Advertisement

Stem Cell Therapy for Multiple Sclerosis: An Exciting Challenge or a Treatment Hope

  • Fakher Rahim
  • Kiarash Shirbandi
  • Rasoul Akbari
Chapter
Part of the Stem Cells in Clinical Applications book series (SCCA)

Abstract

Multiple sclerosis (MS) is an autoimmune inflammatory disease in which release of various cytokines, such as tumor necrosis factor-α (TNFα) and interferon gamma (IFNγ), can damage myelin, oligodendrocytes, and axons in the central nervous system (CNS). Like other degenerative diseases of CNS, MS treatment is only symptomatic and scientists are looking for a way to replace it with cell therapy. The stem cells are non-differentiated cells that can maintain the proliferation and production of precursor cells; thus, in response to specific stimuli, can be differentiated into the types of cells present in the body. Since researchers started treating patients with MS many years ago, some of the results are quite miraculous; they have seen deep nervous improvement in these patients. However, more research is needed to prove that MS patients experience only an interim improvement that sometimes happens in this disease. Recent research suggests and hopes that stem cell therapy will develop and propose a new and safe treatment approach to various diseases, especially neurodegenerative disorders such as MS in the near future. However, despite these impressive improvements, the treatment is not suitable for all patients. The results of a recent trial showed that this method only helped to improve the symptoms of approximately half the enrolled patients. Besides, there are also concerns about the potential for developing lethal diseases.

