Neurocognitive Toxicity from Radiation Therapy for Brain Metastases

  • Karine A. Al Feghali
  • Caroline Chung
  • Jeffrey S. WefelEmail author
  • Mariana E. Bradshaw


Brain metastases are the most common intracranial tumors, with an incidence rate ranging from 7 to 14 per 100,000. Both the disease process itself and its treatments can be associated with debilitating and life-altering neurocognitive adverse effects. The treatment of brain metastases involves a multidisciplinary team that aims to maximize the benefits and minimize the toxicities of treatment, which may include surgical resection, radiation therapy (stereotactic radiosurgery or whole-brain radiation therapy), and/or systemic therapy. Additionally, strategies have been investigated to prevent and treat these toxicities, such as stereotactic radiosurgery, hippocampal avoidance whole-brain radiation therapy, and “neuroprotective” drugs, respectively. In order to better detect and measure treatment toxicity, efforts have also been deployed in tracking neurocognitive changes consistently in patients with brain metastases.


Brain metastasis Clinical outcome assessment Memory Neurocognitive function Neuropsychological testing Radiation Stereotactic radiosurgery Hippocampal avoidance whole-brain radiation therapy Systemic therapy 


  1. 1.
    Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the metropolitan detroit cancer surveillance system. J Clin Oncol. 2004;22:2865–72.CrossRefGoogle Scholar
  2. 2.
    Taillibert S, Le Rhun E. Epidemiology of brain metastases. Cancer Radiother. 2015;19:3–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Nayak L, Lee EQ, Wen PY. Epidemiology of brain metastases. Curr Oncol Rep. 2012;14:48–54.Google Scholar
  4. 4.
    Nussbaum ES, Djalilian HR, Cho KH, Hall WA. Brain metastases. Histology, multiplicity, surgery, and survival. Cancer. 1996;78:1781–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Komaki R, Cox JD, Whitson W. Risk of brain metastasis from small cell carcinoma of the lung related to length of survival and prophylactic irradiation. Cancer Treat Rep. 1981;65:811–4.Google Scholar
  6. 6.
    Zhang J, Yu J, Sun X, Meng X. Epidermal growth factor receptor tyrosine kinase inhibitors in the treatment of central nerve system metastases from non-small cell lung cancer. Cancer Lett. 2014;351:6–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Rangachari D, Yamaguchi N, VanderLaan PA, et al. Brain metastases in patients with EGFR-mutated or ALK-rearranged non-small-cell lung cancers. Lung Cancer. 2015;88:108–11.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Fox BD, Cheung VJ, Patel AJ, Suki D, Rao G. Epidemiology of metastatic brain tumors. Neurosurg Clin N Am. 2011;22:1–6, v.PubMedCrossRefGoogle Scholar
  9. 9.
    Sheline GE, Wara WM, Smith V. Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys. 1980;6:1215–28.PubMedCrossRefGoogle Scholar
  10. 10.
    Giordano FA, Welzel G, Abo-Madyan Y, Wenz F. Potential toxicities of prophylactic cranial irradiation. Transl Lung Cancer Res. 2012;1:254–62.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Li J, Bentzen SM, Li J, Renschler M, Mehta MP. Relationship between neurocognitive function and quality of life after whole-brain radiotherapy in patients with brain metastasis. Int J Radiat Oncol Biol Phys. 2008;71:64–70.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Young DF, Posner JB, Chu F, Nisce L. Rapid-course radiation therapy of cerebral metastases: results and complications. Cancer. 1974;34:1069–76.PubMedCrossRefGoogle Scholar
  13. 13.
    Soussain C, Ricard D, Fike JR, Mazeron JJ, Psimaras D, Delattre JY. CNS complications of radiotherapy and chemotherapy. Lancet. 2009;374:1639–51.PubMedCrossRefGoogle Scholar
  14. 14.
    Uzal D, Ozyar E, Hayran M, Zorlu F, Atahan L, Yetkin S. Reduced incidence of the somnolence syndrome after prophylactic cranial irradiation in children with acute lymphoblastic leukemia. Radiother Oncol. 1998;48:29–32.PubMedCrossRefGoogle Scholar
  15. 15.
    Littman P, Rosenstock J, Gale G, Krisch RE, Meadows A, Sather H, Coccia P, Decamargo B. The somnolence syndrome in leukemic children following reduced daily dose fractions of cranial radiation. Int J Radiat Oncol Biol Phys. 1984;10:1851–3.PubMedCrossRefGoogle Scholar
  16. 16.
    Faithfull S, Brada M. Somnolence syndrome in adults following cranial irradiation for primary brain tumours. Clin Oncol (R Coll Radiol). 1998;10:250–4.CrossRefGoogle Scholar
  17. 17.
    Powell C, Guerrero D, Sardell S, Cumins S, Wharram B, Traish D, Gonsalves A, Ashley S, Brada M. Somnolence syndrome in patients receiving radical radiotherapy for primary brain tumours: a prospective study. Radiother Oncol. 2011;100:131–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Durand T, Bernier M-O, Leger I, Taillia H, Noel G, Psimaras D, Ricard D. Cognitive outcome after radiotherapy in brain tumor. Curr Opin Oncol. 2015;27:510–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003;302:1760–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Kyrkanides S, Moore AH, Olschowka J, Daeschner JC, Williams JP, Hansen JT, Kerry O’Banion M. Cyclooxygenase-2 modulates brain inflammation-related gene expression in central nervous system radiation injury. Brain Res Mol Brain Res. 2002;104:159–69.PubMedCrossRefGoogle Scholar
  21. 21.
    Tsao MN, Li YQ, Lu G, Xu Y, Wong CS. Upregulation of vascular endothelial growth factor is associated with radiation-induced blood-spinal cord barrier breakdown. J Neuropathol Exp Neurol. 1999;58:1051–60.PubMedCrossRefGoogle Scholar
  22. 22.
    Li YQ, Ballinger JR, Nordal RA, Su ZF, Wong CS. Hypoxia in radiation-induced blood-spinal cord barrier breakdown. Cancer Res. 2001;61:3348–54.PubMedGoogle Scholar
  23. 23.
    Monje ML, Mizumatsu S, Fike JR, Palmer TD. Irradiation induces neural precursor-cell dysfunction. Nat Med. 2002;8:955–62.PubMedCrossRefGoogle Scholar
  24. 24.
    Furuse M, Nonoguchi N, Kawabata S, Miyatake S-I, Kuroiwa T. Delayed brain radiation necrosis: pathological review and new molecular targets for treatment. Med Mol Morphol. 2015;48:183–90.PubMedCrossRefGoogle Scholar
  25. 25.
    Johnson BE, Becker B, Goff WB, Petronas N, Krehbiel MA, Makuch RW, McKenna G, Glatstein E, Ihde DC. Neurologic, neuropsychologic, and computed cranial tomography scan abnormalities in 2- to 10-year survivors of small-cell lung cancer. J Clin Oncol. 1985;3:1659–67.PubMedCrossRefGoogle Scholar
  26. 26.
    Johnson BE, Patronas N, Hayes W, et al. Neurologic, computed cranial tomographic, and magnetic resonance imaging abnormalities in patients with small-cell lung cancer: further follow-up of 6- to 13-year survivors. J Clin Oncol. 1990;8:48–56.CrossRefGoogle Scholar
  27. 27.
    Hopewell JW, Wright EA. The nature of latent cerebral irradiation damage and its modification by hypertension. Br J Radiol. 1970;43:161–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Ahles TA, Saykin AJ, McDonald BC, Li Y, Furstenberg CT, Hanscom BS, Mulrooney TJ, Schwartz GN, Kaufman PA. Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: impact of age and cognitive reserve. J Clin Oncol. 2010;28:4434–40.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc. 2002;8:448–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Wefel JS, Deshmukh S, Brown PD, et al. Impact of apolipoprotein E (APOE) genotype on neurocognitive function (NCF) in patients with brain metastasis (BM): an analysis of NRG oncology’s RTOG 0614. J Clin Oncol. 2018;36:2065.CrossRefGoogle Scholar
  31. 31.
    Wong CS, Van der Kogel AJ. Mechanisms of radiation injury to the central nervous system: implications for neuroprotection. Mol Interv. 2004;4:273–84.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Li Y-Q, Chen P, Jain V, Reilly RM, Wong CS. Early radiation-induced endothelial cell loss and blood-spinal cord barrier breakdown in the rat spinal cord. Radiat Res. 2004;161:143–52.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Yuan H, Gaber MW, Boyd K, Wilson CM, Kiani MF, Merchant TE. Effects of fractionated radiation on the brain vasculature in a murine model: blood-brain barrier permeability, astrocyte proliferation, and ultrastructural changes. Int J Radiat Oncol Biol Phys. 2006;66:860–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Balentova S, Adamkov M. Molecular, cellular and functional effects of radiation-induced brain injury: a review. Int J Mol Sci. 2015;16:27796–815.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Madsen TM, Kristjansen PEG, Bolwig TG, Wortwein G. Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat. Neuroscience. 2003;119:635–42.PubMedCrossRefGoogle Scholar
  36. 36.
    Han R, Yang YM, Dietrich J, Luebke A, Mayer-Proschel M, Noble M. Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. J Biol. 2008;7:12.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Seigers R, Fardell JE. Neurobiological basis of chemotherapy-induced cognitive impairment: a review of rodent research. Neurosci Biobehav Rev. 2011;35:729–41.PubMedCrossRefGoogle Scholar
  38. 38.
    Seigers R, Schagen SB, Van Tellingen O, Dietrich J. Chemotherapy-related cognitive dysfunction: current animal studies and future directions. Brain Imaging Behav. 2013;7:453–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Vichaya EG, Chiu GS, Krukowski K, Lacourt TE, Kavelaars A, Dantzer R, Heijnen CJ, Walker AK. Mechanisms of chemotherapy-induced behavioral toxicities. Front Neurosci. 2015;9:1–17.CrossRefGoogle Scholar
  40. 40.
    Farjam R, Pramanik P, Aryal MP, Srinivasan A, Chapman CH, Tsien CI, Lawrence TS, Cao Y. A radiation-induced hippocampal vascular injury surrogate marker predicts late neurocognitive dysfunction. Int J Radiat Oncol Biol Phys. 2015;93:908–15.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Cao Y, Tsien CI, Sundgren PC, Nagesh V, Normolle D, Buchtel H, Junck L, Lawrence TS. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for prediction of radiation-induced neurocognitive dysfunction. Clin Cancer Res. 2009;15:1747–54.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Khong P-L, Leung LHT, Fung ASM, Fong DYT, Qiu D, Kwong DLW, Ooi G-C, McAlonan G, Cao G, Chan GCF. White matter anisotropy in post-treatment childhood cancer survivors: preliminary evidence of association with neurocognitive function. J Clin Oncol. 2006;24:884–90.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Qiu D, Kwong DLW, Chan GCF, Leung LHT, Khong P-L. Diffusion tensor magnetic resonance imaging finding of discrepant fractional anisotropy between the frontal and parietal lobes after whole-brain irradiation in childhood medulloblastoma survivors: reflection of regional white matter radiosensitivity? Int J Radiat Oncol Biol Phys. 2007;69:846–51.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Corn BW, Moughan J, Knisely JPS, et al. Prospective evaluation of quality of life and neurocognitive effects in patients with multiple brain metastases receiving whole-brain radiotherapy with or without thalidomide on Radiation Therapy Oncology Group (RTOG) trial 0118. Int J Radiat Oncol Biol Phys. 2008;71:71–8.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Shibamoto Y, Baba F, Oda K, Hayashi S, Kokubo M, Ishihara S-I, Itoh Y, Ogino H, Koizumi M. Incidence of brain atrophy and decline in mini-mental state examination score after whole-brain radiotherapy in patients with brain metastases: a prospective study. Int J Radiat Oncol Biol Phys. 2008;72:1168–73.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Regine WF, Scott C, Murray K, Curran W. Neurocognitive outcome in brain metastases patients treated with accelerated-fractionation vs. accelerated-hyperfractionated radiotherapy: an analysis from Radiation Therapy Oncology Group Study 91-04. Int J Radiat Oncol Biol Phys. 2001;51:711–7.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Brown PD, Ballman KV, Cerhan JH, et al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): a multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017;18:1049–60.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kepka L, Tyc-Szczepaniak D, Bujko K, Olszyna-Serementa M, Michalski W, Sprawka A, Trabska-Kluch B, Komosinska K, Wasilewska-Tesluk E, Czeremszynska B. Stereotactic radiotherapy of the tumor bed compared to whole brain radiotherapy after surgery of single brain metastasis: results from a randomized trial. Radiother Oncol. 2016;121:217–24.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Martinez P, Mak RH, Oxnard GR. Targeted therapy as an alternative to whole-brain radiotherapy in EGFR-mutant or ALK-positive non-small-cell lung cancer with brain metastases. JAMA Oncol. 2017;3:1274–5.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Tawbi HA, Forsyth PA, Algazi A, et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N Engl J Med. 2018;379:722–30.CrossRefGoogle Scholar
  51. 51.
    Davies MA, Saiag P, Robert C, et al. Dabrafenib plus trametinib in patients with BRAF(V600)-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol. 2017;18:863–73.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Tawbi HA, Boutros C, Kok D, Robert C, McArthur G. New era in the management of melanoma brain metastases. Am Soc Clin Oncol Educ Book. 2018;38:741–50.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
  54. 54.
    Suh JH. Stereotactic radiosurgery for the management of brain metastases. N Engl J Med. 2010;362:1119–27.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Yamamoto M, Serizawa T, Higuchi Y, et al. A multi-institutional prospective observational study of stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901 study update): irradiation-related complications and long-term maintenance of mini-mental state examination scores. Int J Radiat Oncol Biol Phys. 2017;99:31–40.CrossRefGoogle Scholar
  56. 56.
    Monaco EA 3rd, Faraji AH, Berkowitz O, Parry PV, Hadelsberg U, Kano H, Niranjan A, Kondziolka D, Lunsford LD. Leukoencephalopathy after whole-brain radiation therapy plus radiosurgery versus radiosurgery alone for metastatic lung cancer. Cancer. 2013;119:226–32.PubMedCrossRefGoogle Scholar
  57. 57.
    Ebi J, Sato H, Nakajima M, Shishido F. Incidence of leukoencephalopathy after whole-brain radiation therapy for brain metastases. Int J Radiat Oncol Biol Phys. 2013;85:1212–7.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Churilla TM, Ballman KV, Brown PD, et al. Stereotactic radiosurgery with or without whole-brain radiation therapy for limited brain metastases: a secondary analysis of the North Central Cancer Treatment Group N0574 (Alliance) randomized controlled trial. Int J Radiat Oncol Biol Phys. 2017;99:1173–8.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Brown PD, Jaeckle K, Ballman KV, et al. Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: a randomized clinical trial. JAMA. 2016;316:401–9.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Chang EL, Wefel JS, Hess KR, et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol. 2009;10:1037–44.CrossRefGoogle Scholar
  61. 61.
    Aoyama H, Shirato H, Tago M, et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA. 2006;295:2483–91.CrossRefGoogle Scholar
  62. 62.
    Soffietti R, Kocher M, Abacioglu UM, et al. A European organisation for research and treatment of cancer phase III trial of adjuvant whole-brain radiotherapy versus observation in patients with one to three brain metastases from solid tumors after surgical resection or radiosurgery: quality-of-life. J Clin Oncol. 2013;31:65–72.CrossRefGoogle Scholar
  63. 63.
    Aoyama H, Tago M, Kato N, et al. Neurocognitive function of patients with brain metastasis who received either whole brain radiotherapy plus stereotactic radiosurgery or radiosurgery alone. Int J Radiat Oncol Biol Phys. 2007;68:1388–95.CrossRefGoogle Scholar
  64. 64.
    Kocher M, Soffietti R, Abacioglu U, et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol. 2011;29:134–41.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65. [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT03075072, whole brain radiation versus stereotactic radiation (SRS) in patients with 5–20 brain metastases: a phase III, randomized clinical trial.
  66. 66. [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT03775330, radiosurgery with or without whole brain radiation for multiple metastases.
  67. 67.
    Auperin A, Arriagada R, Pignon JP, et al. Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. Prophylactic Cranial Irradiation Overview Collaborative Group. N Engl J Med. 1999;341:476–84.PubMedCrossRefGoogle Scholar
  68. 68.
    Slotman BJ, van Tinteren H, Praag JO, Knegjens JL, El Sharouni SY, Hatton M, Keijser A, Faivre-Finn C, Senan S. Use of thoracic radiotherapy for extensive stage small-cell lung cancer: a phase 3 randomised controlled trial. Lancet. 2015;385:36–42.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Umsawasdi T, Valdivieso M, Chen TT, et al. Role of elective brain irradiation during combined chemoradiotherapy for limited disease non-small cell lung cancer. J Neuro-Oncol. 1984;2:253–9.CrossRefGoogle Scholar
  70. 70.
    Miller T, Crowley J, Mira J, Schwartz J, Hutchins L, Baker L. A randomized trial of chemotherapy and radiotherapy for stage III non-small cell lung cancere. Cancer Ther. 1998;1:229–36.Google Scholar
  71. 71.
    Cox JD, Stanley K, Petrovich Z, Al E. Cranial irradiation in cancer of the lung of all cell types. JAMA. 1981;245:469–72.CrossRefGoogle Scholar
  72. 72.
    Gore EM, Bae K, Wong SJ, Sun A, Bonner JA, Schild SE, Gaspar LE, Bogart JA, Werner-Wasik M, Choy H. Phase III comparison of prophylactic cranial irradiation versus observation in patients with locally advanced non-small-cell lung cancer: primary analysis of Radiation Therapy Oncology Group study RTOG 0214. J Clin Oncol. 2011;29:272–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Gore E, Paulus R, Wong S, Sun A, Videtic G, Dutta S. Phase III comparison of prophylactic cranial irradiation versus observation in patients with locally advanced non-small cell lung cancer-an updated analysis of RTOG 0214. Int J Radiat Oncol Biol Phys. 2012;84:S103.CrossRefGoogle Scholar
  74. 74.
    Li N, Zeng ZF, Wang SY, et al. Randomized phase III trial of prophylactic cranial irradiation versus observation in patients with fully resected stage IIIA-N2 nonsmall-cell lung cancer and high risk of cerebral metastases after adjuvant chemotherapy. Ann Oncol. 2015;26:504–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Al Feghali KA, Ballout RA, Khamis AM, Akl EA, Geara FB. Prophylactic cranial irradiation in patients with non-small-cell lung cancer: a systematic review and meta-analysis of randomized controlled trials. Front Oncol. 2018;8:115.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Welzel G, Fleckenstein K, Schaefer J, Hermann B, Kraus-Tiefenbacher U, Mai SK, Wenz F. Memory function before and after whole brain radiotherapy in patients with and without brain metastases. Int J Radiat Oncol Biol Phys. 2008;72:1311–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Sun A, Bae K, Gore EM, et al. Phase III trial of prophylactic cranial irradiation compared with observation in patients with locally advanced non-small-cell lung cancer: Neurocognitive and quality-of-life analysis. J Clin Oncol. 2011;29:279–86.CrossRefGoogle Scholar
  78. 78.
    Wolfson AH, Bae K, Komaki R, Meyers C, Movsas B, Le Pechoux C, Werner-Wasik M, Videtic GM, Garces YI, Choy H. Primary analysis of a phase II randomized trial Radiation Therapy Oncology Group (RTOG) 0212: impact of different total doses and schedules of prophylactic cranial irradiation on chronic neurotoxicity and quality of life for patients with limited-disease. Int J Radiat Oncol Biol Phys. 2011;81:77–84.CrossRefGoogle Scholar
  79. 79.
    Le Pechoux C, Dunant A, Senan S, et al. Standard-dose versus higher-dose prophylactic cranial irradiation (PCI) in patients with limited-stage small-cell lung cancer in complete remission after chemotherapy and thoracic radiotherapy (PCI 99-01, EORTC 22003-08004, RTOG 0212, and IFCT 99-01): a randomised clinical trial. Lancet Oncol. 2009;10:467–74.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Meyers CA, Brown PD. Role and relevance of neurocognitive assessment in clinical trials of patients with CNS tumors. J Clin Oncol. 2006;24:1305–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Gehring K, Taphoorn MJB, Sitskoorn MM, Aaronson NK. Predictors of subjective versus objective cognitive functioning in patients with stable grades II and III glioma. Neurooncol Pract. 2015;2:20–31.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Meyers CA, Wefel JS. The use of the mini-mental state examination to assess cognitive functioning in cancer trials: no ifs, ands, buts, or sensitivity. J Clin Oncol. 2003;21:3557–8.CrossRefGoogle Scholar
  83. 83.
    Sul J, Kluetz P, Papadopopoulos E, Keegan P. Clinical outcome assessments in neuro-oncology: a regulatory perspective. Neurooncol Pract. 2016;3:4–9.PubMedGoogle Scholar
  84. 84.
    Wefel JS, Vardy J, Ahles T, Schagen SB. International cognition and cancer task force recommendations to harmonise studies of cognitive function in patients with cancer. Lancet Oncol. 2011;12:703–8.CrossRefGoogle Scholar
  85. 85.
    Benedict RH, David S, Groninger L, Brandt J. Hopkins verbal learning test—revised: normative data and analysis of inter-form and test-retest reliability. Clin Neuropsychol. 1998;12:43–55.CrossRefGoogle Scholar
  86. 86.
    Benton AL, Hamscher KD. Multilingual aphasia examination. Iowa City, IA: AJA Associates; 1989.Google Scholar
  87. 87.
    Tombaugh TN. Trail making test A and B: normative data stratified by age and education. Arch Clin Neuropsychol. 2004;19:203–14.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Reardon DA, Galanis E, DeGroot JF, et al. Clinical trial end points for high-grade glioma: the evolving landscape. Neuro-Oncology. 2011;13:353–61.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    van den Bent MJ, Wefel JS, Schiff D, et al. Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol. 2011;12:583–93.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Blakeley JO, Coons SJ, Corboy JR, Kline Leidy N, Mendoza TR, Wefel JS. Clinical outcome assessment in malignant glioma trials: measuring signs, symptoms, and functional limitations. Neuro-Oncology. 2016;18(Suppl 2):ii13–20.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Alexander BM, Brown PD, Ahluwalia MS, et al. Clinical trial design for local therapies for brain metastases: a guideline by the Response Assessment in Neuro-Oncology Brain Metastases working group. Lancet Oncol. 2018;19:e33–42.PubMedCrossRefGoogle Scholar
  92. 92.
    Camidge DR, Lee EQ, Lin NU, et al. Clinical trial design for systemic agents in patients with brain metastases from solid tumours: a guideline by the Response Assessment in Neuro-Oncology Brain Metastases working group. Lancet Oncol. 2018;19:e20–32.CrossRefGoogle Scholar
  93. 93.
    Ouimet LA, Stewart A, Collins B, Schindler D, Bielajew C. Measuring neuropsychological change following breast cancer treatment: an analysis of statistical models. J Clin Exp Neuropsychol. 2009;31:73–89.PubMedCrossRefGoogle Scholar
  94. 94.
    Soon YY, Tham IWK, Lim KH, Koh WY, Lu JJ. Surgery or radiosurgery plus whole brain radiotherapy versus surgery or radiosurgery alone for brain metastases. Cochrane Database Syst Rev. 2014:CD009454.Google Scholar
  95. 95.
    Meyers CA, Hess KR. Multifaceted end points in brain tumor clinical trials: cognitive deterioration precedes MRI progression. Neuro-Oncology. 2003;5:89–95.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4:1313–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Gondi V, Tome WA, Mehta MP. Why avoid the hippocampus? A comprehensive review. Radiother Oncol. 2010;97:370–6.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Gondi V, Pugh SL, Tome WA, et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol. 2014;32:3810–6.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99. [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT02635009, whole-brain radiation therapy with or without hippocampal avoidance in treating patients with limited stage or extensive stage small cell lung cancer.
  100. 100. [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT02397733, memory preservation of prophylactic cranial irradiation with hippocampal avoidance (PREMER-TRIAL).
  101. 101.
    Rodriguez de Dios N, Counago F, Lopez JL, et al. Treatment design and rationale for a randomized trial of prophylactic cranial irradiation with or without hippocampal avoidance for SCLC: PREMER Trial on Behalf of the Oncologic Group for the study of lung cancer/Spanish Radiation Oncology Group-Radiation. Clin Lung Cancer. 2018;19:e693–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Jenrow KA, Brown SL, Liu J, Kolozsvary A, Lapanowski K, Kim JH. Ramipril mitigates radiation-induced impairment of neurogenesis in the rat dentate gyrus. Radiat Oncol. 2010;5:6.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Robbins ME, Payne V, Tommasi E, Diz DI, Hsu FC, Brown WR, Wheeler KT, Olson J, Zhao W. The AT1 receptor antagonist, L-158,809, prevents or ameliorates fractionated whole-brain irradiation-induced cognitive impairment. Int J Radiat Oncol Biol Phys. 2009;73:499–505.PubMedCrossRefGoogle Scholar
  104. 104.
    Senzer N. Rationale for a phase III study of erythropoietin as a neurocognitive protectant in patients with lung cancer receiving prophylactic cranial irradiation. Semin Oncol. 2002;29:47–52.PubMedCrossRefGoogle Scholar
  105. 105.
    Malaterre J, McPherson CS, Denoyer D, et al. Enhanced lithium-induced brain recovery following cranial irradiation is not impeded by inflammation. Stem Cells Transl Med. 2012;1:469–79.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Huo K, Sun Y, Li H, Du X, Wang X, Karlsson N, Zhu C, Blomgren K. Lithium reduced neural progenitor apoptosis in the hippocampus and ameliorated functional deficits after irradiation to the immature mouse brain. Mol Cell Neurosci. 2012;51:32–42.PubMedCrossRefGoogle Scholar
  107. 107.
    Brown PD, Pugh S, Laack NN, et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro-Oncology. 2013;15:1429–37.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Gondi V, Deshmukh S, Brown P, et al. Preservation of neurocognitive function with conformal avoidance of the hippocampus during whole-brain radiotherapy (HA-WBRT) for brain metastases: preliminary results of phase III trial NRG oncology CC001. In: Presented at the 2018 Annual Meeting of the American Society for Radiation Oncology (ASTRO), San Antonio, TX, October 23, 2018, 2018.Google Scholar
  109. 109.
    Rapp SR, Case LD, Peiffer A, et al. Donepezil for irradiated brain tumor survivors: a phase III randomized placebo-controlled clinical trial. J Clin Oncol. 2015;33:1653–9.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Salloway S, Mintzer J, Cummings JL, Geldmacher D, Sun Y, Yardley J, Mackell J. Subgroup analysis of US and non-US patients in a global study of high-dose donepezil (23 mg) in moderate and severe Alzheimer’s disease. Am J Alzheimers Dis Other Dement. 2012;27:421–32.CrossRefGoogle Scholar
  111. 111.
