Neurological Complications of Targeted Therapies

  • Ugonma N. Chukwueke
  • Eudocia Q. Lee
  • Patrick Y. WenEmail author


There has been increasing use of novel cancer-directed therapies, harnessing the increased understanding of molecular basis of disease. With evolving use of different classes of newer generation agents, the likelihood of therapy-related toxicities is expected to also increase, thus warranting a fuller appreciation of the breadth of potential adverse effects. Nervous system toxicity secondary to traditional cytotoxic therapies has long been recognized and managed with adjustments made to disease-directed therapy if toxicities are intolerable or contributing to loss of function. As the armamentarium of targeted agents grows in concert with its widespread use, familiarity with associated neurotoxicity will be necessary in order to recognize and mitigate severe toxicity to preserve neurologic function.


Lung adenocarcinoma Activating mutations Tyrosine kinase inhibitor BRAF/MEK VEGF Invasive ductal carcinoma Melanoma 


  1. 1.
    DeAngelis LM, Posner JB. Neurologic complications of cancer. 2nd ed. Oxford: Oxford University Press; 2008.CrossRefGoogle Scholar
  2. 2.
    Arteaga CL. Overview of epidermal growth factor receptor biology and its role as a therapeutic target in human neoplasia. Semin Oncol. 2002;29(5 Suppl 14):3–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Kosaka T, Yatabe Y, Endoh H, et al. Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Res. 2004;64(24):8919–23.PubMedCrossRefGoogle Scholar
  4. 4.
    Bunn PA Jr, Franklin W. Epidermal growth factor receptor expression, signal pathway, and inhibitors in non-small cell lung cancer. Semin Oncol. 2002;29(5 Suppl 14):38–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Lindeman NI, Cagle PT, Beasley MB, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Arch Pathol Lab Med. 2013;137(6):828–60.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Soria JC, Ohe Y, Vansteenkiste J, FLAURA Investigators, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung Cancer. N Engl J Med. 2018;378(2):113–25.CrossRefGoogle Scholar
  7. 7.
    Rosell R, Carcereny E, Gervais R, Spanish Lung Cancer Group in collaboration with Groupe Français de Pneumo-Cancérologie and Associazione Italiana Oncologia Toracica, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13(3):239–46.PubMedCrossRefGoogle Scholar
  8. 8.
    Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361(10):947–57.PubMedCrossRefGoogle Scholar
  9. 9.
    Sequist LV, Yang JC, Yamamoto N, et al. Phase III study of afatanib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol. 2013;31(27):3327–34.CrossRefGoogle Scholar
  10. 10.
    Lee CK, Davies L, Wu YL, et al. Gefitinib or erlotinib vs chemotherapy for EGFR mutation-positive lung cancer: individual patient data meta-analysis of overall survival. J Natl Cancer Inst. 2017;1:109(6).Google Scholar
  11. 11.
    Mok TS, Wu Y-L, Ahn M-J, AURA3 Investigators, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2017;376(7):629–40.CrossRefGoogle Scholar
  12. 12.
    Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non–small cell lung cancer a randomized trial. JAMA. 2003;290(16):2149–58.PubMedCrossRefGoogle Scholar
  13. 13.
    Chiu CH, Tsai CM, Chen YM, et al. Gefitinib is active in patients with brain metastases from non-small cell lung cancer and response is related to skin toxicity. Lung Cancer. 2005;47(1):129–38.PubMedCrossRefGoogle Scholar
  14. 14.
    Tullo AB, Esmaeli B, Murray PI, et al. Ocular findings in patients with solid tumours treated with the epidermal growth factor receptor tyrosine kinase inhibitor gefitinib ('Iressa', ZD1839) in phase I and II clinical trials. Eye (Lond). 2005;19(7):729–38.CrossRefGoogle Scholar
  15. 15.
    Cohen MH, Johnson JR, Chen YF, et al. FDA drug approval summary: erlotinib (Tarceva) tablets. Oncologist. 2005;10(7):461–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Porta R, Sánchez-Torres JM, Paz-Ares L, et al. Brain metastases from lung cancer responding to erlotinib: the importance of EGFR mutation. Eur Respir J. 2011;37(3):624–31.CrossRefGoogle Scholar
  17. 17.
    Yang JC, Hirsh V, Schuler M, et al. Symptom control and quality of life in LUX-lung 3: a phase III study of afatanib or cisplatin/pemetrexed in patients with advanced lung adenocarcinoma with EGFR mutations. J Clin Oncol. 2013;31(27):3342–50.PubMedCrossRefGoogle Scholar
  18. 18.
    Wu YL, Zhou C, Hu CP, et al. Afatanib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-lung 6): an open-label, randomised phase 3 trial. Lancet Oncol. 2014;15(2):213–22.PubMedCrossRefGoogle Scholar
  19. 19.
    Hochmair M, Holzer S, Burghuber OC. Complete remissions in afatanib-treated non-small-cell lung cancer patients with symptomatic brain metastases. Anti-Cancer Drugs. 2016;27(9):914–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Yang JC, Wu YL, Schuler M, et al. Afatanib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-lung 3 and LUX-lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015;16(2):141–51.PubMedCrossRefGoogle Scholar
  21. 21.