Keywords

Efficacy Stem cell Multiple sclerosis Transplantation Toxicity 

Notes

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502–17.PubMedGoogle Scholar
  2. 2.
    Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R, Calabresi P, Selmaj K, Agoropoulou C, Leyk M, Zhang-Auberson L, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010;362(5):387–401.PubMedGoogle Scholar
  3. 3.
    Katz Sand I. The role of diet in multiple sclerosis: mechanistic connections and current evidence. Curr Nutr Rep. 2018;7(3):150–60.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Bin JM, Rajasekharan S, Kuhlmann T, Hanes I, Marcal N, Han D, Rodrigues SP, Leong SY, Newcombe J, Antel JP, et al. Full-length and fragmented netrin-1 in multiple sclerosis plaques are inhibitors of oligodendrocyte precursor cell migration. Am J Pathol. 2013;183(3):673–80.PubMedGoogle Scholar
  5. 5.
    Wolswijk G. Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord. Brain. 2002;125(Pt 2):338–49.PubMedGoogle Scholar
  6. 6.
    Rahim F, Arjmand B, Tirdad R, Saki MA. Stem cell therapy for multiple sclerosis. Cochrane Database Syst Rev. 2018;6:CD013049.Google Scholar
  7. 7.
    Reich DS, Lucchinetti CF, Calabresi PA. Multiple sclerosis. N Engl J Med. 2018;378(2):169–80.PubMedGoogle Scholar
  8. 8.
    Liao XH, Nguyen H. Epidermal expression of Lgr6 is dependent on nerve endings and Schwann cells. Exp Dermatol. 2014;23(3):195–8.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Ardeshiry Lajimi A, Hagh MF, Saki N, Mortaz E, Soleimani M, Rahim F. Feasibility of cell therapy in multiple sclerosis: a systematic review of 83 studies. Int J Hematol Oncol Stem Cell Res. 2013;7(1):15–33.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Hoffman RM. Nestin-expressing hair follicle-accessible pluripotent stem cells for nerve and spinal cord repair. Cells Tissues Organs. 2014;200(1):42–7.PubMedGoogle Scholar
  11. 11.
    Brachelente C, Porcellato I, Sforna M, Lepri E, Mechelli L, Bongiovanni L. The contribution of stem cells to epidermal and hair follicle tumours in the dog. Vet Dermatol. 2013;24(1):188–194 e141.PubMedGoogle Scholar
  12. 12.
    Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255(5052):1707–10.PubMedGoogle Scholar
  13. 13.
    Liu F, Zhang C, Hoffman RM. Nestin-expressing stem cells from the hair follicle can differentiate into motor neurons and reduce muscle atrophy after transplantation to injured nerves. Tissue Eng Part A. 2014;20(3-4):656–62.PubMedGoogle Scholar
  14. 14.
    Gardner OF, Alini M, Stoddart MJ. Mesenchymal stem cells derived from human bone marrow. Methods Mol Biol. 2015;1340:41–52.PubMedGoogle Scholar
  15. 15.
    Mahmoudifar N, Doran PM. Mesenchymal stem cells derived from human adipose tissue. Methods Mol Biol. 2015;1340:53–64.PubMedGoogle Scholar
  16. 16.
    Castro-Manrreza ME, Montesinos JJ. Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications. J Immunol Res. 2015;2015:394917.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Hoogduijn MJ, Roemeling-van Rhijn M, Engela AU, Korevaar SS, Mensah FK, Franquesa M, de Bruin RW, Betjes MG, Weimar W, Baan CC. Mesenchymal stem cells induce an inflammatory response after intravenous infusion. Stem Cells Dev. 2013;22(21):2825–35.PubMedGoogle Scholar
  18. 18.
    Glenn JD, Smith MD, Calabresi PA, Whartenby KA. Mesenchymal stem cells differentially modulate effector CD8+ T cell subsets and exacerbate experimental autoimmune encephalomyelitis. Stem Cells. 2014;32(10):2744–55.PubMedGoogle Scholar
  19. 19.
    Zhao F, Qu Y, Liu H, Du B, Mu D. Umbilical cord blood mesenchymal stem cells co-modified by TERT and BDNF: a novel neuroprotective therapy for neonatal hypoxic-ischemic brain damage. Int J Dev Neurosci. 2014;38:147–54.PubMedGoogle Scholar
  20. 20.
    Bianco P. “Mesenchymal” stem cells. Annu Rev Cell Dev Biol. 2014;30:677–704.PubMedGoogle Scholar
  21. 21.
    Penolazzi L, Mazzitelli S, Vecchiatini R, Torreggiani E, Lambertini E, Johnson S, Badylak SF, Piva R, Nastruzzi C. Human mesenchymal stem cells seeded on extracellular matrix-scaffold: viability and osteogenic potential. J Cell Physiol. 2012;227(2):857–66.PubMedGoogle Scholar
  22. 22.
    Dong LH, Jiang YY, Liu YJ, Cui S, Xia CC, Qu C, Jiang X, Qu YQ, Chang PY, Liu F. The anti-fibrotic effects of mesenchymal stem cells on irradiated lungs via stimulating endogenous secretion of HGF and PGE2. Sci Rep. 2015;5:8713.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Lu T, Yang C, Sun H, Lv J, Zhang F, Dong XJ. FGF4 and HGF promote differentiation of mouse bone marrow mesenchymal stem cells into hepatocytes via the MAPK pathway. Genet Mol Res. 2014;13(1):415–24.PubMedGoogle Scholar
  24. 24.
    Rolando C, Taylor V. Neural stem cell of the hippocampus: development, physiology regulation, and dysfunction in disease. Curr Top Dev Biol. 2014;107:183–206.PubMedGoogle Scholar
  25. 25.
    Banda E, McKinsey A, Germain N, Carter J, Anderson NC, Grabel L. Cell polarity and neurogenesis in embryonic stem cell-derived neural rosettes. Stem Cells Dev. 2015;24(8):1022–33.PubMedGoogle Scholar
  26. 26.
    Lazzari M, Bettini S, Franceschini V. Immunocytochemical characterisation of olfactory ensheathing cells of zebrafish. J Anat. 2014;224(2):192–206.PubMedGoogle Scholar
  27. 27.
    Cloutier F, Kalincik T, Lauschke J, Tuxworth G, Cavanagh B, Meedeniya A, Mackay-Sim A, Carrive P, Waite P. Olfactory ensheathing cells but not fibroblasts reduce the duration of autonomic dysreflexia in spinal cord injured rats. Auton Neurosci. 2016;201:17–23.PubMedGoogle Scholar
  28. 28.
    Reginensi D, Carulla P, Nocentini S, Seira O, Serra-Picamal X, Torres-Espin A, Matamoros-Angles A, Gavin R, Moreno-Flores MT, Wandosell F, et al. Increased migration of olfactory ensheathing cells secreting the Nogo receptor ectodomain over inhibitory substrates and lesioned spinal cord. Cell Mol Life Sci. 2015;72(14):2719–37.PubMedGoogle Scholar
  29. 29.
    Woodhall E, West AK, Vickers JC, Chuah MI. Olfactory ensheathing cell phenotype following implantation in the lesioned spinal cord. Cell Mol Life Sci. 2003;60(10):2241–53.PubMedGoogle Scholar
  30. 30.
    Zhao M, Li L. Regulation of hematopoietic stem cells in the niche. Sci China Life Sci. 2015;58(12):1209–15.PubMedGoogle Scholar
  31. 31.
    Yoon KA, Cho HS, Shin HI, Cho JY. Differential regulation of CXCL5 by FGF2 in osteoblastic and endothelial niche cells supports hematopoietic stem cell migration. Stem Cells Dev. 2012;21(18):3391–402.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Simonsen CS, Hansen G, Piehl F, Edland A. Chronic inflammatory demyelinating polyradiculoneuropathy occurring after autologous haematopoietic stem cell transplantation for multiple sclerosis. Mult Scler J Exp Transl Clin. 2016;2:2055217316658304.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Li N, Leung GK. Oligodendrocyte precursor cells in spinal cord injury: a review and update. Biomed Res Int. 2015;2015:235195.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Fassas A, Anagnostopoulos A, Kazis A, Kapinas K, Sakellari I, Kimiskidis V, Tsompanakou A. Peripheral blood stem cell transplantation in the treatment of progressive multiple sclerosis: first results of a pilot study. Bone Marrow Transplant. 1997;20(8):631–8.PubMedGoogle Scholar
  35. 35.
    Nash RA, Bowen JD, McSweeney PA, Pavletic SZ, Maravilla KR, Park MS, Storek J, Sullivan KM, Al-Omaishi J, Corboy JR, et al. High-dose immunosuppressive therapy and autologous peripheral blood stem cell transplantation for severe multiple sclerosis. Blood. 2003;102(7):2364–72.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Burt RK, Cohen BA, Russell E, Spero K, Joshi A, Oyama Y, Karpus WJ, Luo K, Jovanovic B, Traynor A, et al. Hematopoietic stem cell transplantation for progressive multiple sclerosis: failure of a total body irradiation-based conditioning regimen to prevent disease progression in patients with high disability scores. Blood. 2003;102(7):2373–8.PubMedGoogle Scholar
  37. 37.
    Carreras E, Saiz A, Marin P, Martinez C, Rovira M, Villamor N, Aymerich M, Lozano M, Fernandez-Aviles F, Urbano-Izpizua A, et al. CD34+ selected autologous peripheral blood stem cell transplantation for multiple sclerosis: report of toxicity and treatment results at one year of follow-up in 15 patients. Haematologica. 2003;88(3):306–14.PubMedGoogle Scholar
  38. 38.
    Saccardi R, Mancardi GL, Solari A, Bosi A, Bruzzi P, Di Bartolomeo P, Donelli A, Filippi M, Guerrasio A, Gualandi F, et al. Autologous HSCT for severe progressive multiple sclerosis in a multicenter trial: impact on disease activity and quality of life. Blood. 2005;105(6):2601–7.PubMedGoogle Scholar
  39. 39.
    Su L, Xu J, Ji BX, Wan SG, Lu CY, Dong HQ, Yu YY, Lu DP. Autologous peripheral blood stem cell transplantation for severe multiple sclerosis. Int J Hematol. 2006;84(3):276–81.PubMedGoogle Scholar
  40. 40.
    Samijn JP, te Boekhorst PA, Mondria T, van Doorn PA, Flach HZ, van der Meche FG, Cornelissen J, Hop WC, Lowenberg B, Hintzen RQ. Intense T cell depletion followed by autologous bone marrow transplantation for severe multiple sclerosis. J Neurol Neurosurg Psychiatry. 2006;77(1):46–50.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Shevchenko YL, Novik AA, Kuznetsov AN, Afanasiev BV, Lisukov IA, Kozlov VA, Rykavicin OA, Ionova TI, Melnichenko VY, Fedorenko DA, et al. High-dose immunosuppressive therapy with autologous hematopoietic stem cell transplantation as a treatment option in multiple sclerosis. Exp Hematol. 2008;36(8):922–8.PubMedGoogle Scholar
  42. 42.
    Fagius J, Lundgren J, Oberg G. Early highly aggressive MS successfully treated by hematopoietic stem cell transplantation. Mult Scler. 2009;15(2):229–37.PubMedGoogle Scholar
  43. 43.
    Burt RK, Loh Y, Cohen B, Stefoski D, Balabanov R, Katsamakis G, Oyama Y, Russell EJ, Stern J, Muraro P, et al. Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study. Lancet Neurol. 2009;8(3):244–53.PubMedGoogle Scholar
  44. 44.
    Krasulova E, Trneny M, Kozak T, Vackova B, Pohlreich D, Kemlink D, Kobylka P, Kovarova I, Lhotakova P, Havrdova E. High-dose immunoablation with autologous haematopoietic stem cell transplantation in aggressive multiple sclerosis: a single centre 10-year experience. Mult Scl. 2010;16(6):685–93.Google Scholar
  45. 45.
    Hamerschlak N, Rodrigues M, Moraes DA, Oliveira MC, Stracieri AB, Pieroni F, Barros GM, Madeira MI, Simoes BP, Barreira AA, et al. Brazilian experience with two conditioning regimens in patients with multiple sclerosis: BEAM/horse ATG and CY/rabbit ATG. Bone Marrow Transplant. 2010;45(2):239–48.PubMedGoogle Scholar
  46. 46.
    Xu J, Ji BX, Su L, Dong HQ, Sun WL, Wan SG, Liu YO, Zhang P, Liu CY. Clinical outcome of autologous peripheral blood stem cell transplantation in opticospinal and conventional forms of secondary progressive multiple sclerosis in a Chinese population. Ann Hematol. 2011;90(3):343–8.PubMedGoogle Scholar
  47. 47.
    Mancardi GL, Sormani MP, Di Gioia M, Vuolo L, Gualandi F, Amato MP, Capello E, Curro D, Uccelli A, Bertolotto A, et al. Autologous haematopoietic stem cell transplantation with an intermediate intensity conditioning regimen in multiple sclerosis: the Italian multi-centre experience. Mult Scl. 2012;18(6):835–42.Google Scholar
  48. 48.
    Karussis D, Petrou P, Kassis I. Clinical experience with stem cells and other cell therapies in neurological diseases. J Neurol Sci. 2013;324(1-2):1–9.PubMedGoogle Scholar
  49. 49.
    Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, Du MQ, Luan SL, Altmann DR, Thompson AJ, et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol. 2012;11(2):150–6.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Bowen JD, Kraft GH, Wundes A, Guan Q, Maravilla KR, Gooley TA, McSweeney PA, Pavletic SZ, Openshaw H, Storb R, et al. Autologous hematopoietic cell transplantation following high-dose immunosuppressive therapy for advanced multiple sclerosis: long-term results. Bone Marrow Transplant. 2012;47(7):946–51.PubMedGoogle Scholar
  51. 51.
    Chen B, Zhou M, Ouyang J, Zhou R, Xu J, Zhang Q, Yang Y, Xu Y, Shao X, Meng L, et al. Long-term efficacy of autologous haematopoietic stem cell transplantation in multiple sclerosis at a single institution in China. Neurol Sci. 2012;33(4):881–6.PubMedGoogle Scholar
  52. 52.
    Bonab MM, Sahraian MA, Aghsaie A, Karvigh SA, Hosseinian SM, Nikbin B, Lotfi J, Khorramnia S, Motamed MR, Togha M, et al. Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res Ther. 2012;7(6):407–14.PubMedGoogle Scholar
  53. 53.
    Burman J, Iacobaeus E, Svenningsson A, Lycke J, Gunnarsson M, Nilsson P, Vrethem M, Fredrikson S, Martin C, Sandstedt A, et al. Autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: the Swedish experience. J Neurol Neurosurg Psychiatry. 2014;85(10):1116–21.PubMedGoogle Scholar
  54. 54.
    Li J-F, Zhang D-J, Geng T, Chen L, Huang H, Yin H-L, Y-z Z, Lou J-Y, Cao B, Wang Y-L. The potential of human umbilical cord-derived mesenchymal stem cells as a novel cellular therapy for multiple sclerosis. Cell Transplant. 2014;23(1):S113–22.PubMedGoogle Scholar
  55. 55.
    Curro D, Vuolo L, Gualandi F, Bacigalupo A, Roccatagliata L, Capello E, Uccelli A, Saccardi R, Sormani MP, Mancardi G. Low intensity lympho-ablative regimen followed by autologous hematopoietic stem cell transplantation in severe forms of multiple sclerosis: A MRI-based clinical study. Mult Scl. 2015;21(11):1423–30.Google Scholar
