Advertisement

Metrics for Temporal Text Networks

  • Davide Vega
  • Matteo MagnaniEmail author
Chapter
Part of the Computational Social Sciences book series (CSS)

Abstract

Human communication, either online or offline, is characterized by when information is shared from one actor to the other and by what specific information is exchanged. Using text as a way to represent the exchanged information, we can represent human communication systems with a temporal text network model where actors and messages coexist in a dynamic multilayer network. In this model, actors and messages are represented in separate layers, connected by inter-layer temporal edges representing the communication acts—who and when communicate what information. In this chapter we revisit somemeasures specifically developed for temporal networks, and extend them to the case of temporal text networks. In particular, we focus on defining measures relevant for the analysis of information propagation, including the concepts of walk, path, temporal precedence and path distance measures. We conclude by discussing how to use the proposed measures in practice by conducting a comparative analysis in a sample communication network based on Twitter mentions.

Keywords

Human communication Communication system Information Temporal text network Multilayer Text Distance measure Precedence Path 

Notes

Acknowledgements

We would like to thank Prof. Christian Rohner for his comments and suggestions.

This work was partially supported by the European Community through the project “Values and ethics in Innovation for Responsible Technology in Europe” (Virt-EU) funded under Horizon 2020 ICT-35-RIA call Enabling Responsible ICT-related Research and Innovation.

