On the Reproduction Number of Epidemics with Sub-exponential Growth

  • D. Champredon
  • Seyed M. MoghadasEmail author


Mathematical models for infectious disease epidemics often assume, explicitly or implicitly, an initial exponential growth for the number of new infections. Recent studies have highlighted that some historical epidemics actually grew sub-exponentially. Using models that presume exponential growth for such epidemics may not faithfully characterize the epidemiological parameters, especially the reproduction number. Here, using a well-established “generalized-growth” model, we derive analytical expressions of the time-dependent reproduction number and show that this quantity for epidemics with sub-exponential growth decreases and approaches unity over disease generation intervals. We use this theoretical framework to estimate the reproduction number for synthetic and real epidemics. Our findings suggest that estimates of the reproduction number during the early stages of disease outset are subject to substantial uncertainty regardless of the underlying assumptions for the epidemic growth.



This work is supported by NSERC (Canada) and Mitacs (Canada).


  1. 1.
    R.M. Anderson, R.M. May, Infectious Diseases of Humans: Dynamics and Control (Oxford University Press, Oxford, 1991)Google Scholar
  2. 2.
    O. Diekmann, J. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis, and Interpretations (Wiley, Hoboken, 2000)zbMATHGoogle Scholar
  3. 3.
    A.G. McKendrick, Proc. Edinb. Math. Soc. 14, 98–130 (1926)Google Scholar
  4. 4.
    W.O. Kermak, A.G. McKendrick, Proc. R. Soc. Lond. B 115, 700–721 (1927)CrossRefGoogle Scholar
  5. 5.
    W.O. Kermack, A.G. McKendrick, J. Hyg. (Lond.) 37, 172–187 (1937)Google Scholar
  6. 6.
    W.H. Hamer, Lancet 1, 733–739 (1906)Google Scholar
  7. 7.
    R. Ross, The Prevention of Malaria (John Murray, London, 1911)Google Scholar
  8. 8.
    D. Mollison, Epidemic Models: Their Structure and Relation to Data (Cambridge University Press, Cambridge, 1995)zbMATHGoogle Scholar
  9. 9.
    N.T.J. Bailey, The Mathematical Theory of Infectious Diseases and Its Applications (Hafner, New York, 1975)zbMATHGoogle Scholar
  10. 10.
    S.M. Moghadas, Eur. J. Epidemiol. 21, 337–342 (2006)CrossRefGoogle Scholar
  11. 11.
    S.A. Colgate, E.A. Stanley, J.M. Hyman, S.P. Layne, C. Qualls, Proc. Natl. Acad. Sci. U. S. A. 86, 4793–4797 (1989)CrossRefGoogle Scholar
  12. 12.
    B. Szendroi, G. Csányi, Proc. R. Soc. Lond. B 271, S364–S366 (2004)CrossRefGoogle Scholar
  13. 13.
    G. Chowell, C. Viboud, J.M. Hyman, L. Simonsen, PLoS Curr. 7 (2015).
  14. 14.
    C. Viboud, L. Simonsen, G. Chowell, Epidemics 15, 27–37 (2016)CrossRefGoogle Scholar
  15. 15.
    G. Chowell, C. Viboud, L. Simonsen, S.M. Moghadas, J. R. Soc. Interface 13(123), 20160659 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Tolle, Math Gazette 87, 522–525 (2003)CrossRefGoogle Scholar
  17. 17.
    J. Wallinga, M. Lipsitch, Proc. R. Soc. B 274(1609), 599–604 (2007)CrossRefGoogle Scholar
  18. 18.
    M.G. Roberts, H. Nishiura, PLoS One 6(5), p.e17835 (2011)Google Scholar
  19. 19.
    J. Müller, C. Kuttler, Methods and Models in Mathematical Biology - Deterministic and Stochastic Approaches (Springer, Berlin, 2015)CrossRefGoogle Scholar
  20. 20.
    A.M. Mood, F.A. Graybill, D.C. Boes, Introduction to the Theory of Statistics (McGraw-Hill, Singapore, 1974)zbMATHGoogle Scholar
  21. 21.
    H. Jeffreys, B.S. Jeffreys, Methods of Mathematical Physics, 3rd edn. (Cambridge University Press, Cambridge, 1999)CrossRefGoogle Scholar
  22. 22.
    J. Bibby, Glasgow Math. J. 15(01), 63–65 (1974)MathSciNetCrossRefGoogle Scholar
  23. 23.
    M.A. Vink, M.C.J. Bootsma, J. Wallinga, Am. J. Epidemiol. 180(9), 865–875 (2014)CrossRefGoogle Scholar
  24. 24.
    WHO Ebola Response Team, New Engl. J. Med. 371(16), 1481–1495 (2014)CrossRefGoogle Scholar
  25. 25.
    A. Cori, N.M. Ferguson, C. Fraser, S. Cauchemez, Am. J. Epidemiol. 178(9), 1505–1512 (2013)CrossRefGoogle Scholar
  26. 26.
    T. Obadia, R. Haneef, P.Y. Boelle, BMC Med. Inform. Decis. Mak. 12(1) (2012)Google Scholar
  27. 27.
    D. Champredon, D.J.D. Earn, Phys. Life Rev. 18, 105–108 (2016)CrossRefGoogle Scholar
  28. 28.
    A. Scherer, A. McLean, Br. Med. Bull. 62(1), 187–199 (2002)CrossRefGoogle Scholar
  29. 29.
    C. Fraser, S. Riley, R.M. Anderson, N.M. Ferguson, Proc. Natl. Acad. Sci. U. S. A. 101(16), 6146–6151 (2004)CrossRefGoogle Scholar
  30. 30.
    M. Laskowski, L.C. Mostaço-Guidolin, A.L. Greer, J.Wu, S.M. Moghadas, Sci. Rep. 1(105), 1–7 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Agent-Based Modelling LaboratoryYork UniversityTorontoCanada

Personalised recommendations