Safety, Tolerability, and Use of Steroids

  • Fabian Wolpert
  • Patrick RothEmail author


Steroid treatment for patients with brain metastases was established in the 1950s [1, 2] and remains the primary choice for the treatment of peritumoral brain edema. The anti-edema effects of steroids provide quick and reliable, though transient, relief from intracranial mass effect and associated symptoms. In this chapter, an overview on the pathomechanism of tumor-related edema as well as the effects, pharmacokinetics, and most important side effects of steroids will be provided.


Steroids Dexamethasone Edema Toxicity 


  1. 1.
    Galicich JH, French LA, Melby JC. Use of dexamethasone in treatment of cerebral edema associated with brain tumors. J Lancet. 1961;81:46–53.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Ingraham FD, Matson DD, Mc LR. Cortisone and ACTH as an adjunct to the surgery of craniopharyngiomas. N Engl J Med. 1952;246:568–71.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Murayi R, Chittiboina P. Glucocorticoids in the management of peritumoral brain edema: a review of molecular mechanisms. Childs Nerv Syst. 2016;32:2293–302.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Roth P, et al. Tumor-associated edema in brain cancer patients: pathogenesis and management. Expert Rev Anticancer Ther. 2013;13:1319–25.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Liebner S, et al. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. 2000;100:323–31.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Salvador E, Burek M, Forster CY. Tight junctions and the tumor microenvironment. Curr Pathobiol Rep. 2016;4:135–45.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Saadoun S, et al. Increased aquaporin 1 water channel expression in human brain tumours. Br J Cancer. 2002;87:621–3.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Cifone MG, et al. Dexamethasone-induced thymocyte apoptosis: apoptotic signal involves the sequential activation of phosphoinositide-specific phospholipase C, acidic sphingomyelinase, and caspases. Blood. 1999;93:2282–96.PubMedCrossRefGoogle Scholar
  9. 9.
    Gilardini Montani MS, et al. Dexamethasone induces apoptosis in human T cell clones expressing low levels of Bcl-2. Cell Death Differ. 1999;6:79–86.PubMedCrossRefGoogle Scholar
  10. 10.
    Herold MJ, McPherson KG, Reichardt HM. Glucocorticoids in T cell apoptosis and function. Cell Mol Life Sci. 2006;63:60–72.PubMedCrossRefGoogle Scholar
  11. 11.
    Hegeman MA, et al. Dexamethasone attenuates VEGF expression and inflammation but not barrier dysfunction in a murine model of ventilator-induced lung injury. PLoS One. 2013;8:e57374.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Heiss JD, et al. Mechanism of dexamethasone suppression of brain tumor-associated vascular permeability in rats. Involvement of the glucocorticoid receptor and vascular permeability factor. J Clin Invest. 1996;98:1400–8.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Liu DR, et al. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin Immunol. 2013;9(1):30.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Ly KI, Wen PY. Clinical relevance of steroid use in neuro-oncology. Curr Neurol Neurosci Rep. 2017;17:5.PubMedCrossRefGoogle Scholar
  15. 15.
    Roth P, Happold C, Weller M. Corticosteroid use in neuro-oncology: an update. Neurooncol Pract. 2015;2:6–12.PubMedGoogle Scholar
  16. 16.
    Barnes PJ. Molecular mechanisms and cellular effects of glucocorticosteroids. Immunol Allergy Clin N Am. 2005;25:451.CrossRefGoogle Scholar
  17. 17.
    Nicolaides NC, et al. The human glucocorticoid receptor: molecular basis of biologic function. Steroids. 2010;75:1–12.PubMedCrossRefGoogle Scholar
  18. 18.
    Schaaf MJM, Cidlowski JA. Molecular mechanisms of glucocorticoid action and resistance. J Steroid Biochem Mol Biol. 2002;83:37–48.PubMedCrossRefGoogle Scholar
  19. 19.