    Wefel JS, Kesler SR, Noll KR, Schagen SB. Clinical characteristics, pathophysiology, and management of noncentral nervous system cancer-related cognitive impairment in adults. CA Cancer J Clin. 2015;65:123–38.CrossRefGoogle Scholar
  112. 112.
    Maschio M, Dinapoli L, Fabi A, Giannarelli D, Cantelmi T. Cognitive rehabilitation training in patients with brain tumor-related epilepsy and cognitive deficits: a pilot study. J Neuro-Oncol. 2015;125:419–26.CrossRefGoogle Scholar
  113. 113.
    Han EY, Chun MH, Kim BR, Kim HJ. Functional improvement after 4-week rehabilitation therapy and effects of attention deficit in brain tumor patients: comparison with subacute stroke patients. Ann Rehabil Med. 2015;39:560–9.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Zucchella C, Capone A, Codella V, De Nunzio AM, Vecchione C, Sandrini G, Pace A, Pierelli F, Bartolo M. Cognitive rehabilitation for early post-surgery inpatients affected by primary brain tumor: a randomized, controlled trial. J Neuro-Oncol. 2013;114:93–100.CrossRefGoogle Scholar
  115. 115.
    Cherrier MM, Anderson K, David D, Higano CS, Gray H, Church A, Willis SL. A randomized trial of cognitive rehabilitation in cancer survivors. Life Sci. 2013;93:617–22.PubMedCrossRefGoogle Scholar
  116. 116.
    Ercoli LM, Castellon SA, Hunter AM, Kwan L, Kahn-Mills BA, Cernin PA, Leuchter AF, Ganz PA. Assessment of the feasibility of a rehabilitation intervention program for breast cancer survivors with cognitive complaints. Brain Imaging Behav. 2013;7:543–53.PubMedCrossRefGoogle Scholar
  117. 117.
    Ferguson RJ, Ahles TA, Saykin AJ, McDonald BC, Furstenberg CT, Cole BF, Mott LA. Cognitive-behavioral management of chemotherapy-related cognitive change. Psychooncology. 2007;16:772–7.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Ferguson RJ, McDonald BC, Rocque MA, Furstenberg CT, Horrigan S, Ahles TA, Saykin AJ. Development of CBT for chemotherapy-related cognitive change: results of a waitlist control trial. Psychooncology. 2012;21:176–86.PubMedCrossRefGoogle Scholar
  119. 119.
    McDougall GJ, Becker H, Acee TW, Vaughan PW, Delville CL. Symptom management of affective and cognitive disturbance with a group of cancer survivors. Arch Psychiatr Nurs. 2011;25:24–35.PubMedCrossRefGoogle Scholar
  120. 120.
    Kesler S, Hadi Hosseini SM, Heckler C, Janelsins M, Palesh O, Mustian K, Morrow G. Cognitive training for improving executive function in chemotherapy-treated breast cancer survivors. Clin Breast Cancer. 2013;13:299–306.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Wefel J, Bradshaw M, Sullaway C, Gilbert M, Armstrong T. A brain-plasticity based computerized intervention to treat attention and memory problems in adult brain tumor (BT) survivors. In: Poster session presented at the 20th Annual Scientific Meeting and Education Day of the Society for Neuro-Oncology, San Antonio, TX, November 21, 2015, 2015.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Karine A. Al Feghali
    • 1
  • Caroline Chung
    • 1
  • Jeffrey S. Wefel
    • 1
    • 2
    Email author
  • Mariana E. Bradshaw
    • 2
  1. 1.Division of Radiation Oncology, Department of Radiation OncologyUniversity of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Section of Neuropsychology, Department of Neuro-OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations