Advertisement

Neurological Complications of Immune-Based Therapies

  • Ugonma N. Chukwueke
  • Eudocia Q. Lee
  • Patrick Y. WenEmail author
Chapter

Abstract

As collective knowledge of the immunological underpinnings of disease has risen, this has spurred the development and use of new, immune-based cancer therapies. While harnessing the immune system to target solid and hematologic malignancies has led to a shift in treatment paradigms, immune-related adverse effects are becoming apparent and recognized. Similar to cytotoxic and targeted therapies, neurotoxicity secondary to immunotherapy and immune-based therapies are a rare but important phenomenon given risk of misdiagnosis and treatment delays. The use of immune-based therapies is expected to increase, particularly as novel combinations and newer approaches emerge; thus, the need for early diagnosis and timely treatment to prevent neurologic morbidity is critical.

Keywords

Immune checkpoint inhibition Immune-related adverse effects CAR T-cell therapy BiTE antibody 

References

  1. 1.
    Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Pennock GK, Chow LQ. The evolving role of immune checkpoint inhibitors in cancer treatment. Oncologist. 2015;20(7):812–22.  https://doi.org/10.1634/theoncologist.2014-0422.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Finn OJ. Immuno-oncology: understanding the function and dysfunction of the immune system in cancer. Ann Oncol. 2012;23:viii6–9.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Vesely MD, Kershaw MH, Schreiber RD, et al. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235–71.PubMedCrossRefGoogle Scholar
  5. 5.
    Weber JS, Yang JC, Atkins MB, et al. Toxicities of immunotherapy for the practitioner. J Clin Oncol. 2015;33(18):2092–9.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Postow MA. Managing immune checkpoint-blocking antibody side effects. Am Soc Clin Oncol Educ Book. 2015:76–83.Google Scholar
  7. 7.
    Mancone S, Lycan T, Ahmed T, et al. Severe neurologic complications of immune checkpoint inhibitors: a single-center review. J Neurol. 2018;265(7):1636–42.PubMedCrossRefGoogle Scholar
  8. 8.
    Spain L, Walls G, Julve M, et al. Neurotoxicity from immune-checkpoint inhibition in the treatment of melanoma: a single centre experience and review of the literature. Ann Oncol. 2017;28(2):377–85.PubMedGoogle Scholar
  9. 9.
    Brahmer JR, Lacchetti C, Schneider BJ, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American society of clinical oncology clinical practice guideline. J Clin Oncol. 2018;36(17):1714–68.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378(22):2078–92.CrossRefGoogle Scholar
  12. 12.
    Schachter J, Ribas A, Long GV, et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet. 2017;390(10105):1853–62.CrossRefGoogle Scholar
  13. 13.
    Hamid O, Puzanov I, Dummer R, et al. Final analysis of a randomised trial comparing pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory advanced melanoma. Eur J Cancer. 2017;86:37–45.PubMedCrossRefGoogle Scholar
  14. 14.
    Robert C, Schachter J, Long GV, et al. Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.CrossRefGoogle Scholar
  15. 15.
    Long GV, Schachter J, Ribas A, et al. 4-year survival and outcomes after cessation of pembrolizumab (pembro) after 2-years in patients (pts) with ipilimumab (ipi)-naive advanced melanoma in KEYNOTE-006 (Abstract 9503). American Society of Clinical Oncology 2018 annual meeting.Google Scholar
  16. 16.
    Petrella TM, Robert C, Richtig E, et al. Patient-reported outcomes in KEYNOTE-006, a randomised study of pembrolizumab versus ipilimumab in patients with advanced melanoma. Eur J Cancer. 2017;86:115–24.PubMedCrossRefGoogle Scholar
  17. 17.