    Hadjidimos A, et al. Effects of dexamethasone on Rcbf and cerebral vasomotor response in brain tumors—preliminary communication. Eur Neurol. 1973;10:25–30.PubMedCrossRefGoogle Scholar
  20. 20.
    Hazlewood KA, Fugate SE, Harrison DL. Effect of oral corticosteroids on chronic warfarin therapy. Ann Pharmacother. 2006;40:2101–6.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Chalk JB, et al. Phenytoin impairs the bioavailability of dexamethasone in neurological and neurosurgical patients. J Neurol Neurosurg Psychiatry. 1984;47:1087–90.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Lawson LA, et al. Phenytoin-dexamethasone interaction: a previously unreported observation. Surg Neurol. 1981;16:23–4.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Svalheim S, et al. Interactions between antiepileptic drugs and hormones. Seizure. 2015;28:12–7.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Werk EE Jr, et al. Interference in the effect of dexamethasone by diphenylhydantoin. N Engl J Med. 1969;281:32–4.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Zhang YY, Yang L. Interactions between human cytochrome P450 enzymes and steroids: physiological and pharmacological implications. Expert Opin Drug Metab Toxicol. 2009;5:621–9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Chu CC, et al. The cellular mechanisms of the antiemetic action of dexamethasone and related glucocorticoids against vomiting. Eur J Pharmacol. 2014;722:48–54.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Crocker EF, et al. Effect of steroids on extravascular distribution of radiographic contrast material and technetium pertechnetate in brain tumors as determined by computed tomography. Radiology. 1976;119:471–4.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Kullberg G, West KA. Influence of corticosteroids on ventricular fluid pressure. Acta Neurol Scand Suppl. 1965;41:445.CrossRefGoogle Scholar
  29. 29.
    Miller JD, Leech P. Effects of mannitol and steroid-therapy on intracranial volume-pressure relationships in patients. J Neurosurg. 1975;42:274–81.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Weinstein JD, et al. Effect of dexamethasone on brain edema in patients with metastatic brain tumors. Neurology. 1973;23:121–9.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Armitage PA, et al. Quantitative assessment of intracranial tumor response to dexamethasone using diffusion, perfusion and permeability magnetic resonance imaging. Magn Reson Imaging. 2007;25:303–10.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Bastin ME, et al. The use of diffusion tensor imaging in quantifying the effect of dexamethasone on brain tumours. Neuroreport. 1999;10:1385–91.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Watling CJ, et al. Corticosteroid-induced magnetic-resonance-imaging changes in patients with recurrent malignant glioma. J Clin Oncol. 1994;12:1886–9.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Grossman E, Messerli FH. Drug-induced hypertension: an unappreciated cause of secondary hypertension. Am J Med. 2012;125:14–22.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Pimenta E, Wolley M, Stowasser M. Adverse cardiovascular outcomes of corticosteroid excess. Endocrinology. 2012;153:5137–42.PubMedCrossRefGoogle Scholar
  36. 36.
    Coelho MC, et al. Adverse effects of glucocorticoids: coagulopathy. Eur J Endocrinol. 2015;173:M11–21.PubMedCrossRefGoogle Scholar
  37. 37.
    Cote DJ, et al. Venous thromboembolism in patients undergoing craniotomy for brain tumors: a U.S. Nationwide analysis. Semin Thromb Hemost. 2016;42:870–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Lansang MC, Hustak LK. Glucocorticoid-induced diabetes and adrenal suppression: how to detect and manage them. Cleve Clin J Med. 2011;78:748–56.PubMedCrossRefGoogle Scholar
  39. 39.
