Advertisement

Bifurcations in a Mathematical Model for Study of the Human Population and Natural Resource Exploitation

  • I. M. Cholo CamargoEmail author
  • G. Olivar Tost
  • I. Dikariev
Chapter

Abstract

In Colombia, there are reports of regions which have reached minimum natural resource thresholds. Among of the main causes thereof is the absence of institutional control actions. This absence is reflected in high rates of deforestation, water pollution, famine, and poverty, to name a few. For example, in La Guajira, a region where emeralds, coal, and petroleum are extracted, these activities have generated water pollution, which diminishes fishing activity, and which causes landslides, and the eviction and displacement of communities, who leave their land and agriculture practices behind (CINEP Programa por la paz, Informe especial: Minería, conflictos agrarios y ambientales en el sur de la Guajira (in Spanish) (2016), http://www.cinep.org.co/imagesinstitucionalinformes_especialesInforme_Especial-Mineria_La_Guajira.pdf). El Departamento Administrativo de Estadstica (DANE) revealed that, for 2014, said region exhibited a reduction in agricultural production, livestock farming, hunting, forestry, and fishing, of up to −5.2%, and little mining or quarrying growth (a scant 1.5%) (ICER, Informe de conyuntura económica regional. Departamento de la Guajira (in Spanish) (2015), https://www.dane.gov.co/files/icer/2015/ICER_La_Guajira2015.pdf). In this investigation, a mathematical model is presented, which makes the study of the dynamics of the following variables possible: human population, forest stock, fish stock, available water, and the human features necessary to achieve equilibrium values between socioeconomic and environmental issues. A bifurcation analysis is presented for different system parameters, i.e. technology and the percentage of the population dedicated to each economic sector. Special attention was paid to water consumption, energy production, and food production, owing to their everyday consumption relevance and necessitude. “If the human population increases, its consumption will also increase” (Garcia and You, Comput Chem Eng 91:49–67, 2016).

Notes

Acknowledgements

Ingrid M. Cholo acknowledges Colciencias for its partial support, under Grant 645-2014:Convocatoria Nacional Jóvenes Investigadores e Innovadores 2014 and Grant Convocatoria Doctorados Nacionales No. 727 de 2015 Colciencias. Gerard Olivar acknowledges the Universidad Nacional de Colombia for its partial support under Grant Modelamiento avanzado de mercados de energia electrica para toma de decisiones de inversion y establecimiento de politicas, DIMA project number 35467 and Colciencias under Grant Modelado y Simulacion del Metabolismo Urbano de Bogota D.C. contract 022-2017. He also acknowledges CEMarin for its support in this research.