    Weber JS, D'Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16(4):375–84.PubMedCrossRefGoogle Scholar
  18. 18.
    Kao JC, Liao B, Markovic SN, et al. Neurological complications associated with anti-programmed death 1 (PD-1) antibodies. JAMA Neurol. 2017;74(10):1216–22.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Vallet H, Gaillet A, Weiss N, et al. Pembrolizumab-induced necrotic myositis in a patient with metastatic melanoma. Ann Oncol. 2016;27(7):1352–3.PubMedCrossRefGoogle Scholar
  20. 20.
    de Maleissye MF, Nicolas G, Saiag P. Pembrolizumab-induced demyelinating polyradiculoneuropathy. N Engl J Med. 2016;375(3):296–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Haddox CL, Shenoy N, Shah KK, et al. Pembrolizumab induced bulbar myopathy and respiratory failure with necrotizing myositis of the diaphragm. Ann Oncol. 2017;28(3):673–5.PubMedGoogle Scholar
  22. 22.
    Polat P, Donofrio PD. Myasthenia gravis induced by nivolumab therapy in a patient with non–small-cell lung cancer. Muscle Nerve. 2016;54(3):507.PubMedCrossRefGoogle Scholar
  23. 23.
    Sciacca G, Nicoletti A, Rampello L, Noto L, Parra HJ, Zappia M. Benign form of myasthenia gravis after nivolumab treatment. Muscle Nerve. 2016;54(3):507–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Lau KH, Kumar A, Yang IH, Nowak RJ. Exacerbation of myasthenia gravis in a patient with melanoma treated with pembrolizumab. Muscle Nerve. 2016;54(1):157–61.PubMedCrossRefGoogle Scholar
  25. 25.
    Tanaka R, Maruyama H, Tomidokoro Y, et al. Nivolumab-induced chronic inflammatory demyelinating polyradiculoneuropathy mimicking rapid-onset Guillain-Barré syndrome: a case report. Jpn J Clin Oncol. 2016;46(9):875–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Maur M, Tomasello C, Frassoldati A, et al. Posterior reversible encephalopathy syndrome during ipilimumab therapy for malignant melanoma. J Clin Oncol. 2012;30(6):e76–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Heimes AS, Schmidt M. Atezolizumab for the treatment of triple-negative breast cancer. Expert Opin Investig Drugs. 2019;28(1):1–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Suzman DL, Agrawal S, Ning YM, et al. Atezolizumab or Pembrolizumab for the treatment of patients with advanced urothelial carcinoma ineligible for cisplatin-containing chemotherapy. Oncologist. 2018. pii: theoncologist.2018–0084.Google Scholar
  29. 29.
    von Pawel J, Bordoni R, Satouchi M, et al. Long-term survival in patients with advanced non-small-cell lung cancer treated with atezolizumab versus docetaxel: results from the randomised phase III OAK study. Eur J Cancer. 2018;107:124–32.CrossRefGoogle Scholar
  30. 30.
    Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909–20.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kim ES. Avelumab: first global approval. Drugs. 2017;77(8):929–37.PubMedCrossRefGoogle Scholar
  32. 32.
    Kaufman HL, Russell J, Hamid O, et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 2016;17(10):1374–85.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Antonia SJ, Villegas A, Daniel D, et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 2017;377(20):1919–29.CrossRefGoogle Scholar
  34. 34.
    Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26.PubMedCrossRefGoogle Scholar
  36. 36.
    Maio M, Grob JJ, Aamdal S, et al. Five-year survival rates for treatment-naive patients with advanced melanoma who received ipilimumab plus dacarbazine in a phase III trial. J Clin Oncol. 2015;33:1191–6.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Schadendorf D, Hodi FS, Robert C, et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33(17):1889–94.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Liao B, Shroff S, Kamiya-Matsuoka C, et al. Atypical neurological complications of ipilimumab therapy in patients with metastatic melanoma. Neuro-Oncology. 2014;16(4):589–93.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Yeh OL, Francis CE. Ipilimumab-associated bilateral optic neuropathy. J Neuroophthalmol. 2015;35(2):144–7.PubMedGoogle Scholar
