Advertisement

Mesh Modification and Adaptation Within INMOST Programming Platform

  • Kirill TerekhovEmail author
  • Yuri Vassilevski
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 131)

Abstract

INMOST (Integrated Numerical Modelling Object-oriented Supercomputing Technologies) is a programming platform which facilitates development of parallel models. INMOST provides to the user a number of tools: mesh manipulation and mesh data operations, automatic differentiation, linear solvers, support for multiphysics modelling. In this paper, we present mesh modification and adaptation capabilities of INMOST.

Keywords

Open-source library Mesh adaptation Mesh modification Reservoir simulation Poroelasticity 

Notes

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (RFBR) under grants 17-01-00886 and 18-31-20048.

References

  1. 1.
    Badia, S., Quaini, A., Quarteroni, A.: Coupling biot and Navier–Stokes equations for modelling fluid–poroelastic media interaction. J. Comput. Phys. 228(21), 7986–8014 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bagaev, D.V., Burachkovskii, A.I., Danilov, A.A., Konshin, I.N., Terekhov, K.M.: Development of INMOST programming platform: dynamic grids, linear solvers and automatic differentiation. In: Russian Supercomputing Days, pp. 543–555. http://2016.russianscdays.org/files/pdf16/543.pdf (2016, in Russian)
  3. 3.
    Bouchnita, A.: Mathematical modelling of blood coagulation and thrombus formation under flow in normal and pathological conditions. Ph.D. Thesis, Université Lyon 1 - Claude Bernard, Ecole Mohammadia d’Ingénieurs - Université Mohammed V de Rabat, Maroc (2017)Google Scholar
  4. 4.
    Danilov, A.A., Terekhov, K.M., Konshin, I.N., Vassilevski, Yu.V.: Parallel software platform INMOST: a framework for numerical modeling. Supercomput. Front. Innov. 2(4), 55–66 (2015)Google Scholar
  5. 5.
    Distributed and Unified Numerics Environment. https://dune-project.org/. Accessed 30 May 2018
  6. 6.
    Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A., Mosthaf, K., Müthing, S., Nuske, P., Tatomir, A., Wolff, M., Helmig, R.: DuMux: DUNE for multi-phase, component, scale, physics,... flow and transport in porous media. Adv. Water Resour. 34(9), 1102–1112 (2011)CrossRefGoogle Scholar
  7. 7.
    Garimella, R.V.: MSTK - a flexible infrastructure library for developing mesh based applications. In: Proceedings, 13th International Meshing Roundtable, pp. 213–220 (2004)Google Scholar
  8. 8.
    INMOST – a toolkit for distributed mathematical modeling. http://www.inmost.org. Accessed 15 April 2018
  9. 9.
    Norne: the full Norne benchmark case, a real field black-oil model for an oil field in the Norwegian Sea. https://opm-project.org/?page_id=559. Accessed 26 February 2019
  10. 10.
    Tautges, T.J.: MOAB-SD: integrated structured and unstructured mesh representation. Eng. Comput. 20(3), 286–293 (2004)CrossRefGoogle Scholar
  11. 11.
    Terekhov, K.M.: Application of unstructured octree grid to the solution of filtration and hydrodynamics problems (in Russian). Ph.D. Thesis, INM RAS (2013)Google Scholar
  12. 12.
    Terekhov, K., Vassilevski, Y.: INMOST parallel platform for mathematical modeling and applications. In: Voevodin, V., Sobolev, S. (eds.) Supercomputing. RuSCDays 2018. Communications in Computer and Information Science, vol 965. Springer, Cham. https://doi.org/10.1007/978-3-030-05807-4_20 (2019)
  13. 13.
    Todd, M.J., Yıldırım, E.A.: On Khachiyan’s algorithm for the computation of minimum-volume enclosing ellipsoids. Discrete Appl. Math. 155(13), 1731–1744 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Trilinos – platform for the solution of large-scale, complex multi-physics engineering and scientific problems. http://trilinos.org/. Accessed 15 April 2018
  15. 15.
    Vassilevski, Yu.V., Konshin, I.N., Kopytov, G.V., Terekhov, K.M.: INMOST - Programming Platform and Graphical Environment for Development of Parallel Numerical Models on General Grids (in Russian). Moscow University Press, Moscow (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Marchuk Institute of Numerical Mathematics of the Russian Academy of SciencesMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  4. 4.Sechenov UniversityMoscowRussia

Personalised recommendations