References

  1. 1.
    Cheng, J., Adamic, L.A., Kleinberg, J.M., Leskovec, J.: Do cascades recur? In: Proceedings of the 25th International Conference on World Wide Web, pp. 671–681. International WWW Conferences Steering Committee (2016)Google Scholar
  2. 2.
    Dickison, M., Magnani, M., Rossi, L.: Multilayer Social Networks. Cambridge University Press, Cambridge (2016)CrossRefGoogle Scholar
  3. 3.
    Dodds, P.S., Danforth, C.M.: Measuring the happiness of large-scale written expression: songs, blogs, and presidents. J. Happiness Stud. 11(4), 441–456 (2010). https://doi.org/10.1007/s10902-009-9150-9 CrossRefGoogle Scholar
  4. 4.
    Gauvin, L., Panisson, A., Cattuto, C., Barrat, A.: Activity clocks: spreading dynamics on temporal networks of human contact. Sci. Rep. 3, 3099 (2013).  https://doi.org/10.1038/srep03099 ADSCrossRefGoogle Scholar
  5. 5.
    Gomez Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’10, pp. 1019–1028. ACM, New York (2010). http://doi.acm.org/10.1145/1835804.1835933
  6. 6.
    Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012). https://doi.org/10.1016/j.physrep.2012.03.001 ADSCrossRefGoogle Scholar
  7. 7.
    Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabâsi, A.L., Saramäi, J.: Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 83(2), 025102(R) (2011).  https://doi.org/10.1103/PhysRevE.83.025102
  8. 8.
    Kim, J., Diesner, J.: Over-time measurement of triadic closure in coauthorship networks. Soc. Netw. Anal. Min. 7(1), 9 (2017). https://doi.org/10.1007/s13278-017-0428-3 CrossRefGoogle Scholar
  9. 9.
    Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)CrossRefGoogle Scholar
  10. 10.
    Lambiotte, R., Tabourier, L., Delvenne, J.C.: Burstiness and spreading on temporal networks. Eur. Phys. J. B 86(7), 320 (2013).  https://doi.org/10.1140/epjb/e2013-40456-9 ADSCrossRefGoogle Scholar
  11. 11.
    Lavrenko, V., Schmill, M., Lawrie, D., Ogilvie, P., Jensen, D., Allan, J.: Mining of concurrent text and time series. In: SIGKDD Workshop on Text Mining, pp. 37–44 (2000)Google Scholar
  12. 12.
    Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: International Conference on Knowledge Discovery and Data Mining (KDD), p. 420 (2007). https://doi.org/10.1145/1281192.1281239
  13. 13.
    Luhmann, N.: Social Systems. Stanford University Press, Palo Alto (1995)Google Scholar
  14. 14.
    Magnani, M., Montesi, D., Rossi, L.: Conversation retrieval from microblogging sites. Inf. Retrieval J. 15(3–4) (2012)Google Scholar
  15. 15.
    Mucha, P.J., Porter, M.A.: Communities in multislice voting networks. Chaos: Interdisciplinary J. Nonlinear Sci. 20(4), 041108 (2010). https://doi.org/10.1063/1.3518696 CrossRefGoogle Scholar
  16. 16.
    O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: linking text sentiment to public opinion time series. In: Cohen, W.W., Gosling, S. (eds.) Proceedings of the Eleventh International Conference on Web and Social Media. The AAAI Press, Palo Alto (2010)Google Scholar
  17. 17.
    Paranjape, A., Benson, A.R., Leskovec, J.: Motifs in temporal networks. In: Proceedings of the 10th ACM International Conference on Web Search and Data Mining, WSDM’17, pp. 601–610. ACM, New York (2017). https://doi.org/10.1145/3018661.3018731
  18. 18.
    Roth, C., Cointet, J.P.: Social and semantic coevolution in knowledge networks. Soc. Netw. 32(1), 16–29 (2010). https://doi.org/10.1016/j.socnet.2009.04.005 CrossRefGoogle Scholar
  19. 19.
    Salehi, M., Sharma, R., Marzolla, M., Magnani, M., Siyari, P., Montesi, D.: Spreading processes in multilayer networks. IEEE Trans. Netw. Sci. Eng. 2(2), 65–83 (2015). http://arxiv.org/abs/1405.4329 CrossRefGoogle Scholar
  20. 20.
    Snijders, T.A.B.: Models for longitudinal network data. In: P.J. Carrington, J. Scott, S. Wasserman (eds.) Models and Methods in Social Network Analysis, Structural Analysis in the Social Sciences, pp. 215–247. Cambridge University Press, Cambridge (2005).  https://doi.org/10.1017/CBO9780511811395.011 Google Scholar
  21. 21.
    Snijders, T.A.B.: Siena: statistical modeling of longitudinal network data. In: Encyclopedia of Social Network Analysis and Mining, pp. 1718–1725. Springer, New York (2014)Google Scholar
  22. 22.
    Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.F., Vanhems, P.: High-resolution measurements of face-to-face contact patterns in a primary school. PLoS One 6(8) (2011).  https://doi.org/10.1371/journal.pone.0023176 ADSCrossRefGoogle Scholar
  23. 23.
    Tamine, L., Soulier, L., Jabeur, L., Amblard, F., Hanachi, C., Hubert, G., Roth, C.: Social media-based collaborative information access: analysis of online crisis-related twitter conversations. In: HT 2016 - Proceedings of the 27th ACM Conference on Hypertext and Social Media, pp. 159–168 (2016). https://doi.org/10.1145/2914586.2914589
  24. 24.
    Vadicamo, L., Carrara, F., Cimino, A., Cresci, S., Dell’Orletta, F., Falchi, F., Tesconi, M.: Cross-media learning for image sentiment analysis in the wild. In: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 308–317 (2017).  https://doi.org/10.1109/ICCVW.2017.45
  25. 25.
    Vega, D., Magnani, M.: Foundations of temporal text networks. Appl. Netw. Sci. 3(1), 26 (2018). https://doi.org/10.1007/s41109-018-0082-3 CrossRefGoogle Scholar
  26. 26.
    Viard, T., Latapy, M., Magnien, C.: Computing maximal cliques in link streams. Theor. Comput. Sci. 609(1), 245–252 (2016). https://doi.org/10.1016/j.tcs.2015.09.030 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.InfoLab, Department of Information TechnologyUppsala UniversityUppsalaSweden

Personalised recommendations