Advertisement

A Fractional Order Model for HBV Infection with Capsids and Cure Rate

  • Moussa Bachraou
  • Khalid Hattaf
  • Noura Yousfi
Chapter

Abstract

In this work, we propose and analyze a fractional order model for hepatitis B virus (HBV) infection with capsids and cure of infected cells. We first prove the existence, positivity, and boundedness of solutions in order to ensure the well-posedness of our proposed model. By constructing appropriate Lyapunov functionals, the global stability of the steady states is established. Numerical simulations are presented in order to validate our theoretical results.

Keywords

HBV infection Mathematical modeling Capsids Global stability 

References

  1. 1.
  2. 2.
    X. Zhou, Q. Sun, Stability analysis of a fractional-order HBV infection model. Int. J. Adv. Appl. Math. Mech. 2(2), 1–6 (2014)MathSciNetzbMATHGoogle Scholar
  3. 3.
    S.M. Salman, A.M. Yousef, On a fractional-order model for HBV infection with cure of infected cells. J. Egypt. Math. Soc. 25, 445–451 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    L.C. Cardoso, F.L.P. Dos Santos, R.F. Camargo, Analysis of fractional-order models for hepatitis B. Comput. Appl. Math. 37, 4570–4586 (2018). https://doi.org/10.1007/s40314-018-0588-4 MathSciNetCrossRefGoogle Scholar
  5. 5.
    L.G. Guidotti, R. Rochford, J. Chung, M. Shapiro, R. Purcell, F.V. Chisari, Viral clearance without destruction of infected cells during acute HBV infection. Science 284(5415), 825–829 (1999)CrossRefGoogle Scholar
  6. 6.
    S.R. Lewin, R.M. Ribeiro, T. Walters, G.K. Lau, S. Bowden, S. Locarnini, A.S. Perelson, Analysis of hepatitis B viral load decline under potent therapy: complex decay profiles observed. Hepatology 34, 101–1020 (2001)CrossRefGoogle Scholar
  7. 7.
    K. Hattaf, N. Yousfi, Hepatitis B virus infection model with logistic hepatocyte growth and cure rate. Appl. Math. Sci. 5, 2327–2335 (2011)MathSciNetzbMATHGoogle Scholar
  8. 8.
    K. Hattaf, N. Yousfi, A class of delayed viral infection models with general incidence rate and adaptive immune response. Int. J. Dynam. Control 4, 254–265 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Mahrouf, E.M. Lotfi, M. Maziane, K. Hattaf, N. Yousfi, A stochastic viral infection model with general functional response. Nonlinear Anal. Differ. Equ. 4, 435–445 (2016)CrossRefGoogle Scholar
  10. 10.
    D. Riad, K. Hattaf, N. Yousfi, Dynamics of capital-labour model with Hattaf-Yousfi functional response. Br. J. Math. Comput. Sci. 18(5), 1–7 (2016)CrossRefGoogle Scholar
  11. 11.
    K. Hattaf, N. Yousfi, A. Tridane, Stability analysis of a virus dynamics model with general incidence rate and two delays. Appl. Math. Comput. 221, 514–521 (2013)MathSciNetzbMATHGoogle Scholar
  12. 12.
    K. Manna, S.P. Chakrabarty, Chronic hepatitis B infection and HBV DNA-containing capsids: modeling and analysis. Commun. Nonlinear Sci. Numer. Simul. 22, 383–395 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    K. Manna, Global properties of a HBV infection model with HBV DNA-containing capsids and CTL immune response. Int. J. Appl. Comput. Math. 3(3), 2323–2338 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Boukhouima, K. Hattaf, N. Yousfi, Dynamics of a fractional order HIV infection model with specific functional response and cure rate. Int. J. Differ. Equ. 2017, 1–8 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    C.V. De-Leon, Volterra-type Lyapunov functions for fractional-order epidemic systems. Commun. Nonlinear Sci. Numer. Simul. 24, 75–85 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    J. Huo, H. Zhao, L. Zhu, The effect of vaccines on backward bifurcation in a fractional order HIV model. Nonlinear Anal. Real World Appl. 26, 289–305 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Moussa Bachraou
    • 1
  • Khalid Hattaf
    • 1
    • 2
  • Noura Yousfi
    • 1
  1. 1.Laboratory of Analysis, Modeling and Simulation (LAMS), Faculty of Science Ben M’sikHassan II UniversityCasablancaMorocco
  2. 2.Centre Régional des Métiers de l’Education et de la Formation (CRMEF)CasablancaMorocco

Personalised recommendations