Live Migration of Virtual Machines in OpenStack: A Perspective from Reliability Evaluation

  • Jin Hao
  • Kejiang YeEmail author
  • Cheng-Zhong Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11513)


Virtualization technology is widely used in cloud data centers and today’s IT infrastructure. A key technology for server virtualization is the live migration of virtual machines (VMs). This technology allows VMs to be moved from one physical host to another while minimizing service downtime. The cloud providers usually use cloud operating system for virtual machine management. Currently the most widely used open source cloud operating system is OpenStack. In this paper, we investigate the reliability of VM live migration in OpenStack by increasing the system pressures and injecting network failures during the migration. We analyze the impact of these pressures and failures on the performance of VM live migration. The experimental results can be used to guide data center administrators in migration decisions and fault localization. Furthermore, it can help researchers to find bottlenecks and optimization methods for live migration in OpenStack.


OpenStack Virtual machines Live migration Reliability 



This work is supported by China National Basic Research Program (973 Program, No. 2015CB352400), National Natural Science Foundation of China (No. 61702492, 61572487), Equipment Pre-Research Foundation (No. 61400020403), Shenzhen Basic Research Program (No. JCYJ20180302145731531), and Shenzhen Discipline Construction Project for Urban Computing and Data Intelligence.


  1. 1.
    Mell, P., Grance, T.: The NIST definition of cloud computing, 1–3 (2011).
  2. 2.
    Choudhary, A., Govil, M.C., Singh, G., et al.: A critical survey of live virtual machine migration techniques. J. Cloud Comput. 6(1), 23 (2017)Google Scholar
  3. 3.
    Sefraoui, O., Aissaoui, M., Eleuldj, M.: OpenStack: toward an open-source solution for cloud computing. Int. J. Comput. Appl. 55(3), 38–42 (2012)Google Scholar
  4. 4.
    OpenStack Cloud (2019).
  5. 5.
    Voorsluys, W., Broberg, J., Venugopal, S., Buyya, R.: Cost of virtual machine live migration in clouds: a performance evaluation. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS, vol. 5931, pp. 254–265. Springer, Heidelberg (2009). Scholar
  6. 6.
    Hu, W., Hicks, A., Zhang, L., et al.: A quantitative study of virtual machine live migration. In: Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference, p. 11. ACM (2013)Google Scholar
  7. 7.
    Akoush, S., Sohan, R., Rice, A., et al.: Predicting the performance of virtual machine migration. In: 18th IEEE/ACM International Symposium on Modelling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS 2010), pp. 37–46. IEEE (2010)Google Scholar
  8. 8.
    Zhang, F., Liu, G., Fu, X., et al.: A survey on virtual machine migration: challenges, techniques, and open issues. IEEE Commun. Surv. Tutorials 20(2), 1206–1243 (2018)CrossRefGoogle Scholar
  9. 9.
    Clark, C., Fraser, K., Hand, S., et al.: Live migration of virtual machines. In: Proceedings of the 2nd Conference on Symposium on Networked Systems Design & Implementation, vol. 2, pp. 273–286. USENIX Association (2005)Google Scholar
  10. 10.
    Hines, M.R., Deshpande, U., Gopalan, K.: Post-copy live migration of virtual machines. ACM SIGOPS Oper. Syst. Rev. 43(3), 14–26 (2009)CrossRefGoogle Scholar
  11. 11.
    Jin, H., Deng, L., Wu, S., et al.: Live virtual machine migration with adaptive, memory compression. In: 2009 IEEE International Conference on Cluster Computing and Workshops, pp. 1–10. IEEE (2009)Google Scholar
  12. 12.
    Jin, H., Deng, L., Wu, S., et al.: MECOM: live migration of virtual machines by adaptively compressing memory pages. Future Gener. Comput. Syst. 38, 23–35 (2014)CrossRefGoogle Scholar
  13. 13.
    Zhang, X., Huo, Z., Ma, J., et al.: Exploiting data deduplication to accelerate live virtual machine migration. In: 2010 IEEE International Conference on Cluster Computing, pp. 88–96. IEEE (2010)Google Scholar
  14. 14.
    Huang, W., Gao, Q., Liu, J., et al.: High performance virtual machine migration with RDMA over modern interconnects. In: 2007 IEEE International Conference on Cluster Computing, pp. 11–20. IEEE (2007)Google Scholar
  15. 15.
    Hines, M.R., Gopalan, K.: Post-copy based live virtual machine migration using adaptive pre-paging and dynamic self-ballooning. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, pp. 51–60. ACM (2009)Google Scholar
  16. 16.
    Shribman, A., Hudzia, B.: Pre-copy and post-copy VM live migration for memory intensive applications. In: Caragiannis, I., et al. (eds.) Euro-Par 2012. LNCS, vol. 7640, pp. 539–547. Springer, Heidelberg (2013). Scholar
  17. 17.
    Forsman, M., Glad, A., Lundberg, L., et al.: Algorithms for automated live migration of virtual machines. J. Syst. Softw. 101, 110–126 (2015)CrossRefGoogle Scholar
  18. 18.
    Liu, H., Xu, C.Z., Jin, H., et al.: Performance and energy modeling for live migration of virtual machines. In: Proceedings of the 20th International Symposium on High Performance Distributed Computing, pp. 171–182. ACM (2011)Google Scholar
  19. 19.
    Ye, K., Jiang, X., Huang, D., et al.: Live migration of multiple virtual machines with resource reservation in cloud computing environments. In: 2011 IEEE 4th International Conference on Cloud Computing, pp. 267–274. IEEE, 2011Google Scholar
  20. 20.
    Ye, K., Jiang, X., Ma, R., et al.; VC-migration: live migration of virtual clusters in the cloud. In: Proceedings of the 2012 ACM/IEEE 13th International Conference on Grid Computing, pp. 209–218. IEEE Computer Society (2012)Google Scholar
  21. 21.
    Beloglazov, A., Buyya, R.: OpenStack Neat: a framework for dynamic and energy-efficient consolidation of virtual machines in OpenStack clouds. Concurrency Comput. Pract. Experience 27(5), 1310–1333 (2015)CrossRefGoogle Scholar
  22. 22.
    Ye, K., Wu, Z., Wang, C., et al.: Profiling-based workload consolidation and migration in virtualized data centers. IEEE Trans. Parallel Distrib. Syst. 26(3), 878–890 (2015)CrossRefGoogle Scholar
  23. 23.
    Sun, G., Liao, D., Anand, V., et al.: A new technique for efficient live migration of multiple virtual machines. Future Gener. Comput. Syst. 55, 74–86 (2016)CrossRefGoogle Scholar
  24. 24.
    Duggan, M., Duggan, J., Howley, E., et al.: A network aware approach for the scheduling of virtual machine migration during peak loads. Cluster Comput. 20(3), 2083–2094 (2017)CrossRefGoogle Scholar
  25. 25.
    Huang, D., Ye, D., He, Q., et al.: Virt-LM: a benchmark for live migration of virtual machine. ACM SIGSOFT Software Eng. Notes 36(5), 307–316 (2011)CrossRefGoogle Scholar
  26. 26.
    Galloway, M., Loewen, G., Vrbsky, S.: Performance metrics of virtual machine live migration. In: 2015 IEEE 8th International Conference on Cloud Computing (CLOUD), pp. 637–644. IEEE (2015)Google Scholar
  27. 27.
  28. 28.
  29. 29.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
  2. 2.Faculty of Science and TechnologyUniversity of MacauTaipaMacao, Special Administrative Region of China

Personalised recommendations