References

  1. 1.
    FAO, The Water-Energy-Food Nexus: A New Approach in Support of Food Security and Sustainable Agriculture (Food and Agriculture Organization of the United Nations, Roma, 2014), http://www.fao.org/3/a-bl496e.pdf Google Scholar
  2. 2.
    D.L. Keairns, M. El-Halwagi, K.M. Ng, Editorial overview: process systems engineering: a chemical engineering perspective of the food energy water nexus. Curr. Opin. Chem. Eng. 18, iii–iv (2017)CrossRefGoogle Scholar
  3. 3.
    C. Zhang, X. Chen, Y. Li, W. Ding, G. Fu, Water-energy-food nexus: concepts, questions and methodologies. J. Clean. Prod. 195, 625–639 (2018)CrossRefGoogle Scholar
  4. 4.
    D. Garcia, F. You, Systems engineering opportunities for agricultural and organic waste management in the food-water-energy nexus. Curr. Opin. Chem. Eng. 18, 23–31 (2017)CrossRefGoogle Scholar
  5. 5.
    L.G. Carmona, K. Whiting, A. Carrasco, The water footprint of heavy oil extraction in Colombia: a case study. Water 9, 340 (2017)CrossRefGoogle Scholar
  6. 6.
    D.J. Garcia, F. You, The water-energy-food nexus and process systems engineering: a new focus. Comput. Chem. Eng. 91, 49–67 (2016)CrossRefGoogle Scholar
  7. 7.
    IPCC, Technical summary, in Climate Change 2007: The Physical Science Basis, ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2007)Google Scholar
  8. 8.
    N. Mancosu, R. Snyder, G. Kyriakakis, D. Spano, Water scarcity and future challenges for food production. Water 7, 975–992 (2015)CrossRefGoogle Scholar
  9. 9.
    W.J.M. Martens, R. Slooff, E.K. Jackson, Climate change, human health, and sustainable development. WHO Bull. OMS 75, 583–588 (1997)Google Scholar
  10. 10.
    INVEMAR, Informe del estado de los ambientes y recursos marinos y costeros en Colombia: Año 2011. Serie de Publicaciones Periódicas No. 8. Santa Marta (2012), p. 203, http://www.invemar.org.co/redcostera1/invemar/docs/IER_2011.pdf
  11. 11.
    PNUD, Objetivos de Desarrollo Sostenible, Colombia: Herramientas de aproximación al contexto local (2016), http://www.co.undp.org/content/dam/colombia/docs/ODM/undp-co-ODSColombiaVSWS-2016.pdf Google Scholar
  12. 12.
    J. Bonet-morón, L.W. Hahn-de-castro, La mortalidad y desnutrición infantil en La Guajira. Banco de la República 52(255), 1–49 (2017), http://www.banrep.gov.co/docum/Lectura_finanzas/pdf/dtser_255.pdf Google Scholar
  13. 13.
    C. Doria Argumedo, L.J. Vivas Aguas, Fuentes terrestres de contaminacin en la zona costera de La Guajira, Colombia. Rev. Investig. Agrar. Ambient. 7, 123–138 (2016)CrossRefGoogle Scholar
  14. 14.
    A. Londoño, Seminario Taller Buenas Prácticas Agrícolas. Unión Temporal Universidad Tecnológica de Pereira Comité de Cafeteros de Risaralda (Convenio -Ministerio de Comercio Industria y turismo - Fomipyme y Gobernacin de Risaralda, Risaralda, 2006)Google Scholar
  15. 15.
    J. Romero, Calidad del Agua. Escuela Colombiana de Ingeniería. ISBN: 958-8060-53-2. Bogotá (2005)Google Scholar
  16. 16.
    FAO, WWC. Towards a Water and Food Secure Future: Critical Perspectives for Policy-Makers (Natural Resources and Environment Department, 2015), http://www.fao.org/3/a-i4560e.pdf Google Scholar
  17. 17.
    V. Volterra, Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. R. Accad. Naz. dei Lincei 5, 113 (1926)zbMATHGoogle Scholar
  18. 18.
    A.J. Lotka, Elements of Mathematical Biology (Dover, New York, 1956)zbMATHGoogle Scholar
  19. 19.
    J.A. Brander, M.S. Taylor, The simple economics of Easter Island: a ricardo-malthus model of renewable resource use. Am. Econ. Rev. 88, 119–138 (1998)Google Scholar
  20. 20.
    P. Yongzhen, L. Yunfei, Y. Rong, A prey-predator model with harvesting for fishery resource with reserve area. Appl. Math. Model. 37, 3048–3062 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    T.J. Quinn II, Rumminations on the development and future of population dynamics models in fisheries. Nat. Resour. Model. 16, 341–392 (2003)CrossRefGoogle Scholar
  22. 22.
    H. Matsuda, T.K. Kar, A bioeconomic model of a single species fishery with a marine reserve. J. Environ. Manag. 86, 171–180 (2008)CrossRefGoogle Scholar
  23. 23.
    T.K. Kar, K. Chakraborty, Economic perspective of marine reserves in fisheries: a bioeconomic model. Math. Biosci. 240, 212–222 (2012)MathSciNetCrossRefGoogle Scholar
  24. 24.
    S. D’Alessandro, Non-linear dynamics of population and natural resources: the emergence of different patterns of development. Ecol. Econ. 62, 473–481 (2007)CrossRefGoogle Scholar
  25. 25.
    J.B. Shukla, K. Lata, A.K. Misra, Modeling the depletion of a renewable resource by population and industrialization: effect of technology on its conservation. Nat. Resour. Model. 24, 242–267 (2011)MathSciNetCrossRefGoogle Scholar
  26. 26.
    A.K. Misra, K. Lata, J.B. Shukla, Effects of population and population pressure on forest resources and their conservation: a modeling study. Environ. Dev. Sustain. 16, 361–374 (2014)CrossRefGoogle Scholar
  27. 27.
    A.K. Misra, K. Lata, A mathematical model to achieve sustainable forest management. Int. J. Model. Simul. Sci. Comput. 6, 1550040 (2015)CrossRefGoogle Scholar
  28. 28.
    C.A. Klausmeier, Regular and irregular patterns in semiarid vegetation. Science 284, 1826–1828 (1999)CrossRefGoogle Scholar
  29. 29.
    J.A. Sherrat, An analysis of vegetation stripe formation in semi-arid landscapes. J. Math. Biol. 51, 183 (2005)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Organizacin de las Naciones Unidas para la Alimentacin y la Agricultura. Los bosques y el agua, http://www.fao.org/sustainable-forest-management/toolbox/modules/forest-and-waterbasic-knowledgees
  31. 31.
    R. González-Bravo, M. Sauceda-Valenzuela, J. Mahlknecht, E. Rubio-Castro, J.M. Ponce-Ortega. Optimization of water grid at macroscopic level analyzing water-energy-food nexus. ACS Sustain. Chem. Eng. 6(9), 12140–12152 (2018)CrossRefGoogle Scholar
  32. 32.
    J.A. Blanco, Bosques, suelo y agua: explorando sus interacciones. Rev. Econ. 26(2), 1–9 (2017)Google Scholar
  33. 33.
    Universitat Autónoma de Barcelona, Las mejoras sin restricciones en tecnología pesquera amenazan el futuro del pescado salvaje (2017), https://www.uab.cat/web/sala-de-prensa/detalle-noticia/las-mejoras-sin-restricciones-en-tecnologia-pesquera-amenazan-el-futuro-del-pescado-y-el-marisco-salvaje-1345667994339.html?noticiaid=1345722216945
  34. 34.
    E.D. Galbraith, D.A. Carozza, D. Bianchi. A coupled human-earth model perspective on long-term trends in the global marine fishery. Nat. Commun. 8, 14884 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • I. M. Cholo Camargo
    • 1
    • 2
    Email author
  • G. Olivar Tost
    • 1
    • 2
  • I. Dikariev
    • 3
  1. 1.Department of Mathematics and StatisticsUniversidad Nacional de Colombia - Manizales, Campus La NubiaManizalesColombia
  2. 2.Arizona State UniversityTempeUSA
  3. 3.Brandenburg University of TechnologyCottbusGermany

Personalised recommendations