    Garber AJ, et al. American Association of Clinical Endocrinologists’ comprehensive diabetes management algorithm 2013 consensus statement—executive summary. Endocr Pract. 2013;19:536–57.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Narum S, Westergren T, Klemp M. Corticosteroids and risk of gastrointestinal bleeding: a systematic review and meta-analysis. BMJ Open. 2014;4:e004587.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Butler E, et al. Corticosteroids and risk of gastrointestinal bleeding in critically ill adults: protocol for a systematic review. Acta Anaesthesiol Scand. 2018;62:1321–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Henson JW, et al. Pneumocystis-carinii pneumonia in patients with primary brain-tumors. Arch Neurol. 1991;48:406–9.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Cooley L, et al. Consensus guidelines for diagnosis, prophylaxis and management of Pneumocystis jirovecii pneumonia in patients with haematological and solid malignancies, 2014. Intern Med J. 2014;44:1350–63.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Mathew BS, Grossman SA. Pneumocystis carinii pneumonia prophylaxis in HIV negative patients with primary CNS lymphoma. Cancer Treat Rev. 2003;29:105–19.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Schiff D. Pneumocystis pneumonia in brain tumor patients: risk factors and clinical features. J Neuro-Oncol. 1996;27:235–40.CrossRefGoogle Scholar
  46. 46.
    Overgaard UM, Helweg-Larsen J. Pneumocystis jiroveci pneumonia (PCP) in HIV-1-negative patients: a retrospective study 2002–2004. Scand J Infect Dis. 2007;39:589–95.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Bowyer SL, LaMothe MP, Hollister JR. Steroid myopathy: incidence and detection in a population with asthma. J Allergy Clin Immunol. 1985;76:234–42.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Dropcho EJ, Soong SJ. Steroid-induced weakness in patients with primary brain tumors. Neurology. 1991;41:1235–9.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Minetto MA, et al. Diagnostic work-up in steroid myopathy. Endocrine. 2018;60:219–23.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Pereira RM, Freire de Carvalho J. Glucocorticoid-induced myopathy. Joint Bone Spine. 2011;78:41–4.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Dirks-Naylor AJ, Griffiths CL. Glucocorticoid-induced apoptosis and cellular mechanisms of myopathy. J Steroid Biochem Mol Biol. 2009;117:1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Schakman O, Gilson H, Thissen JP. Mechanisms of glucocorticoid-induced myopathy. J Endocrinol. 2008;197:1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Anagnos A, Ruff RL, Kaminski HJ. Endocrine neuromyopathies. Neurol Clin. 1997;15:673–96.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Alshekhlee A, Kaminski HJ, Ruff RL. Neuromuscular manifestations of endocrine disorders. Neurol Clin. 2002;20:35–58.. v-viPubMedCrossRefGoogle Scholar
  55. 55.
    Grossman JM, et al. American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res (Hoboken). 2010;62:1515–26.CrossRefGoogle Scholar
  56. 56.
    Blake GM, Fogelman I. Bone densitometry, steroids and osteoporosis. Curr Opin Nephrol Hypertens. 2002;11:641–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Lipton A. New therapeutic agents for the treatment of bone diseases. Expert Opin Biol Ther. 2005;5:817–32.PubMedCrossRefGoogle Scholar
  58. 58.