  41. 41.
    Miserocchi E, Cimminiello C, Mazzola M, et al. New-onset uveitis during CTLA-4 blockade therapy with ipilimumab in metastatic melanoma patient. Can J Ophthalmol. 2015;50(1):e2–4.PubMedCrossRefGoogle Scholar
  42. 42.
    Voskens CJ, Goldinger SM, Loquai C, et al. The price of tumor control: an analysis of rare side effects of anti-CTLA-4 therapy in metastatic melanoma from the ipilimumab network. PLoS One. 2013;8(1):e53745.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Frey NV, Porter DL. The promise of chimeric antigen receptor T-cell therapy. Oncology (Williston Park). 2016;30(10):880–8.Google Scholar
  44. 44.
    Kochenderfer JN, Dudley ME, Kassim SH, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33(6):540–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Kochenderfer JN, Yu Z, Frasheri D, et al. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood. 2010;116(19):3875–86.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Brentjens RJ, Davila ML, Riviere I, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013;5(177):177ra38.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kochenderfer JN, Dudley ME, Feldman SA, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119(12):2709–20.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Santomasso BD, Park JH, Salloum D, et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-c25ell acute lymphoblastic leukemia. Cancer Discov. 2018;8(8):958–71.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Pan B, Lentzsch S. The application and biology of immunomodulatory drugs (IMiDs) in cancer. Pharmacol Ther. 2012;136(1):56–68.PubMedCrossRefGoogle Scholar
  50. 50.
    Miller MT, Stromland K. Teratogen update: thalidomide: a review, with a focus on ocular findings and new potential uses. Teratology. 1999;60:306–21.PubMedCrossRefGoogle Scholar
  51. 51.
    Chang X, Zhu Y, Shi C, et al. Mechanism of immunomodulatory drugs’ action in the treatment of multiple myeloma. Acta Biochim Biophys Sin Shanghai. 2014 Mar;46(3):240–53.PubMedCrossRefGoogle Scholar
  52. 52.
    Andhavarapu S, Roy V. Immunomodulatory drugs in multiple myeloma. Expert Rev Hematol. 2013;6(1):69–82.PubMedCrossRefGoogle Scholar
  53. 53.
    Vestermark LW, Larsen S, Lindeløv B, et al. A phase II study of thalidomide in patients with brain metastases from malignant melanoma. Acta Oncol. 2008;47(8):1526–30.PubMedCrossRefGoogle Scholar
  54. 54.
    Hwu WJ, Lis E, Menell JH, et al. Temozolomide plus thalidomide in patients with brain metastases from melanoma: a phase II study. Cancer. 2005;103(12):2590–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Glasmacher A, Hahn C, Hoffmann F, et al. A systematic review of phase-II trials of thalidomide monotherapy in patients with relapsed or refractory multiple myeloma. Br J Haematol. 2006;132(5):584–93.PubMedCrossRefGoogle Scholar
  56. 56.
    Murphy PT, O'Donnell JR. Thalidomide induced impotence in male hematology patients: a common but ignored complication? Haematologica. 2007;92(10):1440.PubMedCrossRefGoogle Scholar
  57. 57.
    Myers JS. Chemotherapy-related cognitive impairment. Clin J Oncol Nurs. 2009;13(4):413–21.PubMedCrossRefGoogle Scholar
  58. 58.
    Dredge K, Horsfall R, Robinson S, et al. Orally administered lenalidomide (CC-5013) is antiangiogenic in vivo and inhibits endothelial cell migration and akt phosphorylation in vitro. Microvasc Res. 2005;69:56–63.PubMedCrossRefGoogle Scholar
  59. 59.