  56. 56.
    Mancardi GL, Sormani MP, Gualandi F, Saiz A, Carreras E, Merelli E, Donelli A, Lugaresi A, Di Bartolomeo P, Rottoli MR, et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial. Neurology. 2015;84(10):981–8.PubMedGoogle Scholar
  57. 57.
    Nash RA, Hutton GJ, Racke MK, Popat U, Devine SM, Griffith LM, Muraro PA, Openshaw H, Sayre PH, Stüve O, Arnold DL. High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for relapsing-remitting multiple sclerosis (HALT-MS): a 3-year interim report. JAMA Neurol. 2015;72(2):159–69.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Atkins HL, Bowman M, Allan D, Anstee G, Arnold DL, Bar-Or A, Bence-Bruckler I, Birch P, Bredeson C, Chen J, et al. Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicentre single-group phase 2 trial. Lancet. 2016;388(10044):576–85.PubMedGoogle Scholar
  59. 59.
    Harris VK, Vyshkina T, Sadiq SA. Clinical safety of intrathecal administration of mesenchymal stromal cell-derived neural progenitors in multiple sclerosis. Cytotherapy. 2016;18(12):1476–82.PubMedGoogle Scholar
  60. 60.
    Stepien A, Dabrowska NL, Maciagowska M, Macoch RP, Zolocinska A, Mazur S, Siennicka K, Frankowska E, Kidzinski R, Chalimoniuk M, et al. Clinical application of autologous adipose stem cells in patients with multiple sclerosis: preliminary results. Mediators Inflamm. 2016;2016:5302120.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Nash RA, Hutton GJ, Racke MK, Popat U, Devine SM, Steinmiller KC, Griffith LM, Muraro PA, Openshaw H, Sayre PH, et al. High-dose immunosuppressive therapy and autologous HCT for relapsing-remitting MS. Neurology. 2017;88(9):842–52.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Karnell FG, Lin D, Motley S, Duhen T, Lim N, Campbell DJ, Turka LA, Maecker HT, Harris KM. Reconstitution of immune cell populations in multiple sclerosis patients after autologous stem cell transplantation. Clin Exp Immunol. 2017;189(3):268–78.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Ruiz-Arguelles GJ, Leon-Pena AA, Leon-Gonzalez M, Nunez-Cortes AK, Olivares-Gazca JC, Murrieta-Alvarez I, Vargas-Espinosa J, Medina-Ceballos E, Cantero-Fortiz Y, Ruiz-Arguelles A, et al. A feasibility study of the full outpatient conduction of hematopoietic transplants in persons with multiple sclerosis employing autologous non-cryopreserved peripheral blood stem cells. Acta Haematol. 2017;137(4):214–9.PubMedGoogle Scholar
  64. 64.
    Dahbour S, Jamali F, Alhattab D, Al-Radaideh A, Ababneh O, Al-Ryalat N, Al-Bdour M, Hourani B, Msallam M, Rasheed M, et al. Mesenchymal stem cells and conditioned media in the treatment of multiple sclerosis patients: Clinical, ophthalmological and radiological assessments of safety and efficacy. CNS Neurosci Ther. 2017;23(11):866–74.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Harris VK, Stark J, Vyshkina T, Blackshear L, Joo G, Stefanova V, Sara G, Sadiq SA. Phase I trial of intrathecal mesenchymal stem cell-derived neural progenitors in progressive multiple sclerosis. EBioMedicine. 2018;29:23–30.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Fernandez O, Izquierdo G, Fernandez V, Leyva L, Reyes V, Guerrero M, Leon A, Arnaiz C, Navarro G, Paramo MD, et al. Adipose-derived mesenchymal stem cells (AdMSC) for the treatment of secondary-progressive multiple sclerosis: A triple blinded, placebo controlled, randomized phase I/II safety and feasibility study. PLoS One. 2018;13(5):e0195891.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Cristofanilli M, Cymring B, Lu A, Rosenthal H, Sadiq SA. Cerebrospinal fluid derived from progressive multiple sclerosis patients promotes neuronal and oligodendroglial differentiation of human neural precursor cells in vitro. Neuroscience. 2013;250:614–21.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fakher Rahim
    • 1
    • 2
  • Kiarash Shirbandi
    • 3
  • Rasoul Akbari
    • 4
  1. 1.Research Center of Thalassemia & Hemoglobinopathies, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
  2. 2.Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular - Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
  3. 3.Systematic Review and Meta-analysis Expert Group (SRMEG)Universal Scientific Education and Research Network (USERN)TehranIran
  4. 4.Department of Clinical Biochemistry, Allied Health Sciences SchoolAhvaz Jundishapur University of Medical SciencesAhvazIran

Personalised recommendations