Advertisement

Stereotactic Radiosurgery for Brain Metastases

  • Christophe Marques
  • Eric L. ChangEmail author
Chapter

Abstract

Stereotactic radiosurgery (SRS) refers to the use of a three-dimensional coordinate system (“stereotactic”) to deliver high doses of image-guided focal radiation to intracranial targets with submillimeter localization in a noninvasive manner (“radiosurgery”) as a substitute for surgery while avoiding irradiation of the surrounding healthy tissue. Dr. Lars Leksell, a prominent neurosurgeon in Sweden, pioneered SRS in the 1950s using orthovoltage X-ray tube radiation to treat trigeminal neuralgia-related facial pain [1]. Gamma knife radiosurgery (GKRS), which uses cobalt-60 as the source of ionizing radiation, was developed by Dr. Leksell and physicists Dr. Kurt Lidén and Dr. Börje Larsson in 1967 as a surgical tool to produce discoid-shaped radiation lesions for functional neurosurgery patients with movement disorders and intractable pain refractory to conventional treatment (Fig. 17.1). Since the 1970s, SRS was used for vascular malformations unsuitable for resection or embolization as well as for benign tumors.

Abbreviations

3DCRT

Three-dimensional conformal radiotherapy

ASTRO

American Society for Radiation Oncology

BM

Brain metastasis/metastases

CBCT

Cone-beam computed tomography

CI

Conformity (or conformality) index

CKRS

CyberKnife radiosurgery

CT

Computed tomography

CTV

Clinical target volume

EBRT

External beam radiation therapy

ECOG

Eastern Cooperative Oncology Group

EORTC

European Organization for Research and Treatment of Cancer

FACT-BR

 Functional Assessment of Cancer Therapy-Brain

FSRS

Fractionated SRS

GI

Gradient index

GKRS

Gamma knife radiosurgery

GTV

Gross tumor volume

HBO

Hyperbaric oxygen

HR

Hazard ratio

HVLT-R

Hopkins Verbal Learning Test-Revised

IDL

Isodose line

IV

Intravenous

KPS

Karnofsky performance status

kV

Kilovolt

LINAC

Linear accelerator

MLC

Multileaf collimator

MMSE

Mini–Mental State Examination

MRI

Magnetic resonance imaging

MU

Monitor unit

MV

Megavolt

NCI CTCAE

National Cancer Institute Common Terminology Criteria for Adverse Events

NSCLC

Non-small cell lung cancer

PIV

Prescription isodose volume

PS

Performance status

PTV

Planning target volume

PTX

Pentoxifylline

QOL

Quality of life

RCC

Renal cell carcinoma

RION

Radiation-induced optic neuropathy

RN

Radionecrosis or radiation necrosis

RPA

Recursive partitioning analysis

RT

Radiotherapy

RCT

Randomized controlled trial

RTOG

Radiation Therapy Oncology Group

SCLC

Small cell lung cancer

SGRT

Surface guided radiation therapy

SI

Selectivity index

SRS

Stereotactic radiosurgery

TV

Target volume

VitE

Vitamin E

VMAT

Volumetric modulated arc therapy

WBRT

Whole brain radiation therapy

References

  1. 1.
    Leksell L. The stereotaxic method and radiosurgery of the brain. Acta Chir Scand. 1951;102(4):316–9.PubMedGoogle Scholar
  2. 2.
    Lindquist C. Gamma knife surgery for recurrent solitary metastasis of a cerebral hypernephroma: case report. Neurosurgery. 1989;25(5):802–4.PubMedCrossRefGoogle Scholar
  3. 3.
    Barnett GH, Linskey ME, Adler JR, Cozzens JW, Friedman WA, Heilbrun MP, et al. Stereotactic radiosurgery—an organized neurosurgery-sanctioned definition. J Neurosurg. 2007;106(1):1–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Regaud C, Ferroux R. Discordance des effets des rayons X, d’une part dans la peau, d’autre part dans le testicule, par le fractionnement de la dose: diminution de l’efficacité dans la peau, maintien de l’efficacité dans le testicule. Paris: Comptes rendus hebdomadaires des séances et mémoires la Société de biologie; 1927. p. 431–4.Google Scholar