    Goss G, Tsai C-M, Shepherd F, et al. MA16.11 CNS response to osimertinib in patients with T790M-positive advanced NSCLC: pooled data from two phase II trials. J Thorac Oncol. 2017;12(1):S440–1.CrossRefGoogle Scholar
  22. 22.
    Palma JA, Gomez-Ibañez A, Martin B et al. Nonconvulsive status epilepticus related to posterior reversible leukoencephalopathy syndrome induced by cetuximab. Neurologist. 2011.Google Scholar
  23. 23.
    Pikor LA, Ramnarine VR, Lam S, et al. Genetic alterations defining NSCLC subtypes and their therapeutic implications. Lung Cancer. 2013;82(2):179–89.PubMedCrossRefGoogle Scholar
  24. 24.
    Shaw AT, Solomon B. Targeting anaplastic lymphoma kinase in lung cancer. Clin Cancer Res. 2011;17(8):2081–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Solomon BJ, Mok T, Kim DW, PROFILE 1014 Investigators, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371(23):2167–77.PubMedCrossRefGoogle Scholar
  26. 26.
    Kim DW, Mehra R, Tan DSW, et al. Activity and safety of ceritinib in patients with ALK-rearranged non-small-cell lung cancer (ASCEND-1): updated results from the multicentre, open-label, phase 1 trial. Lancet Oncol. 2016;17(4):452–63.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Shaw AT, Gandhi L, Gadgeel S, et al. Alectinib in ALK-positive, crizotinib-resistant, non-small-cell lung cancer: a single-group, multicentre, phase 2 trial. Lancet Oncol. 2016;17(2):234–42.PubMedCrossRefGoogle Scholar
  28. 28.
    Costa DB, Shaw AT, Ou SH, et al. Clinical experience with crizotinib in patients with advanced ALK-rearranged non-small-cell lung cancer and brain metastases. J Clin Oncol. 2015;33(17):1881–8.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Hida T, Nokihara H, Kondo M, et al. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet. 2017;390(10089):29–39.PubMedCrossRefGoogle Scholar
  30. 30.
    Gainor JF, Shaw AT. J-ALEX: alectinib versus crizotinib in ALK-positive lung cancer. Lancet. 2017;390(10089):3–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhou C, Lu Y, Kim SW, et al. Primary results of ALESIA: a randomised, phase III, open-label study of alectinib vs crizotinib in Asian patients with treatment-naïve ALK+ advanced NSCLC. Eur Soc Med Oncol. 2018:LBA10.Google Scholar
  32. 32.
    Soria JC, Tan DSW, Chiari R, et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet. 2017;389(10072):917–29.PubMedCrossRefGoogle Scholar
  33. 33.
    Camidge DR, Kim HR, Ahn MJ, et al. Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer. N Engl J Med. 2018;379(21):2027–39.CrossRefGoogle Scholar
  34. 34.
    Camidge DR, Kim DW, Tiseo M, et al. Exploratory analysis of brigatinib activity in patients with anaplastic lymphoma kinase-positive non-small-cell lung cancer and brain metastases in two clinical trials. J Clin Oncol. 2018;36(26):2693–701.CrossRefGoogle Scholar
  35. 35.
    Solomon BJ, Besse B, Bauer TM, et al. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet Oncol. 2018;19(12):1654–67.PubMedCrossRefGoogle Scholar
  36. 36.
    Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 2018;15(12):731–47.PubMedCrossRefGoogle Scholar
  37. 37.
    Reuther GW, Lambert QT, Caligiuri MA, et al. Identification and characterization of an activating TrkA deletion mutation in acute myeloid leukemia. Mol Cell Biol. 2000;20(23):8655–66.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Geiger TR, Song JY, Rosado A et al. Functional characterization of human cancer-derived TRKB mutations. PLoS One. 2011;6(2):e16871. Published Scholar
  39. 39.
    Harada T, Yatabe Y, Takeshita M, et al. Role and relevance of TrkB mutations and expression in non-small cell lung cancer. Clin Cancer Res. 2011;17(9):2638–45.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Tacconelli A, Farina AR, Cappabianca L, et al. Alternative TrkAIII splicing: a potential regulated tumor-promoting switch and therapeutic target in neuroblastoma. Future Oncol. 2005;1(5):689–98.PubMedCrossRefGoogle Scholar
  41. 41.
    Lagadec C, Meignan S, Adriaenssens E, et al. TrkA overexpression enhances growth and metastasis of breast cancer cells. Oncogene. 2009;28(18):1960–70.PubMedCrossRefGoogle Scholar
  42. 42.
    Eggert A, Grotzer MA, Ikegaki N, et al. Expression of the neurotrophin receptor TrkA down-regulates expression and function of angiogenic stimulators in SH-SY5Y neuroblastoma cells. Cancer Res. 2002;62(6):1802–8.PubMedGoogle Scholar
  43. 43.