    Aghayev K, Papanastassiou ID, Vrionis F. Role of vertebral augmentation procedures in the management of vertebral compression fractures in cancer patients. Curr Opin Support Palliat Care. 2011;5:222–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Mahar S, Malhotra M. Dexamethasone-induced withdrawal seizure. J Pharmacol Pharmacother. 2015;6:103–4.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Bolanos SH, et al. Assessment of mood states in patients receiving long-term corticosteroid therapy and in controls with patient-rated and clinician-rated scales. Ann Allergy Asthma Immunol. 2004;92:500–5.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Lewis DA, Smith RE. Steroid-induced psychiatric syndromes. A report of 14 cases and a review of the literature. J Affect Disord. 1983;5:319–32.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Brown ES, et al. Mood changes during prednisone bursts in outpatients with asthma. J Clin Psychopharmacol. 2002;22:55–61.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Sonino N, et al. Clinical correlates of major depression in Cushing’s disease. Psychopathology. 1998;31:302–6.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Kullmann MK, et al. The p27-Skp2 axis mediates glucocorticoid-induced cell cycle arrest in T-lymphoma cells. Cell Cycle. 2013;12:2625–35.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Sionov RV, et al. Mechanisms regulating the susceptibility of hematopoietic malignancies to glucocorticoid-induced apoptosis. Adv Cancer Res. 2008;101:127–248.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Vecht CJ, et al. Dose-effect relationship of dexamethasone on Karnofsky performance in metastatic brain tumors: a randomized study of doses of 4, 8, and 16 mg per day. Neurology. 1994;44:675–80.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Soffietti R, et al. Diagnosis and treatment of brain metastases from solid tumors: guidelines from the European Association of Neuro-Oncology (EANO). Neuro-Oncology. 2017;19:162–74.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Alan N, et al. Preoperative steroid use and the incidence of perioperative complications in patients undergoing craniotomy for definitive resection of a malignant brain tumor. J Clin Neurosci. 2015;22:1413–9.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Renfro L, Snow JS. Ocular effects of topical and systemic steroids. Dermatol Clin. 1992;10:505–12.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Hodi FS, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Tawbi HA, et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N Engl J Med. 2018;379:722–30.PubMedCrossRefGoogle Scholar
  72. 72.
    Xing K, et al. Dexamethasone enhances programmed cell death 1 (PD-1) expression during T cell activation: an insight into the optimum application of glucocorticoids in anti-cancer therapy. BMC Immunol. 2015;16:39.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Villadolid J, Amin A. Immune checkpoint inhibitors in clinical practice: update on management of immune-related toxicities. Transl Lung Cancer Res. 2015;4:560–75.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Fecher LA, et al. Ipilimumab and its toxicities: a multidisciplinary approach. Oncologist. 2013;18:733–43.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Weber JS. Practical management of immune-related adverse events from immune checkpoint protein antibodies for the oncologist. Am Soc Clin Oncol Educ Book. 2012;2012:174–7.Google Scholar
  76. 76.
    Chinot OL, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370:709–22.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Wick W, et al. Lomustine and bevacizumab in progressive glioblastoma. N Engl J Med. 2017;377:1954–63.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Wirsching HG, et al. Bevacizumab plus hypofractionated radiotherapy versus radiotherapy alone in elderly patients with glioblastoma: the randomized, open-label, phase II ARTE trial. Ann Oncol. 2018;29:1423–30.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Boothe D, et al. Bevacizumab as a treatment for radiation necrosis of brain metastases post stereotactic radiosurgery. Neuro-Oncology. 2013;15:1257–63.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Fanous AA, Fabiano AJ. Bevacizumab for the treatment of post-stereotactic radiosurgery adverse radiation effect. Surg Neurol Int. 2016;7:S542–4.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Levin VA, et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys. 2011;79:1487–95.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Recht L, et al. Steroid-sparing effect of corticorelin acetate in peritumoral cerebral edema is associated with improvement in steroid-induced myopathy. J Clin Oncol. 2013;31:1182–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Schneider H, Weller M. Boswellic acid activity against glioblastoma stem-like cells. Oncol Lett. 2016;11:4187–92.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Kirste S, et al. Boswellia serrata acts on cerebral edema in patients irradiated for brain tumors: a prospective, randomized, placebo-controlled, double-blind pilot trial. Cancer. 2011;117:3788–95.PubMedCrossRefGoogle Scholar
  85. 85.
    Roy NK, et al. The potential role of boswellic acids in cancer prevention and treatment. Cancer Lett. 2016;377:74–86.PubMedCrossRefGoogle Scholar
  86. 86.
    Pitter KL, et al. Corticosteroids compromise survival in glioblastoma. Brain. 2016;139:1458–71.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Neurology and Brain Tumor Center ZurichUniversity Hospital Zurich and University of ZurichZurichSwitzerland

Personalised recommendations