  5. 5.
    Withers HR. The four R's of radiotherapy, advances in radiation biology. New York, NY: Academic Press; 1975.Google Scholar
  6. 6.
    Park HJ, Griffin RJ, Hui S, Levitt SH, Song CW. Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res. 2012;177(3):311–27.PubMedCrossRefGoogle Scholar
  7. 7.
    Szeifert GT, Massager N, DeVriendt D, David P, De Smedt F, Rorive S, et al. Observations of intracranial neoplasms treated with gamma knife radiosurgery. J Neurosurg. 2002;97(5 Suppl):623–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Chowdhury I, Parsai S, Gandhidasan S, Kotecha R, Suh J. Optimization of stereotactic radiosurgery for the treatment of brain metastases. Appl Radiat Oncol. 2017;6(1):11–6.CrossRefGoogle Scholar
  9. 9.
    Hartford AC, Buckey JC Jr, Roberts D, Li Z, Eskey CJ, Ravi D. (P10) proof-of-principle study of hyperbaric oxygen (HBO) as a radiosensitizer prior to stereotactic radiosurgery (SRS) for brain metastases (NCT01850563). Int J Radiat Oncol Biol Phys. 2018;101(2):E24–E5.CrossRefGoogle Scholar
  10. 10.
    Brown RA, Nelson JA. The invention and early history of the N-localizer for stereotactic neurosurgery. Cureus. 2016;8(6):e642.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Park HS, Wang EH, Rutter CE, Corso CD, Chiang VL, Yu JB. Changing practice patterns of Gamma Knife versus linear accelerator-based stereotactic radiosurgery for brain metastases in the US. J Neurosurg. 2016;124(4):1018–24.PubMedCrossRefGoogle Scholar
  12. 12.
    Shiu AS, Kooy HM, Ewton JR, Tung SS, Wong J, Antes K, et al. Comparison of miniature multileaf collimation (MMLC) with circular collimation for stereotactic treatment. Int J Radiat Oncol Biol Phys. 1997;37(3):679–88.PubMedCrossRefGoogle Scholar
  13. 13.
    Bortfeld T, Schlegel W, Höver K, Schulz-Ertner D. Mini and Micro Multileaf Collimators, conference proceedings. 41st Annual Meeting of the American Association of Physics in Medicine, July 25–29, 1999, Nashville, Tennessee [Internet]. 1999;26:1094. https://www.aapm.org/meetings/99AM/pdf/2796-50260.pdf.
  14. 14.
    Xiao Y, Kry SF, Popple R, Yorke E, Papanikolaou N, Stathakis S, et al. Flattening filter-free accelerators: a report from the AAPM Therapy Emerging Technology Assessment Work Group. J Appl Clin Med Phys. 2015;16(3):5219.PubMedCrossRefGoogle Scholar
  15. 15.
    Atkins KM, Pashtan IM, Bussière MR, Kang KH, Niemierko A, Daly JE, et al. Proton stereotactic radiosurgery for brain metastases: a single-institution analysis of 370 patients. Int J Radiat Oncol Biol Phys. 2018;101(4):820–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, et al. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys. 2000;47(2):291–8.CrossRefGoogle Scholar
  17. 17.
    Trifiletti DM, Lee CC, Kano H, Cohen J, Janopaul-Naylor J, Alonso-Basanta M, et al. Stereotactic radiosurgery for brainstem metastases: an international cooperative study to define response and toxicity. Int J Radiat Oncol Biol Phys. 2016;96(2):280–8.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Stafford SL, Pollock BE, Leavitt JA, Foote RL, Brown PD, Link MJ, et al. A study on the radiation tolerance of the optic nerves and chiasm after stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2003;55(5):1177–81.PubMedCrossRefGoogle Scholar
  19. 19.
    Tishler RB, Loeffler JS, Lunsford LD, Duma C, Alexander E, Kooy HM, et al. Tolerance of cranial nerves of the cavernous sinus to radiosurgery. Int J Radiat Oncol Biol Phys. 1993;27(2):215–21.PubMedCrossRefGoogle Scholar
  20. 20.
    Jacob JT, Carlson ML, Schiefer TK, Pollock BE, Driscoll CL, Link MJ. Significance of cochlear dose in the radiosurgical treatment of vestibular schwannoma: controversies and unanswered questions. Neurosurgery. 2014;74(5):466–74.. discussion 74PubMedCrossRefGoogle Scholar