    Drilon A, Laetsch TW, Kummar S, et al. Efficacy of Larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med. 2018;378(8):731–9.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Rangaraju S, Farago A, Heym KM, et al. P14.19 preclinical and clinical efficacy of entrectinib in primary and metastatic brain tumors harboring NTRK, ROS1, or ALK gene fusions. Neuro-Oncology. 2017;19(Suppl 3):iii106.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Remon J, Besse B. Brain metastases in oncogene-addicted non-small cell lung cancer patients: incidence and treatment. Front Oncol. 2018;8:88.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Larotrectinib OK'd for cancers with TRK fusions. Cancer Discov. 2018.Google Scholar
  47. 47.
    Menichincheri M, Ardini E, Magnaghi P, et al. Discovery of entrectinib: a new 3-aminoindazole as a potent anaplastic lymphoma kinase (ALK), c-ROS oncogene 1 kinase (ROS1), and pan-tropomyosin receptor kinases (pan-TRKs) inhibitor. J Med Chem. 2016;59(7):3392–408.PubMedCrossRefGoogle Scholar
  48. 48.
    Drilon A, Siena S, Ou SI, et al. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 2017;7(4):400–9.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Sperduto PW, Kased N, Roberge D, et al. The effect of tumor subtype on the time from primary diagnosis to development of brain metastases and survival in patients with breast cancer. J Neuro-Oncol. 2013;112(3):467–72.CrossRefGoogle Scholar
  50. 50.
    Wolff AC, Hammond ME, Hicks DG, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31(31):3997–4013.PubMedCrossRefGoogle Scholar
  51. 51.
    Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687–97.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Moja L, Tagliabue L, Balduzzi S, et al. Trastuzumab containing regimens for early breast cancer. Cochrane Database Syst Rev. 2012;4:CD006243.Google Scholar
  53. 53.
    Le Scodan R, Jouanneau L, Massard C, et al. Brain metastases from breast cancer: prognostic significance of HER-2 overexpression, effect of trastuzumab and cause of death. BMC Cancer. 2011;11:1543. Scholar
  54. 54.
    Pestalozzi BC, Brignoli S. Trastuzumab in CSF. J Clin Oncol. 2000;18:2349–51.PubMedCrossRefGoogle Scholar
  55. 55.
    van Rooij FG, Dorresteijn LD, Van Bokhoven MM, et al. A throbbing pain in the head: trastuzumab-induced migraine. Anticancer Res. 2009;29(10):4223–5.PubMedGoogle Scholar
  56. 56.
    Lambert JM, Chari RV. Ado-trastuzumab Emtansine (T-DM1): an antibody-drug conjugate (ADC) for HER2-positive breast cancer. J Med Chem. 2014;57(16):6949–64.PubMedCrossRefGoogle Scholar
  57. 57.
    Perez EA, Barrios C, Eiermann W, et al. Trastuzumab emtansine with or without pertuzumab versus trastuzumab plus taxane for human epidermal growth factor receptor 2-positive, advanced breast cancer: primary results from the phase III MARIANNE study. J Clin Oncol. 2017;35(2):141–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Amiri-Kordestani L, Blumenthal GM, Xu QC, et al. FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin Cancer Res. 2014;20(17):4436–41.PubMedCrossRefGoogle Scholar
  59. 59.
    Oakman C, Pestrin M, Zafarana E, et al. Role of lapatinib in the first-line treatment of patients with metastatic breast cancer. Cancer Manag Res. 2010;2:13–25.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Swain SM, Baselga J, Kim SB, et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med. 2015;372(8):724–34.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Swain SM, Baselga J, Miles D, et al. Incidence of central nervous system metastases in patients with HER2-positive metastatic breast cancer treated with pertuzumab, trastuzumab, and docetaxel: results from the randomized phase III study CLEOPATRA. Ann Oncol. 2014;25(6):1116–21.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Freedman RA, Gelman RS, Wefel JS, et al. Translational breast cancer research consortium (TBCRC) 022: a phase II trial of neratinib for patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases. J Clin Oncol. 2016;34(9):945–52.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Martin M, Holmes FA, Ejlertsen B, ExteNET Study Group, et al. Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET):5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18(12):1688–700.PubMedCrossRefGoogle Scholar
  64. 64.
    Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ashworth A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol. 2008;26:3785–379.PubMedCrossRefGoogle Scholar
  66. 66.
    Moynahan ME, Chiu JW, et al. BRCA1 controls homology-directed DNA repair. Mol Cell. 1999;4:511–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Moynahan ME, Pierce AJ, Jasin M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell. 2001;7:263–72.PubMedCrossRefGoogle Scholar
  68. 68.
    Diossy M, Reiniger L, Sztupinszki Z, et al. Breast cancer brain metastases show increased levels of genomic aberration-based homologous recombination deficiency scores relative to their corresponding primary tumors. Ann Oncol. 2018;29(9):1948–54.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Ledermann J, Harter P, Gourley C, et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med. 2012;366(15):1382–92.PubMedCrossRefGoogle Scholar
  70. 70.
    van der Noll R, Marchetti S, Steeghs N, et al. Long-term safety and anti-tumour activity of olaparib monotherapy after combination with carboplatin and paclitaxel in patients with advanced breast, ovarian or fallopian tube cancer. Br J Cancer. 2015;113(3):396–402.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Loibl S, O'Shaughnessy J, Untch M, et al. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial. Lancet Oncol. 2018;19(4):497–509.PubMedCrossRefGoogle Scholar
  72. 72.
    Kim ES. Abemaciclib: first global approval. Drugs. 2017;77(18):2063–70.PubMedCrossRefGoogle Scholar
  73. 73.
    Xu H, Yu S, Liu Q, et al. Recent advances of highly selective CDK4/6 inhibitors in breast cancer. J Hematol Oncol. 2017;10(1):97.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Finn RS, Martin M, Rugo HS, et al. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016;375(20):1925–36.PubMedCrossRefGoogle Scholar
  75. 75.
    Finn RS, Crown JP, Lang I, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 2015;16(1):25–35. Scholar
  76. 76.
    Goldman JW, Shi P, Reck M, et al. Treatment rationale and study design for the JUNIPER study: a randomized phase III study of abemaciclib with best supportive care versus erlotinib with best supportive care in patients with stage IV non-small-cell lung cancer with a detectable KRAS mutation whose disease has progressed after platinum-based chemotherapy. Clin Lung Cancer. 2016;17(1):80–4.PubMedCrossRefGoogle Scholar
  77. 77.
    Hortobagyi GN, Stemmer SM. Burris HA et al updated results from MONALEESA-2, a phase III trial of first-line ribociclib plus letrozole versus placebo plus letrozole in hormone receptor-positive, HER2-negative advanced breast cancer. Ann Oncol. 2018;29(7):1541–7.PubMedGoogle Scholar
  78. 78.
    Liu P, Cheng H, Roberts TM, et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8(8):627–44.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Flinn IW, O'Brien S, Kahl B, et al. Duvelisib, a novel oral dual inhibitor of PI3K-δ,γ, is clinically active in advanced hematologic malignancies. Blood. 2018;131(8):877–87.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Shah N, Mohammad AS, Saralkar P, et al. Investigational chemotherapy and novel pharmacokinetic mechanisms for the treatment of breast cancer brain metastases. Pharmacol Res. 2018;132:47–68.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Furman RR, Sharman JP, Coutre SE, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370(11):997–1007.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Khan M, Siddiqi T. Targeted therapies in CLL: monotherapy versus combination approaches. Curr Hematol Malig Rep. 2018;13(6):525–33.PubMedCrossRefGoogle Scholar
  83. 83.
    O'Brien S, Patel M, Kahl BS, et al. Duvelisib, an oral dual PI3K-δ,γ inhibitor, shows clinical and pharmacodynamic activity in chronic lymphocytic leukemia and small lymphocytic lymphoma in a phase 1 study. Am J Hematol. 2018;93(11):1318–26.PubMedCrossRefGoogle Scholar
  84. 84.
    Herman SE, Gordon AL, Hertlein E, et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011;117(23):6287–96.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Bernard S, Goldwirt L, Amorim S, et al. Activity of ibrutinib in mantle cell lymphoma patients with central nervous system relapse. Blood. 2015;126(14):1695–8.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Byrd JC, Brown JR, O'Brien S, et al. RESONATE investigators. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213–23.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Brown JR, Hillmen P, O'Brien S, et al. Extended follow-up and impact of high-risk prognostic factors from the phase 3 RESONATE study in patients with previously treated CLL/SLL. Leukemia. 2018;32(1):83–91.PubMedCrossRefGoogle Scholar
  88. 88.
    Wang ML, Blum KA, Martin P, et al. Long-term follow-up of MCL patients treated with single-agent ibrutinib: updated safety and efficacy results. Blood. 2015;126(6):739–45.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Reinwald M, Silva JT, Mueller NJ, et al. ESCMID study Group for Infections in compromised hosts (ESGICH) consensus document on the safety of targeted and biological therapies: an infectious diseases perspective (intracellular signaling pathways: tyrosine kinase and mTOR inhibitors). Clin Microbiol Infect. 2018;24(Suppl 2):S53–70.PubMedCrossRefGoogle Scholar
  90. 90.
    Ruchlemer R, Ben Ami R, Lachish T. Ibrutinib for chronic lymphocytic leukemia. N Engl J Med. 2016;374(16):1593–4.PubMedGoogle Scholar
  91. 91.
    Lutz M, Schulze AB, Rebber E, et al. Progressive multifocal leukoencephalopathy after ibrutinib therapy for chronic lymphocytic leukemia. Cancer Res Treat. 2017;49(2):548–52.PubMedCrossRefGoogle Scholar
  92. 92.
    Byrd JC, Harrington B, O'Brien S, et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):323–32.CrossRefGoogle Scholar
  93. 93.
    Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.CrossRefGoogle Scholar
  94. 94.
    Long GV, Menzies AM, Nagrial AM, et al. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol. 2011;29(10):1239–46.PubMedCrossRefGoogle Scholar
  95. 95.
    Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809–19.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Falchook GS, Lewis KD, Infante JR, et al. Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13:782–9.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Flaherty KT, Robert C, Hersey P, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367:107–14.PubMedCrossRefGoogle Scholar
  98. 98.
    Dummer R, Ascierto PA, Gogas HJ, et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2018;19(5):603–15.PubMedCrossRefGoogle Scholar
  99. 99.
    Long GV, Flaherty KT, Stroyakovskiy D, et al. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study. Ann Oncol. 2017;28(7):1631–9.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Nowell PC, Hungerford DA. Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst. 1960;25:85–109.PubMedGoogle Scholar
  101. 101.
    Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243(5405):290–3.PubMedCrossRefGoogle Scholar
  102. 102.
    Kwak JY, Kim SH, Oh SJ, et al. Phase III clinical trial (RERISE study) results of efficacy and safety of radotinib compared with imatinib in newly diagnosed chronic phase chronic myeloid leukemia. Clin Cancer Res. 2017;23(23):7180–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Valent P, Hadzijusufovic E, Schernthaner GH, et al. Vascular safety issues in CML patients treated with BCR/ABL1 kinase inhibitors. Blood. 2015;125(6):901–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Petzer AL, Gunsilius E, Hayes M, et al. Low concentrations of STI571 in the cerebrospinal fluid: a case report. Br J Haematol. 2002;117(3):623–5.PubMedCrossRefGoogle Scholar
  105. 105.
    O'Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348(11):994–1004.PubMedCrossRefGoogle Scholar
  106. 106.
    Baccarani M, Cortes J, Pane F, et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European leukemia net. J Clin Oncol. 2009;27:6041–51.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Cortes JE, Saglio G, Kantarjian HM, et al. Final 5-year study results of DASISION: the dasatinib versus imatinib study in treatment-naïve chronic myeloid leukemia patients trial. J Clin Oncol. 2016;34(20):2333–40.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Taylor JW, Dietrich J, Gerstner ER, et al. Phase 2 study of bosutinib, a Src inhibitor, in adults with recurrent glioblastoma. J Neuro-Oncol. 2015;121(3):557–63.CrossRefGoogle Scholar
  109. 109.
    Cortes JE, Kim DW, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369(19):1783–96.PubMedCrossRefGoogle Scholar
  110. 110.
    EMEA. Iclusig: EPAR Product Information EMEA: London; 2015.Google Scholar
  111. 111.
    eMC TeMC. Iclusig. SPC. Datapharm Communications limited; 2015.
  112. 112.
    Harrison C, Kiladjian JJ, Al-Ali HK, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366(9):787–98.CrossRefGoogle Scholar
  113. 113.
    Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.PubMedCrossRefGoogle Scholar
  114. 114.
    James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signaling causes polycythaemia vera. Nature. 2005;434:1144–8.CrossRefGoogle Scholar
  115. 115.
    Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):e270.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Scott BL, Becker PS. JAK/STAT pathway inhibitors and neurologic toxicity: above all else do no harm? JAMA Oncol. 2015;1(5):651–2. Scholar
  117. 117.
    Connors JM, Jurczak W, Straus DJ, et al. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin's lymphoma. N Engl J Med. 2018;378(4):331–44.PubMedCrossRefGoogle Scholar
  118. 118.
    Younes A. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 2010;363:1812–21.PubMedCrossRefGoogle Scholar
  119. 119.
    Czuczman MS, Emmanouilides C, Darif M, et al. Treatment-related myelodysplastic syndrome and acute myelogenous leukemia in patients treated with ibritumomab tiuxetan radioimmunotherapy. J Clin Oncol. 2007;25(27):4285–92.PubMedCrossRefGoogle Scholar
  120. 120.
    Witzig TE, Gordon LI, Cabanillas F, et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin's lymphoma. J Clin Oncol. 2002;20(10):2453–63.PubMedCrossRefGoogle Scholar
  121. 121.
    Infante P, Alfonsi R, Ingallina C, et al. Inhibition of hedgehog-dependent tumors and cancer stem cells by a newly identified naturally occurring chemotype. Cell Death Dis. 2016;7(9):e2376.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Kieran MW. Targeted treatment for sonic hedgehog-dependent medulloblastoma. Neuro-Oncology. 2014;16(8):1037–47.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Preusser M, Berghoff AS, Koller R, et al. Spectrum of gene mutations detected by next generation exome sequencing in brain metastases of lung adenocarcinoma. Eur J Cancer. 2015;51(13):1803–11.PubMedCrossRefGoogle Scholar
  124. 124.
    Tsao AS, Wistuba I, Xia D, et al. Germline and somatic smoothened mutations in non–small-cell lung cancer are potentially responsive to hedgehog inhibitor vismodegib. JCO Precis Oncol. 2017;1(1):1–10.Google Scholar
  125. 125.
