards a cluster structure on trigonometric zastava (with appendix by Galyna Dobrovolska), Selecta Math. (N.S.) 24 (2018), no. 1, 187–225.Google Scholar
  26. 26.
    V. Fock, A. Marshakov, A note on quantum groups and relativistic Toda theory, Nuclear Phys. B Proc. Suppl. 56B (1997), 208–214.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    V. Futorny, A. Molev, S. Ovsienko, Gelfand-Tsetlin bases for representations of finite W-algebras and shifted Yangians, in “Lie theory and its applications in physics VII”, (H. D. Doebner and V. K. Dobrev, Eds), Proceedings of the VII International Workshop, Varna, Bulgaria, June 2007. Heron Press, Sofia (2008), 352–363.Google Scholar
  28. 28.
    L. Faddeev, L. Takhtajan, The quantum method for the inverse problem and the XYZ Heisenberg model, Russian Math. Surveys 34 (1979), no. 5, 11–68.MathSciNetCrossRefGoogle Scholar
  29. 29.
    M. Finkelberg, A. Tsymbaliuk, Shifted quantum affine algebras: integral forms in type A (with appendices by Alexander Tsymbaliuk and Alex Weekes), Arnold Mathematical Journal (2019), https://doi.org/10.1007/s40598-019-00118-7; arXiv:1811.12137.
  30. 30.
    A. Gerasimov, S. Kharchev, D. Lebedev, S. Oblezin, On a class of representations of the Yangian and moduli space of monopoles, Comm. Math. Phys. 260 (2005), no. 3, 511–525.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    A. Gerasimov, S. Kharchev, D. Lebedev, S. Oblezin, On a class of representations of quantum groups, Noncommutative geometry and representation theory in mathematical physics, Contemp. Math. 391, Amer. Math. Soc., Providence, RI (2005), 101–110.Google Scholar
  32. 32.
    L. Gow, A. Molev, Representations of twisted q-Yangians, Selecta Math. (N.S.) 16 (2010), no. 3, 439–499.Google Scholar
  33. 33.
    N. Guay, H. Nakajima, C. Wendlandt, Coproduct for Yangians of affine Kac-Moody algebras, Adv. in Math. 338 (2018), 865–911.MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    M. Gekhtman, M. Shapiro, A. Vainshtein, Generalized Bäcklund-Darboux transformations for Coxeter–Toda flows from a cluster algebra perspective, Acta Math. 206 (2011), no. 2, 245–310.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    R. Gonin, A. Tsymbaliuk, On Sevostyanov’s construction of quantum difference Toda lattices, IMRN (2019),  https://doi.org/10.1093/imrn/rnz083; arXiv:1804.01063.
  36. 36.
    M. Haiman, Cherednik algebras, Macdonald polynomials and combinatorics, ICM 2006 Proceedings 3, European Math. Soc. (2006), 843–872.Google Scholar
  37. 37.
    D. Hernandez, Representations of quantum affinizations and fusion product, Transform. Groups 10 (2005), no. 2, 163–200.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    T. Hoffmann, J. Kellendonk, N. Kutz, N. Reshetikhin, Factorization dynamics and Coxeter–Toda lattices, Comm. Math. Phys. 212 (2000), no. 2, 297–321.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    X. He, G. Lusztig, A generalization of Steinberg’s cross section, J. Amer. Math. Soc. 25 (2012), no. 3, 739–757.MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    M. Jimbo, A q-analogue of \(U({\mathfrak {gl}}(N+1))\) , Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), no. 3, 247–252.Google Scholar
  41. 41.
    N. Jing, On Drinfeld realization of quantum affine algebras, in Monster and Lie Algebras, Columbus, OH, 1996 (Ohio State University Mathematical Research Institute Publications, de Gruyter, Berlin, 1998), Vol. 7, 195–206.Google Scholar
  42. 42.
    A. Joseph, Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 29, Springer-Verlag, Berlin (1995).CrossRefGoogle Scholar
  43. 43.
    V. Kuznetsov, A. Tsyganov, Quantum relativistic Toda chains, Journal of Math. Sciences 80 (1996), no. 3, 1802–1810.MathSciNetCrossRefGoogle Scholar
  44. 44.
    J. Kamnitzer, P. Tingley, B. Webster, A. Weekes, O. Yacobi, Highest weights for truncated shifted Yangians and product monomial crystals, preprint, arXiv:1511.09131.Google Scholar
  45. 45.
    J. Kamnitzer, B. Webster, A. Weekes, O. Yacobi, Yangians and quantizations of slices in the affine Grassmannian, Algebra Number Theory 8 (2014), no. 4, 857–893.MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    G. Laumon, Un analogue global du cône nilpotent, Duke Math. Journal 57 (1988), no. 2, 647–671.MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    S. Levendorskii, On generators and defining relations of Yangians, Journal of Geometry and Physics 12 (1993), no. 1, 1–11.MathSciNetCrossRefGoogle Scholar
  48. 48.
    J.-H. Lu, Hopf algebroids and quantum groupoids, International J. Math. 7 (1996), no. 1, 47–70.MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976), no. 2, 101–159.MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    G. Lusztig, Introduction to quantum groups, Progress in Math. 110 (1993).Google Scholar
  51. 51.
    A. Molev, Yangians and classical Lie algebras, Mathematical Surveys and Monographs, 143, American Mathematical Society, Providence, RI (2007).zbMATHCrossRefGoogle Scholar
  52. 52.
    A. Malkin, V. Ostrik, M. Vybornov, The minimal degeneration singularities in the affine Grassmannians, Duke Math. J. 126 (2005), no. 2, 233–249.MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    A. Negut, Quantum toroidal and shuffle algebras, preprint, arXiv:1302.6202.Google Scholar
  54. 54.
    M. Nazarov, V. Tarasov, Yangians and Gel’fand-Zetlin bases, Publ. RIMS Kyoto Univ. 30 (1994), no. 3, 459–478.zbMATHCrossRefGoogle Scholar
  55. 55.
    G. Pappas, M. Rapoport, Twisted loop groups and their affine flag varieties, Adv. Math. 219 (2008), no. 1, 118–198.MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    A. Sevostyanov, Quantum deformation of Whittaker modules and the Toda lattice, Duke Math. J. 105 (2000), no. 2, 211–238.MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    A. Sevostyanov, Conjugacy classes in Weyl groups and q-W algebras, Adv. Math. 228 (2011), no. 3, 1315–1376.MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    R. Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49–80.MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    M. Semenov-Tian-Shansky, Poisson Lie groups, quantum duality principle, and the quantum double, Contemp. Math. 175 (1994), 219–248.MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    M. Semenov-Tian-Shansky, A. Sevostyanov, Drinfeld-Sokolov reduction for difference operators and deformations of \({\mathcal {W}}\) -algebras. II. The general semisimple case, Comm. Math. Phys. 192 (1998), no. 3, 631–647.Google Scholar
  61. 61.
    A. Tsymbaliuk, Quantum affine Gelfand–Tsetlin bases and quantum toroidal algebra via K-theory of affine Laumon spaces, Selecta Math. (N.S.) 16 (2010), no. 2, 173–200; for a corrected version refer to arXiv:0903.0917v3.Google Scholar
  62. 62.
    A. Tsymbaliuk, The affine Yangian of \(\mathfrak {gl}_1\) revisited, Adv. Math. 304 (2017), 583–645.MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    A. Tsymbaliuk, PBWD bases and shuffle algebra realizations for \(U_{\boldsymbol {v}}(L\mathfrak {sl}_n), U_{{\boldsymbol {v}}_1,{\boldsymbol {v}}_2}(L\mathfrak {sl}_n), U_{\boldsymbol {v}}(L\mathfrak {sl}(m|n))\) and their integral forms, preprint, arXiv:1808.09536.Google Scholar
  64. 64.
    M. Varagnolo, E. Vasserot, Double affine Hecke algebras and affine flag manifolds, I. Affine flag manifolds and principal bundles, Trends in Mathematics, Birkhäuser/Springer, Basel (2010), 233–289.Google Scholar
  65. 65.
    M. Varagnolo, E. Vasserot, Double affine Hecke algebras at roots of unity, Representation Theory 14 (2010), 510–600.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michael Finkelberg
    • 1
    • 2
    • 3
  • Alexander Tsymbaliuk
    • 4
  1. 1.National Research University Higher School of EconomicsDepartment of MathematicsMoscowRussian Federation
  2. 2.Skolkovo Institute of Science and TechnologyMoscowRussian Federation
  3. 3.Institute for Information Transmission ProblemsMoscowRussian Federation
  4. 4.Yale UniversityDepartment of MathematicsNew HavenUSA

Personalised recommendations