Global Dynamics of a Generalized Chikungunya Virus

  • Hajar Besbassi
  • Zineb El Rhoubari
  • Khalid Hattaf
  • Noura Yousfi


The aim of this work is to present a new mathematical model that describes the interactions between Chikungunya virus (CHIKV), host cells, and B cells. Further, our model takes into account both modes of transmission that are virus-to-cell infection and cell-to-cell transmission. We first show that our model is biologically and mathematically well-posed. In addition, the dynamical behavior of the model is investigated.


Chikungunya virus infection Cell-to-cell transmission General incidence rate Global stability 


  1. 1.
    WHO, Chikungunya: fact sheet (2017).
  2. 2.
    M.C. Robinson, An epidemic of virus disease in Southern Province, Tanganyika territory, in 1952–53. Trans. R. Soc. Trop. Med. Hyg. 49(1), 28–32 (1955)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    X. Liu, P. Stechlinski, Application of control strategies to a seasonal model of chikungunya disease. Appl. Math. Model. 39(12), 3194–3220 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    C.A. Manore, K.S. Hickmann, S. Xu, H.J. Wearing, J.M. Hyman, Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus. J. Theor. Biol. 356, 174–191 (2014)Google Scholar
  6. 6.
    F.B. Agusto, S. Easley, K. Freeman, M. Thomas, Mathematical model of three age-structured transmission dynamics of chikungunya virus. Comput. Math. Methods Med. 2016, 4320514 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    N. Baez-Hernandez, M. Casas-Martinez, R. Danis-Lozano, J.X. Velasco-Hernandez, A mathematical model for Dengue and Chikungunya in Mexico, bioRxiv (2017). Google Scholar
  8. 8.
    S.M. Sabiu, N. Hussaini, Modelling the dynamics of Chikungunya in human and mosquito populations. Bayero J. Pure Appl. Sci. 10(1), 634–641 (2017)CrossRefGoogle Scholar
  9. 9.
    Y. Dumont, J.M. Tchuenche, Mathematical studies on the sterile insect technique for the chikungunya disease and Aedes albopictus. J. Math. Biol. 65(5), 809–854 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Y. Wang, X. Liu, Stability and Hopf bifurcation of a within-host chikungunya virus infection model with two delays. Math. Comput. Simul. 138, 31–48 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    A.M. Elaiw, T.O. Alade, S.M. Alsulami, Analysis of within-host CHIKV dynamics models with general incidence rate. Int. J. Biomath. (2018). CrossRefGoogle Scholar
  12. 12.
    W. Mothes, N.M. Sherer, J. Jin, P. Zhong, Virus cell-to-cell transmission. J. Virol. 84, 8360–8368 (2010)CrossRefGoogle Scholar
  13. 13.
    P. Zhong, L.M. Agosto, J.B. Munro, W. Mothes, Cell-to-cell transmission of viruses. Curr. Opin. Virol. 3, 44–50 (2013)CrossRefGoogle Scholar
  14. 14.
    Q. Sattentau, Avoiding the void: cell-to-cell spread of human viruses. Nat. Rev. Microbiol. 6, 815–826 (2008)CrossRefGoogle Scholar
  15. 15.
    K. Hattaf, N. Yousfi, A generalized virus dynamics model with cell-to-cell transmission and cure rate. Adv. Differ. Equ. 2016, 174 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    K. Hattaf, N. Yousfi, Qualitative analysis of a generalized virus dynamics model with both modes of transmission and distributed delays. Int. J. Differ. Equ. 2018, 9818372 (2018)MathSciNetzbMATHGoogle Scholar
  17. 17.
    J.P. LaSalle, The Stability of Dynamical Systems. Regional Conference Series in Applied Mathematics (SIAM, Philadelphia, 1976)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hajar Besbassi
    • 1
  • Zineb El Rhoubari
    • 1
  • Khalid Hattaf
    • 1
    • 2
  • Noura Yousfi
    • 1
  1. 1.Laboratory of Analysis, Modeling and Simulation (LAMS)Faculty of Science Ben M’sik, Hassan II UniversityCasablancaMorocco
  2. 2.Centre Régional des Métiers de l’Education et de la Formation (CRMEF)CasablancaMorocco

Personalised recommendations