    Dimopoulos MA, Chen C, Spencer A, et al. Long-term follow-up on overall survival from the MM-009 and MM-010 phase III trials of lenalidomide plus dexamethasone in patients with relapsed or refractory multiple myeloma. Leukemia. 2009;23(11):2147–52.PubMedCrossRefGoogle Scholar
  60. 60.
    Lacy MQ, Hayman SR, Gertz MA, et al. Pomalidomide (CC4047) plus low dose dexamethasone (Pom/dex) is active and well tolerated in lenalidomide refractory multiple myeloma (MM). Leukemia. 2010;24(11):1934–9.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Dietrich J, Wen PY. Neurologic complications of chemotherapy. In: Schiff D, Kesari S, Wen PY, editors. Cancer neurology in clinical practice. New Jersey: Humana Press; 2008. p. 287–326.CrossRefGoogle Scholar
  62. 62.
    Carson KR, Evens AM, Richey EA, et al. Progressive multifocal leukoencephalopathy after rituximab therapy in HIV-negative patients: a report of 57 cases from the research on adverse drug events and reports project. Blood. 2009;113:4834–40.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Carson KR, Focosi D, Major EO, et al. Monoclonal antibody-associated progressive multifocal leucoencephalopathy in patients treated with rituximab, natalizumab, and efalizumab: a review from the research on adverse drug events and reports (RADAR) Project. Lancet Oncol. 2009;10:816–24.PubMedCrossRefGoogle Scholar
  64. 64.
    Polyak MJ, Deans JP. Alanine-170 and proline-172 are critical determinants for extracellular CD20 epitopes; heterogeneity in the fine specificity of CD20 monoclonal antibodies is defined by additional requirements imposed by both amino acid sequence and quaternary structure. Blood. 2002;99:3256–62.PubMedCrossRefGoogle Scholar
  65. 65.
    Ujjani C, Ramzi P, Gehan E, et al. Ofatumumab and bendamustine in previously treated chronic lymphocytic leukemia and small lymphocytic lymphoma. Leuk Lymphoma. 2015;56(4):915–20.PubMedCrossRefGoogle Scholar
  66. 66.
    Marcus R, Davies A, Ando K, et al. Obinutuzumab for the first-line treatment of follicular lymphoma. N Engl J Med. 2017;377(14):1331–44.PubMedCrossRefGoogle Scholar
  67. 67.
    Hopfinger G, Busch R, Pflug N, et al. Sequential chemoimmunotherapy of fludarabine, mitoxantrone, and cyclophosphamide induction followed by alemtuzumab consolidation is effective in T-cell prolymphocytic leukemia. Cancer. 2013;119(12):2258–67.PubMedCrossRefGoogle Scholar
  68. 68.
    Keating MJ, Cazin B, Coutré S, et al. Campath-1H treatment of T-cell prolymphocytic leukemia in patients for whom at least one prior chemotherapy regimen has failed. J Clin Oncol. 2002;20(1):205–13.PubMedCrossRefGoogle Scholar
  69. 69.
    Piccinni C, Sacripanti C, Poluzzi E, et al. Stronger association of drug-induced progressive multifocal leukoencephalopathy (PML) with biological immunomodulating agents. Eur J Clin Pharmacol. 2010;66(2):199–206.PubMedCrossRefGoogle Scholar
  70. 70.
    Portell CA, Wenzell CM, Advani AS. Clinical and pharmacologic aspects of blinatumomab in the treatment of B-cell acute lymphoblastic leukemia. Clin Pharmacol. 2013;5(Suppl 1):5–11.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Topp MS, Gökbuget N, Zugmaier G, et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol. 2014;32(36):4134–40.PubMedCrossRefGoogle Scholar
  72. 72.
    Topp MS, Goekbuget N, Zugmaier G, et al. Anti-CD19 BiTE blinatumomab induces high complete remission rate and prolongs overall survival in adult patients with relapsed/refractory B-precursor acute lymphoblastic leukemia (ALL). Blood. 2012;120:670.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ugonma N. Chukwueke
    • 1
    • 2
  • Eudocia Q. Lee
    • 1
    • 2
  • Patrick Y. Wen
    • 1
    • 2
    Email author
  1. 1.Department of Medical Oncology, Center for Neuro-Oncology, Dana-Farber Cancer InstituteHarvard Medical SchoolBostonUSA
  2. 2.Department of Neurology, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations