Advertisement

Mathematical Analysis of the Dynamics of HIV Infection with CTL Immune Response and Cure Rate

  • Sanaa Harroudi
  • Karam Allali
Chapter

Abstract

The mathematical model of the human immunodeficiency virus (HIV) pathogenesis with CTL (cytotoxic T lymphocytes) immune response and cure rate of infected cells is investigated. The model includes four nonlinear differential equations describing the evolution of uninfected cells, infected cells, free HIV viruses, and CTL immune response cells. The positivity and boundedness of solutions are established. The local stability for the disease-free steady state and for the infection steady states is studied. Finally, numerical simulations are performed to support our theoretical findings and to show the effectiveness of the cure rate in reducing the severity of the disease.

References

  1. 1.
    World Health Organization HIV/AIDS Key facts, http://www.who.int/mediacentre/factsheets/fs360/en/index.html. Accessed July 2017
  2. 2.
    A.S. Perelson, P.W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41(1), 3–44 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    M. Nowak, R. May, Mathematical biology of HIV infection: antigenic variation and diversity threshold. Math. Biosci. 106(1), 1–21 (1991)CrossRefGoogle Scholar
  4. 4.
    D. Kirschner, Using mathematics to understand HIV immune dynamics, Notices Amer. AMS Notices 43(2), 191–202 (1996)MathSciNetzbMATHGoogle Scholar
  5. 5.
    M.S. Ciupe, B.L. Bivort, D.M. Bortz, P.W. Nelson, Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models. Math. Biosci. 200(1), 1–27 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    K. Allali, Y. Tabit, S. Harroudi, On HIV model with adaptive immune response, two saturated rates and therapy. Math. Model. Nat. Phenom. 12(5), 1–14 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    K. Allali, S. Harroudi, D.F.M. Torres, Analysis and optimal control of an intracellular delayed HIV model with CTL immune response. Math. Comput. Sci. 12(2), 111–127 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Ciupe, B. Bivort, D. Bortz, P. Nelson, Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models. Math. Biosci. 200(1), 1–27 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    X. Zhou, X. Song, X. Shi, A differential equation model of HIV infection of CD4+ T cells with cure rate. J. Math. Anal. Appl. 342(2), 1342–1355 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    X. Liu, H. Wang, W. Ma, Global stability of an HIV pathogenesis model with cure rate. Nonlinear Anal Real World Appl. 12(6), 2947–2961 (2011)MathSciNetzbMATHGoogle Scholar
  11. 11.
    R. Culshaw, S. Ruan, R. Spiteri, Optimal HIV treatment by maximising immune response. J. Math. Biol. 48(5), 545–562 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    A.S. Perelson, A.U. Neumann, M. Markowitz, J.M. Leonard, D.D Ho, HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science. 271(5255), 1582–1586 (1996)Google Scholar
  13. 13.
    Y. Wang, Y. Zhou, F. Brauer, J.M. Heffernan, Viral dynamics model with CTL immune response incorporating antiretroviral therapy. J. Math. Biol. 67(4), 901–934 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    K.A. Pawelek, S. Liu, F. Pahlevani, L. Rong, A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data. Math. Biosci. 235(1), 98–109 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    I.S. Gradshteyn, I.M. Ryzhik, Routh Hurwitz Theorem, in Tables of Integrals, Series, and Products (Academic Press, San Diego, 2000)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sanaa Harroudi
    • 1
  • Karam Allali
    • 1
  1. 1.Laboratory of Mathematics and Applications, Faculty of Sciences and TechnologiesUniversity Hassan II of CasablancaMohammediaMorocco

Personalised recommendations