  21. 21.
    Kano H, Kondziolka D, Khan A, Flickinger JC, Lunsford LD. Predictors of hearing preservation after stereotactic radiosurgery for acoustic neuroma. J Neurosurg. 2009;111(4):863–73.PubMedCrossRefGoogle Scholar
  22. 22.
    Baschnagel AM, Chen PY, Bojrab D, Pieper D, Kartush J, Didyuk O, et al. Hearing preservation in patients with vestibular schwannoma treated with Gamma Knife surgery. J Neurosurg. 2013;118(3):571–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Oermann EK, Kress MA, Todd JV, Collins BT, Hoffman R, Chaudhry H, et al. The impact of radiosurgery fractionation and tumor radiobiology on the local control of brain metastases. J Neurosurg. 2013;119(5):1131–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Lesueur P, Lequesne J, Barraux V, Kao W, Geffrelot J, Grellard JM, et al. Radiosurgery or hypofractionated stereotactic radiotherapy for brain metastases from radioresistant primaries (melanoma and renal cancer). Radiat Oncol. 2018;13(1):138.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Minniti G, Scaringi C, Paolini S, Lanzetta G, Romano A, Cicone F, et al. Single-fraction versus multifraction (3 × 9 Gy) stereotactic radiosurgery for large (>2 cm) brain metastases: a comparative analysis of local control and risk of radiation-induced brain necrosis. Int J Radiat Oncol Biol Phys. 2016;95(4):1142–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Marcrom SR, McDonald AM, Thompson JW, Popple RA, Riley KO, Markert JM, et al. Fractionated stereotactic radiation therapy for intact brain metastases. Adv Radiat Oncol. 2017;2(4):564–71.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kirkpatrick JP, Soltys SG, Lo SS, Beal K, Shrieve DC, Brown PD. The radiosurgery fractionation quandary: single fraction or hypofractionation? Neuro Oncol. 2017;19(suppl_2):ii38–49.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Higuchi Y, Serizawa T, Nagano O, Matsuda S, Ono J, Sato M, et al. Three-staged stereotactic radiotherapy without whole brain irradiation for large metastatic brain tumors. Int J Radiat Oncol Biol Phys. 2009;74(5):1543–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Angelov L, Mohammadi AM, Bennett EE, Abbassy M, Elson P, Chao ST, et al. Impact of 2-staged stereotactic radiosurgery for treatment of brain metastases ≥ 2 cm. J Neurosurg. 2018;129(2):366–82.CrossRefGoogle Scholar
  30. 30.
    Gaspar L, Scott C, Rotman M, Asbell S, Phillips T, Wasserman T, et al. Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys. 1997;37(4):745–51.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Weltman E, Salvajoli JV, Brandt RA, de Morais HR, Prisco FE, Cruz JC, et al. Radiosurgery for brain metastases: a score index for predicting prognosis. Int J Radiat Oncol Biol Phys. 2000;46(5):1155–61.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Lorenzoni J, Devriendt D, Massager N, David P, Ruíz S, Vanderlinden B, et al. Radiosurgery for treatment of brain metastases: estimation of patient eligibility using three stratification systems. Int J Radiat Oncol Biol Phys. 2004;60(1):218–24.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Sperduto PW, Berkey B, Gaspar LE, Mehta M, Curran W. A new prognostic index and comparison to three other indices for patients with brain metastases: an analysis of 1,960 patients in the RTOG database. Int J Radiat Oncol Biol Phys. 2008;70(2):510–4.CrossRefGoogle Scholar
  34. 34.
    Sperduto PW, Chao ST, Sneed PK, Luo X, Suh J, Roberge D, et al. Diagnosis-specific prognostic factors, indexes, and treatment outcomes for patients with newly diagnosed brain metastases: a multi-institutional analysis of 4,259 patients. Int J Radiat Oncol Biol Phys. 2010;77(3):655–61.CrossRefGoogle Scholar
  35. 35.
    Sperduto PW, Kased N, Roberge D, Xu Z, Shanley R, Luo X, et al. Summary report on the graded prognostic assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. J Clin Oncol. 2012;30(4):419–25.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Likhacheva A, Pinnix CC, Parikh N, Allen PK, Guha-Thakurta N, McAleer M, et al. Validation of recursive partitioning analysis and diagnosis-specific graded prognostic assessment in patients treated initially with radiosurgery alone. J Neurosurg. 2012;117(Suppl):38–44.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Serizawa T, Higuchi Y, Nagano O, Matsuda S, Ono J, Saeki N, et al. A new grading system focusing on neurological outcomes for brain metastases treated with stereotactic radiosurgery: the modified Basic Score for Brain Metastases. J Neurosurg. 2014;121(Suppl):35–43.PubMedCrossRefGoogle Scholar
  38. 38.
    Sperduto PW, Yang TJ, Beal K, Pan H, Brown PD, Bangdiwala A, et al. Estimating survival in patients with lung cancer and brain metastases: an update of the graded prognostic assessment for lung cancer using molecular markers (lung-molGPA). JAMA Oncol. 2017;3(6):827–31.CrossRefGoogle Scholar
  39. 39.
    Sperduto PW, Jiang W, Brown PD, Braunstein S, Sneed P, Wattson DA, et al. Estimating survival in melanoma patients with brain metastases: an update of the graded prognostic assessment for melanoma using molecular markers (melanoma-molGPA). Int J Radiat Oncol Biol Phys. 2017;99(4):812–6.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Ayala-Peacock DN, Peiffer AM, Lucas JT, Isom S, Kuremsky JG, Urbanic JJ, et al. A nomogram for predicting distant brain failure in patients treated with gamma knife stereotactic radiosurgery without whole brain radiotherapy. Neuro Oncol. 2014;16(9):1283–8.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Rodrigues G, Zindler J, Warner A, Lagerwaard F. Recursive partitioning analysis for the prediction of stereotactic radiosurgery brain metastases lesion control. Oncologist. 2013;18(3):330–5.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Sia J, Paul E, Dally M, Ruben J. Stereotactic radiosurgery for 318 brain metastases in a single Australian centre: the impact of histology and other factors. J Clin Neurosci. 2015;22(2):303–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Kondziolka D, Parry PV, Lunsford LD, Kano H, Flickinger JC, Rakfal S, et al. The accuracy of predicting survival in individual patients with cancer. J Neurosurg. 2014;120(1):24–30.PubMedCrossRefGoogle Scholar
  44. 44.
    Patchell RA, Tibbs PA, Walsh JW, Dempsey RJ, Maruyama Y, Kryscio RJ, et al. A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med. 1990;322(8):494–500.CrossRefGoogle Scholar
  45. 45.
    Patchell RA, Tibbs PA, Regine WF, Dempsey RJ, Mohiuddin M, Kryscio RJ, et al. Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA. 1998;280(17):1485–9.CrossRefGoogle Scholar
  46. 46.
    Kocher M, Soffietti R, Abacioglu U, Villà S, Fauchon F, Baumert BG, et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol. 2011;29(2):134–41.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Tsao MN, Rades D, Wirth A, Lo SS, Danielson BL, Gaspar LE, et al. Radiotherapeutic and surgical management for newly diagnosed brain metastasis(es): an American Society for Radiation Oncology evidence-based guideline. Pract Radiat Oncol. 2012;2(3):210–25.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    NCCN. Central Nervous System Cancers (Version 1.2018, March 20, 2018). https://www.nccn.org/professionals/physician_gls/pdf/cns.pdf.
  49. 49.
    Yamamoto M, Serizawa T, Shuto T, Akabane A, Higuchi Y, Kawagishi J, et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol. 2014;15(4):387–95.PubMedCrossRefGoogle Scholar
  50. 50.
    Yamamoto M, Serizawa T, Higuchi Y, Sato Y, Kawagishi J, Yamanaka K, et al. A multi-institutional prospective observational study of stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901 study update): irradiation-related complications and long-term maintenance of mini-mental state examination scores. Int J Radiat Oncol Biol Phys. 2017;99(1):31–40.PubMedCrossRefGoogle Scholar
  51. 51.
    Andrews DW, Scott CB, Sperduto PW, Flanders AE, Gaspar LE, Schell MC, et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet. 2004;363(9422):1665–72.PubMedCrossRefGoogle Scholar
  52. 52.
    Chang EL, Wefel JS, Hess KR, Allen PK, Lang FF, Kornguth DG, et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol. 2009;10(11):1037–44.CrossRefGoogle Scholar
  53. 53.
    Aoyama H, Shirato H, Tago M, Nakagawa K, Toyoda T, Hatano K, et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA. 2006;295(21):2483–91.PubMedCrossRefGoogle Scholar
  54. 54.
    Aoyama H, Tago M, Kato N, Toyoda T, Kenjyo M, Hirota S, et al. Neurocognitive function of patients with brain metastasis who received either whole brain radiotherapy plus stereotactic radiosurgery or radiosurgery alone. Int J Radiat Oncol Biol Phys. 2007;68(5):1388–95.PubMedCrossRefGoogle Scholar
  55. 55.
    Brown PD, Jaeckle K, Ballman KV, Farace E, Cerhan JH, Anderson SK, et al. Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: a randomized clinical trial. JAMA. 2016;316(4):401–9.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Soffietti R, Kocher M, Abacioglu UM, Villa S, Fauchon F, Baumert BG, et al. A European Organisation for Research and Treatment of Cancer phase III trial of adjuvant whole-brain radiotherapy versus observation in patients with one to three brain metastases from solid tumors after surgical resection or radiosurgery: quality-of-life results. J Clin Oncol. 2013;31(1):65–72.PubMedCrossRefGoogle Scholar
  57. 57.
    Mahajan A, Ahmed S, McAleer MF, Weinberg JS, Li J, Brown PD, et al. Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: a single-centre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017;18(8):1040–8.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Brown PD, Ballman KV, Cerhan JH, Anderson SK, Carrero XW, Whitton AC, et al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC.3): a multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017;18(8):1049–60.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Meyers CA, Wefel JS. The use of the mini-mental state examination to assess cognitive functioning in cancer trials: no ifs, ands, buts, or sensitivity. J Clin Oncol. 2003;21(19):3557–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Chang EL, Wefel JS, Maor MH, Hassenbusch SJ, Mahajan A, Lang FF, et al. A pilot study of neurocognitive function in patients with one to three new brain metastases initially treated with stereotactic radiosurgery alone. Neurosurgery. 2007;60(2):277–83.. discussion 83-4CrossRefGoogle Scholar
  61. 61.
    Wefel JS, Vardy J, Ahles T, Schagen SB. International Cognition and Cancer Task Force recommendations to harmonise studies of cognitive function in patients with cancer. Lancet Oncol. 2011;12(7):703–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Asher AL, Burri SH, Wiggins WF, Kelly RP, Boltes MO, Mehrlich M, et al. A new treatment paradigm: neoadjuvant radiosurgery before surgical resection of brain metastases with analysis of local tumor recurrence. Int J Radiat Oncol Biol Phys. 2014;88(4):899–906.PubMedCrossRefGoogle Scholar
  63. 63.
    Patel KR, Burri SH, Asher AL, Crocker IR, Fraser RW, Zhang C, et al. Comparing preoperative with postoperative stereotactic radiosurgery for resectable brain metastases: a multi-institutional analysis. Neurosurgery. 2016;79(2):279–85.PubMedCrossRefGoogle Scholar
  64. 64.
    Sahgal A, Aoyama H, Kocher M, Neupane B, Collette S, Tago M, et al. Phase 3 trials of stereotactic radiosurgery with or without whole-brain radiation therapy for 1 to 4 brain metastases: individual patient data meta-analysis. Int J Radiat Oncol Biol Phys. 2015;91(4):710–7.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Yamamoto M, Kawabe T, Sato Y, Higuchi Y, Nariai T, Watanabe S, et al. Stereotactic radiosurgery for patients with multiple brain metastases: a case-matched study comparing treatment results for patients with 2-9 versus 10 or more tumors. J Neurosurg. 2014;121(Suppl):16–25.PubMedCrossRefGoogle Scholar
  66. 66.
    Bhatnagar AK, Flickinger JC, Kondziolka D, Lunsford LD. Stereotactic radiosurgery for four or more intracranial metastases. Int J Radiat Oncol Biol Phys. 2006;64(3):898–903.PubMedCrossRefGoogle Scholar
  67. 67.
    Banfill KE, Bownes PJ, St Clair SE, Loughrey C, Hatfield P. Stereotactic radiosurgery for the treatment of brain metastases: impact of cerebral disease burden on survival. Br J Neurosurg. 2012;26(5):674–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Knoll MA, Oermann EK, Yang AI, Paydar I, Steinberger J, Collins B, et al. Survival of patients with multiple intracranial metastases treated with stereotactic radiosurgery: does the number of tumors matter? Am J Clin Oncol. 2018;41(5):425–31.PubMedCrossRefGoogle Scholar
  69. 69.
    Deprez S, Kesler SR, Saykin AJ, Silverman DHS, de Ruiter MB, McDonald BC. International cognition and cancer task force recommendations for neuroimaging methods in the study of cognitive impairment in non-CNS cancer patients. J Natl Cancer Inst. 2018;110(3):223–31.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Schimmel WCM, Gehring K, Eekers D, Hanssens P, Sitskoorn M. Cognitive effects of stereotactic radiosurgery in adult patients with brain metastases: a systematic review. Adv Radiat Oncol. 2018;3:568–81.. open accessPubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Weitzner MA, Meyers CA, Gelke CK, Byrne KS, Cella DF, Levin VA. The Functional Assessment of Cancer Therapy (FACT) scale. Development of a brain subscale and revalidation of the general version (FACT-G) in patients with primary brain tumors. Cancer. 1995;75(5):1151–61.PubMedCrossRefGoogle Scholar
  72. 72.
    Pham A, Lee B, Chang EL. Stereotactic radiosurgery for multiple brain metastases: two cases of preserved quality of life. Cureus. 2017;9(12):e1995.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Parvez K, Parvez A, Zadeh G. The diagnosis and treatment of pseudoprogression, radiation necrosis and brain tumor recurrence. Int J Mol Sci. 2014;15(7):11832–46.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Patel TR, McHugh BJ, Bi WL, Minja FJ, Knisely JP, Chiang VL. A comprehensive review of MR imaging changes following radiosurgery to 500 brain metastases. AJNR Am J Neuroradiol. 2011;32(10):1885–92.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Minniti G, Scaringi C, Paolini S, Clarke E, Cicone F, Esposito V, et al. Repeated stereotactic radiosurgery for patients with progressive brain metastases. J Neurooncol. 2016;126(1):91–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Choi J. Outcomes following re-irradiation for symptomatic brain metastasis. J Cancer Sci Ther. 2015;7(10):308–11.Google Scholar
  77. 77.