    Basset-Séguin N, Hauschild A, Kunstfeld R, et al. Vismodegib in patients with advanced basal cell carcinoma: primary analysis of STEVIE, an international, open-label trial. Eur J Cancer. 2017;86:334–48.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Wells EM, Nageswara Rao AA, Scafidi J, et al. Neurotoxicity of biologically targeted agents in pediatric cancer trials. Pediatr Neurol. 2012;46(4):212–21.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Rodon J, Tawbi HA, Thomas AL, et al. A phase I, multicenter, open-label, first-in-human, dose-escalation study of the oral smoothened inhibitor Sonidegib (LDE225) in patients with advanced solid tumors. Clin Cancer Res. 2014;20(7):1900–9.PubMedCrossRefGoogle Scholar
  128. 128.
    Baschnagel A, Russo A, Burgan WE, et al. Vorinostat enhances the radiosensitivity of a breast cancer brain metastatic cell line grown in vitro and as intracranial xenografts. Mol Cancer Ther. 2009;8(6):1589–95.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 2006;5:37–50.PubMedCrossRefGoogle Scholar
  130. 130.
    Mann BS, Johnson JR, Cohen MH, et al. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist. 2007;12(10):1247–52.PubMedCrossRefGoogle Scholar
  131. 131.
    Galanis E, Jaeckle KA, Maurer MJ, et al. Phase II trial of vorinostat in recurrent glioblastoma multiforme: a north central Cancer treatment group study. J Clin Oncol. 2009;27:2052–8.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Schaefer EW, Loaiza-Bonilla A, Juckett M, et al. Mayo P2C phase II consortium. A phase 2 study of vorinostat in acute myeloid leukemia. Haematologica. 2009;94:1375–82.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Atadja P. Development of the pan-DAC inhibitor panobinostat (LBH589): successes and challenges. Cancer Lett. 2009;280(2):233–41.PubMedCrossRefGoogle Scholar
  134. 134.
    San-Miguel JF, Hungria VT, Yoon SS, et al. Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. Lancet Oncol. 2014;15(11):1195–206.PubMedCrossRefGoogle Scholar
  135. 135.
    Foss F, Advani R, Duvic M, et al. A phase II trial of Belinostat (PXD101) in patients with relapsed or refractory peripheral or cutaneous T-cell lymphoma. Br J Haematol. 2015;168(6):811–9.PubMedCrossRefGoogle Scholar
  136. 136.
    Krämer OH, Zhu P, Ostendorff HP, et al. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J. 2003;22(13):3411–20.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Munster P, Marchion D, Bicaku E, et al. Clinical and biological effects of valproic acid as a histone deacetylase inhibitor on tumor and surrogate tissues: phase I/II trial of valproic acid and epirubicin/FEC. Clin Cancer Res. 2009;15(7):2488–96.PubMedCrossRefGoogle Scholar
  138. 138.
    Chu BF, Karpenko MJ, Liu Z, et al. Phase I study of 5-aza-2′-deoxycytidine in combination with valproic acid in non-small-cell lung cancer. Cancer Chemother Pharmacol. 2013;71(1):115–21.PubMedCrossRefGoogle Scholar
  139. 139.
    Richardson PG, Barlogie B, Berenson J, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med. 2003;348(26):2609–17.PubMedCrossRefGoogle Scholar
  140. 140.
    Richardson PG, Briemberg H, Jagannath S, et al. Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol. 2006;24(19):3113–20.PubMedCrossRefGoogle Scholar
  141. 141.
    Cavaletti G, Gilardini A, Canta A, et al. Bortezomib-induced peripheral neurotoxicity: a neurophysiological and pathological study in the rat. Exp Neurol. 2007;204(1):317–25.PubMedCrossRefGoogle Scholar
  142. 142.
    Ravaglia S, Corso A, Piccolo G, et al. Immune-mediated neuropathies in myeloma patients treated with bortezomib. Clin Neurophysiol. 2008;119(11):2507–12.PubMedCrossRefGoogle Scholar
  143. 143.
  144. 144.
    Terwiel E, Hanrahan R, Lueck C, et al. Reversible posterior encephalopathy syndrome associated with bortezomib. Intern Med J. 2010;40(1):69–71.PubMedCrossRefGoogle Scholar
  145. 145.
    Ho CH, Lo CP, Tu MC. Bortezomib-induced posterior reversible encephalopathy syndrome: clinical and imaging features. Intern Med. 2014;53(16):1853–7.PubMedCrossRefGoogle Scholar
  146. 146.
    Wick W, Hertenstein A, Platten M. Neurological sequelae of cancer immunotherapies and targeted therapies. Lancet Oncol. 2016;17(12):e529–41.PubMedCrossRefGoogle Scholar
  147. 147.
    Siegel D, Martin T, Nooka A, et al. Integrated safety profile of single-agent carfilzomib: experience from 526 patients enrolled in 4 phase II clinical studies. Haematologica. 2013;98(11):1753–61.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Moreau P, Masszi T, Grzasko N, et al. Oral Ixazomib, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;374(17):1621–34.PubMedCrossRefGoogle Scholar
  149. 149.
    Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009;122(Pt 20):3589–94.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12(1):9–22.PubMedCrossRefGoogle Scholar
  151. 151.
    Ni J, Ramkissoon SH, Xie S, et al. Combination inhibition of PI3K and mTORC1 yields durable remissions in mice bearing orthotopic patient-derived xenografts of HER2-positive breast cancer brain metastases. Nat Med. 2016;22(7):723–6.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Pachow D, Wick W, Gutmann DH, et al. The mTOR signaling pathway as a treatment target for intracranial neoplasms. Neuro-Oncology. 2014;17(2):189–99.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Mueller AR, Platz KP, Schattenfroh N, et al. Neurotoxicity after orthotopic liver transplantation in cyclosporin A- and FK 506-treated patients. Transpl Int. 1994;7(Suppl 1):S37–42.PubMedCrossRefGoogle Scholar
  154. 154.
    Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.CrossRefGoogle Scholar
  155. 155.
    Baselga J, Campone M, Piccart M, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366(6):520–9.CrossRefGoogle Scholar
  156. 156.
    Kelly PA, Gruber SA, Behbod F, et al. Sirolimus, a new, potent immunosuppressive agent. Pharmacotherapy. 1997;17(6):1148–56.PubMedGoogle Scholar
  157. 157.
    El-Hashemite N, Zhang H, Henske EP, et al. Mutation in TSC2 and activation of mammalian target of rapamycin signaling pathway in renal angiomyolipoma. Lancet. 2003;361(9366):1348–9.PubMedCrossRefGoogle Scholar
  158. 158.
    Euvrard S, Morelon E, Rostaing L, et al. Sirolimus and secondary skin-cancer prevention in kidney transplantation. N Engl J Med. 2012;367(4):329–39.PubMedCrossRefGoogle Scholar
  159. 159.
    Furlong T, Kiem H-P, Appelbaum FR, et al. Sirolimus in combination with cyclosporine or tacrolimus plus methotrexate for prevention of graft-versus-host disease following hematopoietic cell transplantation from unrelated donors. Biol Blood Marrow Transplant. 2008;14:531–7.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Bellmunt J, Szczylik C, Feingold J, et al. Temsirolimus safety profile and management of toxic effects in patients with advanced renal cell carcinoma and poor prognostic features. Ann Oncol. 2008;19(8):1387–92.PubMedCrossRefGoogle Scholar
  161. 161.
    Witzig TE, Geyer SM, Ghobrial I, et al. Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol. 2005;23(23):5347–56.PubMedCrossRefGoogle Scholar
  162. 162.
    Ferrara N. From the discovery of vascular endothelial growth factor to the introduction of avastin in clinical trials - an interview with Napoleone Ferrara by Domenico Ribatti. Int J Dev Biol. 2011;55(4-5):383–8.PubMedCrossRefGoogle Scholar
  163. 163.
    Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005;69(Suppl 3):4–10.PubMedCrossRefGoogle Scholar
  164. 164.
    Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Izzedine H, Ederhy S, Goldwasser F, et al. Management of hypertension in angiogenesis inhibitor-treated patients. Ann Oncol. 2009;20(5):807–15.PubMedCrossRefGoogle Scholar
  166. 166.
    Zangari M, Fink LM, Elice F, et al. Thrombotic events in patients with cancer receiving antiangiogenesis agents. J Clin Oncol. 2009;27(29):4865–73.PubMedCrossRefGoogle Scholar
  167. 167.
    Mir O, Mouthon L, Alexandre J, et al. Bevacizumab-induced cardiovascular events: a consequence of cholesterol emboli syndrome? J Natl Cancer Inst. 2007;99(1):85–6.PubMedCrossRefGoogle Scholar
  168. 168.
    Tlemsani C, Mir O, Boudou-Rouquette P, et al. Posterior reversible encephalopathy syndrome induced by anti-VEGF agents. Target Oncol. 2011;6(4):253–8.PubMedCrossRefGoogle Scholar
  169. 169.
    Ciamporcero E, Miles KM, Adelaiye R, et al. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models. Mol Cancer Ther. 2015;14(1):101–10.PubMedCrossRefGoogle Scholar
  170. 170.
    Gerendash BS, Creel PA. Practical management of adverse events associated with cabozantinib treatment in patients with renal-cell carcinoma. Oncol Targets Ther. 2017;10:5053–64.CrossRefGoogle Scholar
  171. 171.
    Zschäbitz S, Grüllich C. Lenvantinib: a tyrosine kinase inhibitor of VEGFR 1-3, FGFR 1-4, PDGFRα, KIT and RET. Recent Results Cancer Res. 2018;211:187–98.PubMedCrossRefGoogle Scholar
  172. 172.
    Chae YK, Chiec L, Adney SK, et al. Posterior reversible encephalopathy syndrome and takotsubo cardiomyopathy associated with lenvatinib therapy for thyroid cancer: a case report and review. Oncotarget. 2018;9(46):28281–9.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Osawa Y, Gozawa R, Koyama K, et al. Posterior reversible encephalopathy syndrome after lenvatinib therapy in a patient with anaplastic thyroid carcinoma. Intern Med. 2018;57(7):1015–9.PubMedCrossRefGoogle Scholar
  174. 174.
    Flaherty KT, Manola JB, Pins M, et al. A randomized phase II study of vascular endothelial growth factor, RAF kinase, and mammalian target of rapamycin combination targeted therapy with bevacizumab, sorafenib, and temsirolimus in advanced renal cell carcinoma-a trial of the ECOG-ACRIN Cancer research group (E2804). J Clin Oncol. 2015;33(21):2384–91.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Escudier B, Szczylik C, Hutson TE, et al. Randomized phase II trial of first-line treatment with sorafenib versus interferon Alfa-2a in patients with metastatic renal cell carcinoma. J Clin Oncol. 2009;27(8):1280–9.PubMedCrossRefGoogle Scholar
  176. 176.
    Sandler A, Hirsh V, Reck M, et al. An evidence-based review of the incidence of CNS bleeding with anti-VEGF therapy in non-small cell lung cancer patients with brain metastases. Lung Cancer. 2012;78(1):1–7.PubMedCrossRefGoogle Scholar
  177. 177.
    Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–24.PubMedCrossRefGoogle Scholar
  178. 178.
    Kanaan Z, Kulairi Z, Titianu M, et al. Guillain-Barré syndrome following treatment with sunitinib malate. Case Rep Oncol Med. 2014;2014:712040.PubMedPubMedCentralGoogle Scholar
  179. 179.
    van der Veldt AA, van den Eertwegh AJ, Hoekman K, et al. Reversible cognitive disorders after sunitinib for advanced renal cell cancer in patients with preexisting arteriosclerotic leukoencephalopathy. Ann Oncol. 2007;18(10):1747–50.PubMedCrossRefGoogle Scholar
  180. 180.
    Sternberg CN, Davis ID, Mardiak J, et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol. 2010;28(6):1061–8.CrossRefGoogle Scholar
  181. 181.
    Iwamoto FM, Lamborn KR, Robins HI, et al. Phase II trial of pazopanib (GW786034), an oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (north American brain tumor consortium study 06-02). Neuro-Oncology. 2010;12(8):855–61.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Cranmer LD, Loggers ET, Pollack SM. Pazopanib in the management of advanced soft tissue sarcomas. Ther Clin Risk Manag. 2016;12:941–55.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Rini BI, Wilding G, Hudes G, et al. Phase II study of axitinib in sorafenib-refractory metastatic renal cell carcinoma. J Clin Oncol. 2009;27(27):4462–8.PubMedCrossRefGoogle Scholar
  184. 184.
    Rini BI, Melichar B, Ueda T, et al. Axitinib with or without dose titration for first-line metastatic renal-cell carcinoma: a randomised double-blind phase 2 trial. Lancet Oncol. 2013;14(12):1233–42.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Grothey A, Van Cutsem E, Sobrero A, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381(9863):303–12.PubMedCrossRefGoogle Scholar
  186. 186.
    Tian S, Nissenblatt M, Goyal S. Regorafenib-induced transverse myelopathy after stereotactic body radiation therapy. J Gastrointest Oncol. 2014;5(6):E128–31.PubMedPubMedCentralGoogle Scholar
  187. 187.
    Carlomagno F, Vitagliano D, Guida T, et al. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. 2002;62(24):7284–90.PubMedGoogle Scholar
  188. 188.
    Kreisl TN, McNeill KA, Sul J, et al. A phase I/II trial of vandetanib for patients with recurrent malignant glioma. Neuro-Oncology. 2012;14(12):1519–26.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):709–22.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Kreisl TN, Kim L, Moore K, et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol. 2009;27(5):740–5.PubMedCrossRefGoogle Scholar
  191. 191.
    Lou E, Turner S, Sumrall A, et al. Bevacizumab-induced reversible posterior leukoencephalopathy syndrome and successful retreatment in a patient with glioblastoma. J Clin Oncol. 2011;29(28):e739–42.PubMedCrossRefGoogle Scholar
  192. 192.
    Sclafani F, Giuseppe G, Mezynksi J, et al. Reversible posterior leukoencephalopathy syndrome and bevacizumab in breast cancer. J Clin Oncol. 2012;30(26):e257–9.PubMedCrossRefGoogle Scholar
  193. 193.
    Arnold D, Fuchs CS, Tabernero J, et al. Meta-analysis of individual patient safety data from six randomized, placebo-controlled trials with the antiangiogenic VEGFR2-binding monoclonal antibody ramucirumab. Ann Oncol. 2017;28(12):2932–42.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Tew WP, Gordon M, Murren J, et al. Phase 1 study of aflibercept administered subcutaneously to patients with advanced solid tumors. Clin Cancer Res. 2010;16(1):358–66.PubMedCrossRefGoogle Scholar
  195. 195.
    Singh SR, Stewart MW, Chattannavar G, et al. Safety of 5914 intravitreal ziv-aflibercept injections. Br J Ophthalmol. 2018.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ugonma N. Chukwueke
    • 1
    • 2
  • Eudocia Q. Lee
    • 1
    • 2
  • Patrick Y. Wen
    • 1
    • 2
    Email author
  1. 1.Department of Medical Oncology, Center for Neuro-Oncology, Dana-Farber Cancer InstituteHarvard Medical SchoolBostonUSA
  2. 2.Department of Neurology, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations