Imaging of Brain Metastases: Diagnosis and Monitoring

  • Gabriel C. T. E. GarciaEmail author
  • Sophie Bockel
  • Michaël Majer
  • Samy Ammari
  • Marion Smits


Brain metastases are the most frequent brain tumors in adults [1] and represent about 25% of brain masses. Among patients with metastatic cancer, 40% will present with brain metastases [2]. These lesions are less frequently symptomatic than expected: only 19% of patients with newly diagnosed brain metastases have neurologic symptoms [3] whereas these lesions dramatically change patients’ prognosis. We will see in this chapter that imaging is central for patients’ care.


  1. 1.
    Posner JB, Chernik NL. Intracranial metastases from systemic cancer. Adv Neurol. 1978;19:579–92.PubMedGoogle Scholar
  2. 2.
    Patchell RA. The management of brain metastases. Cancer Treat Rev. 2003;29(6):533–40.PubMedCrossRefGoogle Scholar
  3. 3.
    Füreder LM, Widhalm G, Gatterbauer B, Dieckmann K, Hainfellner JA, Bartsch R, et al. Brain metastases as first manifestation of advanced cancer: exploratory analysis of 459 patients at a tertiary care center. Clin Exp Metastasis. 2018;35(8):727–38.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Lin JP, Kricheff II, Laguna J, Naidich T. Brain tumors studied by computerized tomography. Adv Neurol. 1976;15:175–99.PubMedGoogle Scholar
  5. 5.
    Healy ME, Hesselink JR, Press GA, Middleton MS. Increased detection of intracranial metastases with intravenous Gd-DTPA. Radiology. 1987;165(3):619–24.PubMedCrossRefGoogle Scholar
  6. 6.
    Sage MR, Wilson AJ. The blood-brain barrier: an important concept in neuroimaging. AJNR Am J Neuroradiol avr. 1994;15(4):601–22.Google Scholar
  7. 7.
    Seute T, Leffers P, ten Velde GPM, Twijnstra A. Detection of brain metastases from small cell lung cancer: consequences of changing imaging techniques (CT versus MRI). Cancer. 2008;112(8):1827–34.PubMedCrossRefGoogle Scholar
  8. 8.
    Pope WB. Brain metastases: neuroimaging. Handb Clin Neurol. 2018;149:89–112.. Elsevier. Disponible sur: Scholar
  9. 9.
    Escott EJ. A variety of appearances of malignant melanoma in the head: a review. Radiographics. 2001;21(3):625–39.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang W, Ma X-X, Ji Y-M, Kang X-S, Li C-F. Haemorrhage detection in brain metastases of lung cancer patients using magnetic resonance imaging. J Int Med Res. 2009;37(4):1139–44.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Delattre JY, Krol G, Thaler HT, Posner JB. Distribution of brain metastases. Arch Neurol. 1988;45(7):741–4.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Kindt GW. The pattern of location of cerebral metastatic tumors. J Neurosurg. 1964;21:54–7.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Hwang T-L, Close TP, Grego JM, Brannon WL, Gonzales F. Predilection of brain metastasis in gray and white matter junction and vascular border zones. Cancer. 1996;77(8):1551–5.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401–7.CrossRefGoogle Scholar
  15. 15.
    Hayashida Y, Hirai T, Morishita S, Kitajima M, Murakami R, Korogi Y, et al. Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity. AJNR Am J Neuroradiol. 2006;27(7):1419–25.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Trattnig S, Ba-Ssalamah A, Noebauer-Huhmann I-M, Barth M, Wolfsberger S, Pinker K, et al. MR contrast agent at high-field MRI (3 Tesla). Top Magn Reson Imaging TMRI. 2003;14(5):365–75.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Ba-Ssalamah A, Nöbauer-Huhmann IM, Pinker K, Schibany N, Prokesch R, Mehrain S, et al. Effect of contrast dose and field strength in the magnetic resonance detection of brain metastases. Invest Radiol. 2003;38(7):415–22.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Noebauer-Huhmann I-M, Szomolanyi P, Kronnerwetter C, Widhalm G, Weber M, Nemec S, et al. Brain tumours at 7T MRI compared to 3T—contrast effect after half and full standard contrast agent dose: initial results. Eur Radiol. 2015;25(1):106–12.PubMedCrossRefGoogle Scholar
  19. 19.
    Takeda T, Takeda A, Nagaoka T, Kunieda E, Takemasa K, Watanabe M, et al. Gadolinium-enhanced three-dimensional magnetization-prepared rapid gradient-echo (3D MP-RAGE) imaging is superior to spin-echo imaging in delineating brain metastases. Acta Radiol Stockh Swed 1987. 2008;49(10):1167–73.Google Scholar
  20. 20.
    Chappell PM, Pelc NJ, Foo TK, Glover GH, Haros SP, Enzmann DR. Comparison of lesion enhancement on spin-echo and gradient-echo images. AJNR Am J Neuroradiol. 1994;15(1):37–44.PubMedGoogle Scholar
  21. 21.
    Reichert M, Morelli JN, Runge VM, Tao A, von Ritschl R, von Ritschl A, et al. Contrast-enhanced 3-dimensional SPACE versus MP-RAGE for the detection of brain metastases: considerations with a 32-channel head coil. Invest Radiol. 2013;48(1):55–60.PubMedCrossRefGoogle Scholar
  22. 22.
    Rand S, Maravilla KR. Uses and limitations of spoiled gradient-refocused imaging in the evaluation of suspected intracranial tumors. Top Magn Reson Imaging TMRI sept. 1992;4(4):7-16.Google Scholar
  23. 23.
    Kushnirsky M, Nguyen V, Katz JS, Steinklein J, Rosen L, Warshall C, et al. Time-delayed contrast-enhanced MRI improves detection of brain metastases and apparent treatment volumes. J Neurosurg. 2016;124(2):489–95.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Yuh WT, Tali ET, Nguyen HD, Simonson TM, Mayr NA, Fisher DJ. The effect of contrast dose, imaging time, and lesion size in the MR detection of intracerebral metastasis. AJNR Am J Neuroradiol. 1995;16(2):373–80.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Yuh WT, Fisher DJ, Runge VM, Atlas SW, Harms SE, Maravilla KR, et al. Phase III multicenter trial of high-dose gadoteridol in MR evaluation of brain metastases. AJNR Am J Neuroradiol. 1994;15(6):1037–51.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Togao O, Hiwatashi A, Yamashita K, Kikuchi K, Yoshiura T, Honda H. Additional MR contrast dosage for radiologists’ diagnostic performance in detecting brain metastases: a systematic observer study at 3 T. Jpn J Radiol. 2014;32(9):537–44.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Anzalone N, Essig M, Lee S-K, Dörfler A, Ganslandt O, Combs SE, et al. Optimizing contrast-enhanced magnetic resonance imaging characterization of brain metastases: relevance to stereotactic radiosurgery. Neurosurgery. 2013;72(5):691–701.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Fraum TJ, Ludwig DR, Bashir MR, Fowler KJ. Gadolinium-based contrast agents: a comprehensive risk assessment. J Magn Reson Imaging JMRI. 2017;46(2):338–53.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Franceschi AM, Moschos SJ, Anders CK, Glaubiger S, Collichio FA, Lee CB, et al. Use of susceptibility-weighted imaging (SWI) in the detection of brain hemorrhagic metastases from breast cancer and melanoma. J Comput Assist Tomogr. 2016;40(5):803–5.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Schwartz KM, Erickson BJ, Lucchinetti C. Pattern of T2 hypointensity associated with ring-enhancing brain lesions can help to differentiate pathology. Neuroradiology. 2006;48(3):143–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Smirniotopoulos JG, Murphy FM, Rushing EJ, Rees JH, Schroeder JW. Patterns of contrast enhancement in the brain and meninges. Radiogr Rev Publ Radiol Soc N Am Inc. 2007;27(2):525–51.Google Scholar
  32. 32.
    Toh CH, Wei K-C, Ng S-H, Wan Y-L, Lin C-P, Castillo M. Differentiation of brain abscesses from necrotic glioblastomas and cystic metastatic brain tumors with diffusion tensor imaging. AJNR Am J Neuroradiol. 2011;32(9):1646–51.PubMedCrossRefGoogle Scholar
  33. 33.
    Floriano VH, Torres US, Spotti AR, Ferraz-Filho JRL, Tognola WA. The role of dynamic susceptibility contrast-enhanced perfusion MR imaging in differentiating between infectious and neoplastic focal brain lesions: results from a cohort of 100 consecutive patients. PLoS One. 2013;8(12):e81509.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Gupta RK, Jobanputra KJ, Yadav A. MR spectroscopy in brain infections. Neuroimaging Clin N Am. 2013;23(3):475–98.PubMedCrossRefGoogle Scholar
  35. 35.
    Masdeu JC, Quinto C, Olivera C, Tenner M, Leslie D, Visintainer P. Open-ring imaging sign: highly specific for atypical brain demyelination. Neurology. 2000;54(7):1427–33.PubMedCrossRefGoogle Scholar
  36. 36.
    Rueda-Lopes FC, Hygino da Cruz LC, Doring TM, Gasparetto EL. Diffusion-weighted imaging and demyelinating diseases: new aspects of an old advanced sequence. AJR Am J Roentgenol. 2014;202(1):W34–42.PubMedCrossRefGoogle Scholar
  37. 37.
    Cai X, Xu J, Xu J, Pan D. Serial magnetic resonance imaging representation in a Baló’s concentric sclerosis. J Neurol Sci. 2015;349(1-2):266–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Yamasaki F, Kurisu K, Satoh K, Arita K, Sugiyama K, Ohtaki M, et al. Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology. 2005;235(3):985–91.PubMedCrossRefGoogle Scholar
  39. 39.
    Usinskiene J, Ulyte A, Bjørnerud A, Venius J, Katsaros VK, Rynkeviciene R, et al. Optimal differentiation of high- and low-grade glioma and metastasis: a meta-analysis of perfusion, diffusion, and spectroscopy metrics. Neuroradiology. 2016;58(4):339–50.PubMedCrossRefGoogle Scholar
  40. 40.
    Liang R, Wang X, Li M, Yang Y, Luo J, Mao Q, et al. Meta-analysis of peritumoural rCBV values derived from dynamic susceptibility contrast imaging in differentiating high-grade gliomas from intracranial metastases. Int J Clin Exp Med. 2014;7(9):2724–9.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Bulakbasi N, Kocaoglu M, Farzaliyev A, Tayfun C, Ucoz T, Somuncu I. Assessment of diagnostic accuracy of perfusion MR imaging in primary and metastatic solitary malignant brain tumors. AJNR Am J Neuroradiol. 2005;26(9):2187–99.PubMedGoogle Scholar
  42. 42.
    Tsougos I, Svolos P, Kousi E, Fountas K, Theodorou K, Fezoulidis I, et al. Differentiation of glioblastoma multiforme from metastatic brain tumor using proton magnetic resonance spectroscopy, diffusion and perfusion metrics at 3 T. Cancer Imaging Off Publ Int Cancer Imaging Soc. 2012;12:423–36.Google Scholar
  43. 43.
    Crisi G, Orsingher L, Filice S. Lipid and macromolecules quantitation in differentiating glioblastoma from solitary metastasis: a short-echo time single-voxel magnetic resonance spectroscopy study at 3 T. J Comput Assist Tomogr. 2013;37(2):265–71.PubMedCrossRefGoogle Scholar
  44. 44.
    Bauer AH, Erly W, Moser FG, Maya M, Nael K. Differentiation of solitary brain metastasis from glioblastoma multiforme: a predictive multiparametric approach using combined MR diffusion and perfusion. Neuroradiology. 2015;57(7):697–703.PubMedCrossRefGoogle Scholar
  45. 45.
    Debevec M. Management of patients with brain metastases of unknown origin. Neoplasma. 1990;37(5):601–6.PubMedGoogle Scholar
  46. 46.
    DeAngelis LM, Posner JB. Neurologic complications of cancer, Contemporary neurology series. 2nd ed. Oxford, New York: Oxford University Press; 2008. p. 656.CrossRefGoogle Scholar
  47. 47.
    Quattrocchi CC, Errante Y, Gaudino C, Mallio CA, Giona A, Santini D, et al. Spatial brain distribution of intra-axial metastatic lesions in breast and lung cancer patients. J Neurooncol. 2012;110(1):79–87.PubMedCrossRefGoogle Scholar
  48. 48.
    Kyeong S, Cha YJ, Ahn SG, Suh SH, Son EJ, Ahn SJ. Subtypes of breast cancer show different spatial distributions of brain metastases. PLoS One. 2017;12(11):e0188542.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Yeh R-H, Yu J-C, Chu C-H, Ho C-L, Kao H-W, Liao G-S, et al. Distinct MR imaging features of triple-negative breast cancer with brain metastasis. J Neuroimaging Off J Am Soc Neuroimaging. 2015;25(3):474–81.CrossRefGoogle Scholar
  50. 50.
    Kniep HC, Madesta F, Schneider T, Hanning U, Schönfeld MH, Schön G, et al. Radiomics of brain mri: utility in prediction of metastatic tumor type. Radiology. 2019;290(2):479–87.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Harrison RA, Nam JY, Weathers S-P, DeMonte F. Intracranial dural, calvarial, and skull base metastases. Handb Clin Neurol. 2018;149:205–25.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Beauchesne P. Intrathecal chemotherapy for treatment of leptomeningeal dissemination of metastatic tumours. Lancet Oncol. 2010;11(9):871–9.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Wang N, Bertalan MS, Brastianos PK. Leptomeningeal metastasis from systemic cancer: review and update on management. Cancer. 2018;124(1):21–35.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Singh SK, Agris JM, Leeds NE, Ginsberg LE. Intracranial leptomeningeal metastases: comparison of depiction at FLAIR and contrast-enhanced MR imaging. Radiology. 2000;217(1):50–3.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Singh SK, Leeds NE, Ginsberg LE. MR imaging of leptomeningeal metastases: comparison of three sequences. AJNR Am J Neuroradiol. 2002;23(5):817–21.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Ercan N, Gultekin S, Celik H, Tali TE, Oner YA, Erbas G. Diagnostic value of contrast-enhanced fluid-attenuated inversion recovery MR imaging of intracranial metastases. AJNR Am J Neuroradiol. 2004;25(5):761–5.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Graber JJ, Cobbs CS, Olson JJ. Congress of neurological surgeons systematic review and evidence-based guidelines on the use of stereotactic radiosurgery in the treatment of adults with metastatic brain tumors. Neurosurgery. 2019;84:E168–70.. Disponible sur: Scholar
  58. 58.
    Zakaria R, Pomschar A, Jenkinson MD, Tonn J-C, Belka C, Ertl-Wagner B, et al. Use of diffusion-weighted MRI to modify radiosurgery planning in brain metastases may reduce local recurrence. J Neurooncol. 2017;131(3):549–54.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Berghoff AS, Spanberger T, Ilhan-Mutlu A, Magerle M, Hutterer M, Woehrer A, et al. Preoperative diffusion-weighted imaging of single brain metastases correlates with patient survival times. PLoS One. 2013;8(2):e55464.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Spanberger T, Berghoff AS, Dinhof C, Ilhan-Mutlu A, Magerle M, Hutterer M, et al. Extent of peritumoral brain edema correlates with prognosis, tumoral growth pattern, HIF1a expression and angiogenic activity in patients with single brain metastases. Clin Exp Metastasis. 2013;30(4):357–68.PubMedCrossRefGoogle Scholar
  61. 61.
    Essig M, Waschkies M, Wenz F, Debus J, Hentrich HR, Knopp MV. Assessment of brain metastases with dynamic susceptibility-weighted contrast-enhanced MR imaging: initial results. Radiology. 2003;228(1):193–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Chernov M, Hayashi M, Izawa M, Nakaya K, Ono Y, Usukura M, et al. Metabolic characteristics of intracranial metastases, detected by single-voxel proton magnetic resonance spectroscopy, are seemingly not predictive for tumor response to gamma knife radiosurgery. Minim Invasive Neurosurg MIN. 2007;50(4):233–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Mellerio C, Charron S, Lion S, Roca P, Kuchcinski G, Legrand L, et al. Perioperative functional neuroimaging of gliomas in eloquent brain areas. Neurochirurgie. 2017;63(3):129–34.PubMedCrossRefGoogle Scholar
  64. 64.
    Bizzi A, Blasi V, Falini A, Ferroli P, Cadioli M, Danesi U, et al. Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology. 2008;248(2):579–89.PubMedCrossRefGoogle Scholar
  65. 65.
    Kamp MA, Rapp M, Bühner J, Slotty PJ, Reichelt D, Sadat H, et al. Early postoperative magnet resonance tomography after resection of cerebral metastases. Acta Neurochir. 2015;157(9):1573–80.PubMedCrossRefGoogle Scholar
  66. 66.
    Bette S, Gempt J, Huber T, Boeckh-Behrens T, Ringel F, Meyer B, et al. Patterns and time dependence of unspecific enhancement in postoperative magnetic resonance imaging after glioblastoma resection. World Neurosurg. 2016;90:440–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Patel TR, McHugh BJ, Bi WL, Minja FJ, Knisely JPS, Chiang VL. A comprehensive review of MR imaging changes following radiosurgery to 500 brain metastases. AJNR Am J Neuroradiol. 2011;32(10):1885–92.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Jakubovic R, Sahgal A, Soliman H, Milwid R, Zhang L, Eilaghi A, et al. Magnetic resonance imaging-based tumour perfusion parameters are biomarkers predicting response after radiation to brain metastases. Clin Oncol R Coll Radiol G B. 2014;26(11):704–12.CrossRefGoogle Scholar
  69. 69.
    Almeida-Freitas DB, Pinho MC, Otaduy MCG, Braga HF, Meira-Freitas D, da Costa Leite C. Assessment of irradiated brain metastases using dynamic contrast-enhanced magnetic resonance imaging. Neuroradiology. 2014;56(6):437–43.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Mehrabian H, Desmond KL, Chavez S, Bailey C, Rola R, Sahgal A, et al. Water exchange rate constant as a biomarker of treatment efficacy in patients with brain metastases undergoing stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2017;98(1):47–55.PubMedCrossRefGoogle Scholar
  71. 71.
    Lin NU, Lee EQ, Aoyama H, Barani IJ, Barboriak DP, Baumert BG, et al. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol. 2015;16(6):e270–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Le Rhun E, Devos P, Boulanger T, Smits M, Brandsma D, Rudà R, et al. The RANO Leptomeningeal Metastasis Group proposal to assess response to treatment: lack of feasibility and clinical utility, and a revised proposal. Neuro Oncol. 2019;21:648–58.PubMedCrossRefGoogle Scholar
  73. 73.
    Mitsuya K, Nakasu Y, Horiguchi S, Harada H, Nishimura T, Bando E, et al. Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery. J Neurooncol. 2010;99(1):81–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Hoefnagels FWA, Lagerwaard FJ, Sanchez E, Haasbeek CJA, Knol DL, Slotman BJ, et al. Radiological progression of cerebral metastases after radiosurgery: assessment of perfusion MRI for differentiating between necrosis and recurrence. J Neurol. 2009;256(6):878–87.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S. Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol. 2009;30(2):367–72.PubMedCrossRefGoogle Scholar
  76. 76.
    Zach L, Guez D, Last D, Daniels D, Grober Y, Nissim O, et al. Delayed contrast extravasation mri for depicting tumor and non-tumoral tissues in primary and metastatic brain tumors. PLoS One. 2012;7(12):e52008.. [Internet]. 14 déc 2012. Disponible sur: Scholar
  77. 77.
    Mehrabian H, Desmond KL, Soliman H, Sahgal A, Stanisz GJ. Differentiation between radiation necrosis and tumor progression using chemical exchange saturation transfer. Clin Cancer Res Off J Am Assoc Cancer Res. 2017;23(14):3667–75.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Gabriel C. T. E. Garcia
    • 1
    Email author
  • Sophie Bockel
    • 2
  • Michaël Majer
    • 1
  • Samy Ammari
    • 1
  • Marion Smits
    • 3
  1. 1.Department of Diagnostic ImagingGustave Roussy Cancer CenterVillejuifFrance
  2. 2.Radiotherapy DepartmentGustave Roussy Cancer CenterVillejuifFrance
  3. 3.Brain Cancer Institute, Erasmus MC, University Medical Center RotterdamRotterdamThe Netherlands

Personalised recommendations