    Kohutek ZA, Yamada Y, Chan TA, Brennan CW, Tabar V, Gutin PH, et al. Long-term risk of radionecrosis and imaging changes after stereotactic radiosurgery for brain metastases. J Neurooncol. 2015;125(1):149–56.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Minniti G, Clarke E, Lanzetta G, Osti MF, Trasimeni G, Bozzao A, et al. Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol. 2011;6:48.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Colaco RJ, Martin P, Kluger HM, Yu JB, Chiang VL. Does immunotherapy increase the rate of radiation necrosis after radiosurgical treatment of brain metastases? J Neurosurg. 2016;125(1):17–23.CrossRefGoogle Scholar
  80. 80.
    Patel U, Patel A, Cobb C, Benkers T, Vermeulen S. The management of brain necrosis as a result of SRS treatment for intra-cranial tumors. Transl Cancer Res. 2014;3(4)  https://doi.org/10.3978/j.issn.2218-676X.2014.07.05.
  81. 81.
    Kohshi K, Imada H, Nomoto S, Yamaguchi R, Abe H, Yamamoto H. Successful treatment of radiation-induced brain necrosis by hyperbaric oxygen therapy. J Neurol Sci. 2003;209(1–2):115–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Levin VA, Bidaut L, Hou P, Kumar AJ, Wefel JS, Bekele BN, et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys. 2011;79(5):1487–95.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Williamson R, Kondziolka D, Kanaan H, Lunsford LD, Flickinger JC. Adverse radiation effects after radiosurgery may benefit from oral vitamin E and pentoxifylline therapy: a pilot study. Stereotact Funct Neurosurg. 2008;86(6):359–66.PubMedCrossRefGoogle Scholar
  84. 84.
    Prasad D. Gamma Knife® stereotactic radiosurgery and hypo-fractionated stereotactic radiotherapy. In: Chang EL, Brown P, Lo SS, Sahgal A, Suh J, editors. Adult CNS radiation oncology, principles and practice. 1st ed. Cham, Switzerland: Springer International Publishing; 2018.Google Scholar
  85. 85.
    Johnson PB, Monterroso MI, Yang F, Mellon E. Optimization of the prescription isodose line for Gamma Knife radiosurgery using the shot within shot technique. Radiat Oncol. 2017;12(1):187.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Kirkpatrick JP, Wang Z, Sampson JH, McSherry F, Herndon JE, Allen KJ, et al. Defining the optimal planning target volume in image-guided stereotactic radiosurgery of brain metastases: results of a randomized trial. Int J Radiat Oncol Biol Phys. 2015;91(1):100–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Soltys SG, Adler JR, Lipani JD, Jackson PS, Choi CY, Puataweepong P, et al. Stereotactic radiosurgery of the postoperative resection cavity for brain metastases. Int J Radiat Oncol Biol Phys. 2008;70(1):187–93.PubMedCrossRefGoogle Scholar
  88. 88.
    Soliman H, Ruschin M, Angelov L, Brown PD, Chiang VLS, Kirkpatrick JP, et al. Consensus contouring guidelines for postoperative completely resected cavity stereotactic radiosurgery for brain metastases. Int J Radiat Oncol Biol Phys. 2018;100(2):436–42.PubMedCrossRefGoogle Scholar
  89. 89.
    Jhaveri J, Chowdhary M, Zhang X, Press RH, Switchenko JM, Ferris MJ, et al. Does size matter? Investigating the optimal planning target volume margin for postoperative stereotactic radiosurgery to resected brain metastases. J Neurosurg. 2018:1–7.  https://doi.org/10.3171/2017.9.JNS171735.CrossRefGoogle Scholar
  90. 90.
    Schimmel WCM, Verhaak E, Hanssens PEJ, Gehring K, Sitskoorn MM. A randomised trial to compare cognitive outcome after gamma knife radiosurgery versus whole brain radiation therapy in patients with multiple brain metastases: research protocol CAR-study B. BMC Cancer. 2018;18(1):218.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Roberge D, Brown PD, Whitton A, O'Callaghan C, Leis A, Greenspoon J, et al. The future is now-prospective study of radiosurgery for more than 4 brain metastases to start in 2018! Front Oncol. 2018;8:380.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Radiation OncologyKeck School of Medicine of USCLos AngelesUSA

Personalised recommendations