Advertisement

Cowpea [Vigna unguiculata (L.) Walp.] Breeding

  • Ousmane BoukarEmail author
  • Abou Togola
  • Siva Chamarthi
  • Nouhoun Belko
  • Haruki Ishikawa
  • Kanako Suzuki
  • Christian Fatokun
Chapter

Abstract

Cowpea, Vigna unguiculata (L.) Walp., is an important grain legume grown and consumed not only in the dry savannah areas of Sub-Saharan Africa but also in many other tropical and subtropical regions. It provides income, food and nutrition security to millions of people. Several studies have led to a better understanding of the taxonomy of cowpea and its wild relatives. The species diversity, distribution and evolution of cowpea have been intensively explored. The crop is mainly cultivated in intercropping system where its low plant population does not allow the full expression of the yield potential of the cultivars being grown. Considerable challenges affect the production of this crop despite its comparatively better adaptation to harsh environments. The available genetic resources maintained in the different gene banks are being used for the improvement of cowpea. Germplasm diversity and cultivars characterization were conducted in different studies. Sources of resistance/tolerance to key biotic and abiotic stresses are being identified and introgressed genes involved in new breeding lines are being developed. Improvement strategies were developed to address the major constraints to production while also taking consumer preferences into consideration. Breeding approaches of self-pollinated crops were used in the breeding programs. Application of biotechnology has been suggested to address intractable problems. Considerable effort has been made to genetically transform cowpea. Recent development of genomic resources should support the implementation of molecular breeding to complement conventional breeding and to enhance genetic gain. Key elements needed for successful application of molecular breeding tools include the availability of a high-throughput genotyping platform, high-quality consensus genetic maps, improved phenotyping capability and identification of markers closely linked to target traits. Progress is being recorded in many of these areas which should allow the development of modern breeding programs that will result in effective and efficient development of improved resilient cowpea cultivars.

Keywords

Conventional breeding Cowpea Genetic resources Genomics Modern Breeding Vigna unguiculata 

Notes

Acknowledgements

The authors would like to express sincere gratitude to all donors who have supported those of our activities reported in this review. We also wish to thank all colleagues at IITA and the collaborating National Agricultural Research Services who have provided the information summarized in Appendix I.

References

  1. AATF (2016) African agricultural technology foundation 2016 annual report. AATF, NairobiGoogle Scholar
  2. Acquaah G (2007) Principles of plant genetics and breeding. Blackwell Publishing, MaldenGoogle Scholar
  3. Adekola OF, Oluleye F (2007) Induction of genetic variation in cowpea (Vigna unguiculata L. Walp.) by gamma irradiation. Asian J Plant Sci 6:869–873CrossRefGoogle Scholar
  4. Agbicodo EM, Fatokun CA, Bandyopadhyay R et al (2010) Identification of markers associated with bacterial blight resistance loci in cowpea [Vigna unguiculata (L.) Walp.]. Euphytica 175:215–226CrossRefGoogle Scholar
  5. Agble F (1972) Seed size heterosis in cowpeas (Vigna unguiculata (L.) Walp.). Ghana J Sci 12:30–33Google Scholar
  6. Andargie M, Pasquet RS, Gowda BS et al (2011) Construction of a SSR-based genetic map and identification of QTL for domestication traits using recombinant inbred lines from a cross between wild and cultivated cowpea [V. unguiculata (L.) Walp.]. Mol Breed 28:413–420CrossRefGoogle Scholar
  7. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218CrossRefGoogle Scholar
  8. Asare AT, Gowda BS, Galyuon IKA et al (2010) Assessment of the genetic diversity in cowpea (Vigna unguiculata L. Walp.) germplasm from Ghana using simple sequence repeat markers. Plant Genet Resour 8(2):142–150.  https://doi.org/10.1017/S1479262110000092CrossRefGoogle Scholar
  9. Ba FS, Pasquet RE, Gepts P (2004) Genetic diversity in cowpea [Vigna unguiculata (L.) Walp.] as revealed by RAPD markers. Genet Resour Crop Evol 51:539–550CrossRefGoogle Scholar
  10. Barone A, Ng Q (1990) Embryological study of crosses between Vigna unguiculata and V. vexillata. In: Ng NQ, Monti LM (eds) Cowpea genetic resources. IITA, Ibadan, pp 151–160Google Scholar
  11. Barone A, Saccardo F (1990) Pachytene morphology of cowpea chromosomes. In: Ng NQ, Monti LM (eds) Cowpea genetic resources. IITA, Ibadan, pp 137–143Google Scholar
  12. Baudoin J, Maréchal R (1985) Cowpea taxonomy, origin and germplasm. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, New York, pp 3–9Google Scholar
  13. Bhaskaraiah KB, Shivashankar G, Virupakshappa K (1980) Hybrid vigour in cowpea. Indian J Genet Plant Breed 40:334–337Google Scholar
  14. Bhushana HO, Viswanatha KP, Runachala PA, Halesh GK (2000) Heterosis in cowpea for seed yield and its attributes. Crop Res (Hisar) 19:277–280Google Scholar
  15. Boukar O, Kong L, Singh BB et al (2004) AFLP and AFLP-derived SCAR markers associated with Striga gesnerioides resistance in cowpea. Crop Sci 44:1259–1264CrossRefGoogle Scholar
  16. Boukar O, Massawe F, Muranaka S et al (2011) Evaluation of cowpea germplasm lines for protein and mineral concentrations in grains. Plant Genet Resour 9(4):515–522.  https://doi.org/10.1017/S1479262111000815CrossRefGoogle Scholar
  17. Boukar O, Bhattacharjee R, Fatokun C et al (2013) Cowpea. In: Singh M, Upadhyaya HD, Bisht IS (eds) Genetic and genomic resources of grain legume improvement. Elsevier, London, pp 137–156.  https://doi.org/10.1016/B978-0-12-397935-3.00006-2CrossRefGoogle Scholar
  18. Boukar O, Fatokun CA, Roberts PA et al (2015) Cowpea. In: De Ron AM (ed) Grain legumes, handbook of plant breeding. Springer, New York, pp 219–250.  https://doi.org/10.1007/9781493927975_7CrossRefGoogle Scholar
  19. Boukar O, Fatokun CA, Huynh B-L et al (2016) Genomic tools in cowpea breeding programs: status and perspectives. Front Plant Sci 7:757.  https://doi.org/10.3389/fpls.2016.00757CrossRefPubMedPubMedCentralGoogle Scholar
  20. Brar MS, Al-Khayri JM, Morelock TE, Anderson JE (1999) Genotypic response of cowpea Vigna unguiculata (L.) to in vitro regeneration from cotyledon explants. In Vitro Cell Dev Biol Plant 35:8–12CrossRefGoogle Scholar
  21. Cardi T, Valanzuolo S, Mazza P, Filippone E (1990) In vitro and in vivo response to Al3+ of Vigna unguiculata (L.) Walp. In: Ng Q, Monti L (eds) Cowpea genetic resources. IITA, Ibadan, pp 163–174Google Scholar
  22. Chen H, Wang L, Liu X, Hu L et al (2017) De novo transcriptomic analysis of cowpea (Vigna unguiculata L. Walp.) for genic SSR marker development. BMC Genet 18:65.  https://doi.org/10.1186/s12863-017-0531-5CrossRefPubMedPubMedCentralGoogle Scholar
  23. Coulibaly S, Pasquet RS, Papa R, Gepts P (2002) AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata L. Walp. reveals extensive gene flow between wild and domesticated types. Theor Appl Genet 104(2–3):358–366CrossRefPubMedGoogle Scholar
  24. De Leonardis W, Fichera G, Padulosi S, Zizza A (1993) Preliminary studies on pollen and seed of wild germplasm accessions of Vigna unguiculata (L.) Walpers. In: Proceedings, 58th Congress of the Italian Botanic Society. University of Tor Vergata, Rome, 4–8 October 1993. 127:3Google Scholar
  25. Delgado-Salinas A, Thulin M, Pasquet R et al (2011) Vigna (Leguminosae) sensu lato: the names and identities of the American segregate genera. Am J Bot 98:1694–1715.  https://doi.org/10.3732/ajb.1100069CrossRefPubMedGoogle Scholar
  26. Diouf D, Hilu KW (2005) Microsatellite and RAPD markers to study genetic relationships among cowpea breeding lines and local cultivars in Senegal. Genet Resour Crop Evol 52:1957–1967CrossRefGoogle Scholar
  27. Dumet D, Adeleke R, Faloye B (2008) Regeneration guidelines: cowpea. In: Dulloo ME, Thormann I, Jorge MA, Hanson J (eds) Crop specific regeneration guidelines [CDROM]. CGIAR System-Wide Genetic Resource Programme, RomeGoogle Scholar
  28. Dumet D, Fatokun C, Pasquet R et al (2012) Sharing of responsibilities of cowpea and wild relatives in long term conservation. In: Boukar O, Coulibaly O, Fatokun CA et al (eds) Innovative research along the cowpea value chain. Proceedings of the fifth world cowpea conference on improving livelihoods in the cowpea value chain through advancement in science, held in Saly, Senegal, September 27–October 1, 2010. IITA, Ibadan, Nigeria, pp 56–65Google Scholar
  29. Egbadzor KF, Danquah EY, Ofori K et al (2014a) Diversity in 118 cowpea [Vigna unguiculata (L.) Walp] accessions assessed with 16 morphological traits. Int J Plant Breed Genet 8:13–24.  https://doi.org/10.1186/2193-1801-3-541CrossRefGoogle Scholar
  30. Egbadzor KF, Ofori K, Yeboah M et al (2014b) Diversity in 113 cowpea [Vigna unguiculata (L) Walp] accessions assessed with 458 SNP markers. Springerplus 3:541.  https://doi.org/10.1186/2193-1801-3-541CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ehlers JD, Hall AE (1996) Genotypic classification of cowpea based on responses to heat and photoperiod. Crop Sci 36:673–679CrossRefGoogle Scholar
  32. Ehlers JD, Hall AE (1997) Cowpea (Vigna unguiculata L. Walp.). Field Crops Res 53:187–204CrossRefGoogle Scholar
  33. Ehlers JD, Diop NN, Boukar O et al (2012) Modern approaches for cowpea breeding. In: Boukar O, Coulibaly O, Fatokun CA et al (eds) Innovative research along the cowpea value chain. Proceedings of the fifth world cowpea conference on improving livelihoods in the cowpea value chain through advancement in science, held in Saly, Senegal, September 27–October 1, 2010. IITA, Ibadan, Nigeria, pp 3–16Google Scholar
  34. Fall L, Diouf D, Fall-Ndiaye MA et al (2003) Genetic diversity in cowpea [Vigna unguiculata (L.) Walp.] varieties determined by ARA and RAPD techniques. Afr J Biotech 2:48–50CrossRefGoogle Scholar
  35. Fang J, Chao C-CT, Roberts PA, Ehlers JD (2007) Genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] in four West African and USA breeding programs as determined by AFLP analysis. Genet Resour Crop Evol 54:1197–1209CrossRefGoogle Scholar
  36. FAOSTAT (2018) Database Accessed 23 Dec 2018. http://www.fao.org/faostat/en/#data/QC
  37. Faris DG (1965) The origin and evolution of the cultivated forms of Vigna sinensis. Can J Genet Cytol 7:433–452.  https://doi.org/10.1139/g65-058CrossRefGoogle Scholar
  38. Fatokun CA (2002) Breeding cowpea for resistance to insect pests: attempted crosses between cowpea and Vigna vexillata. In: Fatokun CA, Tarawali SA, Singh BB et al (eds) Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the world cowpea conference III held at IITA, Ibadan, Nigeria, 4–8 September 2000, pp 52–61Google Scholar
  39. Fatokun CA, Danesh D, Young ND (1993) Molecular taxonomic relationships in the genus Vigna based on the RFLP analysis. Theor Appl Genet 86:97–104CrossRefPubMedGoogle Scholar
  40. Fatokun CA, Menancio-Hautea DI, Danesh D, Young ND (1992) Evidence for orthologous seed weight genes in cowpea and mung bean based on RFLP mapping. Genet 132:841–846Google Scholar
  41. Fatokun CA, Ng Q (2007) Outcrossing in cowpea. J Food Agric Envir 5:334–338Google Scholar
  42. Fatokun CA, Singh BB (1987) Interspecific hybridization between Vigna pubescens and V. unguiculata through embryo rescue. Plant Cell Tissue Organ Cult 9:229–233CrossRefGoogle Scholar
  43. Fatokun C, Girma G, Abberton M et al (2018) Genetic diversity and population structure of a mini-core subset from the world cowpea (Vigna unguiculata (L.) Walp.) germplasm collection. Sci Rep 8:1–10. ISSN:2045-2322CrossRefGoogle Scholar
  44. Fery RL (1985) Improved cowpea cultivars for the horticultural industry in the USA. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, New York, pp 129–135Google Scholar
  45. Fery RL, Singh BB (1997) Cowpea genetics: a review of the recent literature. In: Singh BB, Mohan Raj DR, LEN J (eds) Advances in cowpea research. Coproduction of IITA and Japan International Research Center for Agricultural Sciences (JIRCAS). IITA, Ibadan, pp 13–29Google Scholar
  46. Fotso M, Azanza JL, Pasquet R, Raymond J (1994) Molecular homogeneity of cowpea (Vigna unguiculata, Fabaceae) seed storage proteins. Plant Syst Evol 191:39–56CrossRefGoogle Scholar
  47. Galasso I, Schmidt T, Pignone D, Heslop-Harrison JS (1995) The molecular cytogenetics of Vigna unguiculata (L) Walp.: the physical organization and characterization of 18s-5.8s-25s ribosomal RNA genes, 5s ribosomal RNA genes, telomere-like sequences, and a family of centromeric repetitive DNA sequences. Theor Appl Genet 91:928–935CrossRefPubMedGoogle Scholar
  48. Galasso I, Harrison GE, Pignone D et al (1997) The distribution and organization of Ty1-copia-like retrotransposable elements in the genome of Vigna unguiculata (L.) Walp (cowpea) and its relatives. Ann Bot 80:327–333CrossRefGoogle Scholar
  49. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 500:151–158CrossRefGoogle Scholar
  50. Ganapathi A, Anand P (1998) Somatic embryogenesis from young leaves of cowpea (Vigna unguiculata (L.) Walp. (Abstract) in Plant biotechnology and in vitro biology for the 21st century. IX International Congress on Plant Tissue and Cell Culture, 14–19 June 1998, Jerusalem, IsraelGoogle Scholar
  51. Girija M, Dhanavel D, Gnanamurthy S (2013) Gamma rays and EMS induced flower color and seed mutants in cowpea (Vigna unguiculata L. Walp.). Adv Appl Sci Res 4:134–139Google Scholar
  52. Gupta SK, Gopalakrishna T (2010) Development of unigene-derived SSR markers in cowpea (Vigna unguiculata) and their transferability to other Vigna species. Genome 53(7):508–523CrossRefPubMedGoogle Scholar
  53. Hall AE (2004) Comparative ecophysiology of cowpea, common bean and peanut. In: Nguyen HT, Blum A (eds) Physiology and biotechnology integration for plant breeding. Marcel Dekker Inc, New York, pp 271–325Google Scholar
  54. Hall AE, Patel PN (1985) Breeding for resistance to drought and heat. In: Singh SR, Rachie KO (eds) Cowpea research, production, and utilization. John Wiley, New York, pp 137–151Google Scholar
  55. Hansen G, Wright SM (1999) Recent advances in transformation of plants. Trends Plant Sci 4(6):226–231CrossRefPubMedGoogle Scholar
  56. Higgins TJV, Gollasch S, Movig L et al (2012) Genetic transformation of cowpea for protection against bruchids and caterpillars. In: Boukar O, Coulibaly O, Fatokun CA et al (eds) Innovative research along the cowpea value chain. Proceedings of the fifth world cowpea conference on improving livelihoods in the cowpea value chain through advancement in science, held in Saly, Senegal, September 27–October 1 2010, pp 131–137Google Scholar
  57. Horn LN, Habteab M, Ghebrehiwot HM, Shimelis HA (2016) Selection of novel cowpea genotypes derived through gamma irradiation. Front Plant Sci 7:262.  https://doi.org/10.3389/fpls.2016.00262CrossRefPubMedPubMedCentralGoogle Scholar
  58. Horn L, Shimelis H, Sarsu F et al (2017) Genotype-by-environment interaction for grain yield among novel cowpea (Vigna unguiculata L.) selections derived by gamma irradiation. The Crop J 6(3):306–313.  https://doi.org/10.1016/j.cj.2017.10.002CrossRefGoogle Scholar
  59. Huynh B-L, Close TJ, Roberts PA et al (2013) Gene pools and the genetic architecture of domesticated cowpea. Plant Genome 6(3):1–8CrossRefGoogle Scholar
  60. IITA. International Institute of Tropical Agriculture (1972) Grain legume program. IITA Annual Report, IITA, Ibadan, pp 13–19Google Scholar
  61. Iwata-Otsubo A, Lin J-Y, Gill N, Jackson SA (2016) Highly distinct chromosomal structures in cowpea (Vigna unguiculata), as revealed by molecular cytogenetic analysis. Chromos Res 24:197–216.  https://doi.org/10.1007/s10577-015-9515-3CrossRefGoogle Scholar
  62. Jackai LEN, Adalla CB (1997) Pest management practices in cowpea: a review. In: Singh BB, Mohan Raj DR, LEN J (eds) Advances in cowpea research. Coproduction of IITA and Japan International Research Center for Agricultural Sciences (JIRCAS). IITA, Ibadan, pp 240–258Google Scholar
  63. Jackai LEN, Daoust RA (1986) Insect pests of cowpea. Annu Rev Entomol 31:95–119CrossRefGoogle Scholar
  64. Kononowicz AK, Cheah KT, Narasimhan ML et al (1997) Developing a transformation system for cowpea (Vigna unguiculata [L.] Walp.). In: Singh BB, Mohan-Raj DR, Dashiell KE, LEN J (eds) Advances in cowpea research. Co-publication of IITA and Japan International Research Center for Agricultural Sciences (JIRCAS). IITA, Ibadan, pp 361–371Google Scholar
  65. Joint FAO/IAEA Mutant variety database (2019) Accessed 28 Jan 2019. https://mvd.iaea.org/#!Search?Criteria[0][val]=cowpea
  66. Ladeinde TAO, Watt E, Onajole AAO (1980) Segregating pattern of three different sources of male sterility genes in Vigna unguiculata. J Hered 71:431–432CrossRefGoogle Scholar
  67. Lambot C (2002) Industrial potential of cowpea. In: Fatokun CA, Tarawali SA, Singh BB et al (eds) Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the world cowpea conference III held at the IITA, Ibadan, Nigeria, 4–8 September 2000, IITA, Ibadan, Nigeria, pp 367–375Google Scholar
  68. Leleji OI (1973) Apparent preference by bees for different flower colours in cowpea (Vigna sinensis (L.) Savi ex Hassk.). Euphytica 22:150–153CrossRefGoogle Scholar
  69. Li CD, Fatokun CA, Ubi B et al (2001) Determining genetic similarities and relationships among cowpea breeding lines and cultivars by microsatellite primers. Crop Sci 41:189–197CrossRefGoogle Scholar
  70. Lucas MR, Diop NN, Wanamaker S et al (2011) Cowpea-soybean synteny clarified through an improved genetic map. Plant Genome 4:218–224CrossRefGoogle Scholar
  71. Lucas MR, Ehlers JD, Huynh BL et al (2013a) Markers for breeding heat-tolerant cowpea. Mol Breed 31:529–536CrossRefGoogle Scholar
  72. Lucas MR, Huynh BL, da Silva Vinholes P et al (2013b) Association studies and legume synteny reveal haplotypes determining seed size in Vigna unguiculata. Front Plant Sci 4:95.  https://doi.org/10.3389/fpls.2013.00095CrossRefPubMedPubMedCentralGoogle Scholar
  73. Machuka J (2002) Potential role of transgenic approaches in the control of cowpea insect pests. In: Fatokun CA, Tarawali SA, Singh BB et al (eds) Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the world cowpea conference III held at the IITA, Ibadan, Nigeria, 4–8 September 2000. IITA, Ibadan, Nigeria, pp 213–222Google Scholar
  74. Machuka J, Adesoye A, Obembe OO (2002) Regeneration and genetic transformation in cowpea. In: Fatokun CA, Tarawali SA, Singh BB et al (eds) Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the world cowpea conference III held at the IITA, Ibadan, Nigeria, 4–8 September 2000. IITA, Ibadan, Nigeria, pp 185–196Google Scholar
  75. Mak C, Yap TC (1977) Heterosis and combining ability of seed protein, yield and yield components in long bean. Crop Sci 17:339–341CrossRefGoogle Scholar
  76. Maréchal R (1978) Etude taxonomique d'un groupe complexe d’especes des genres Phaseolus et Vigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l’analyse informatique. Conservatoire et Jardin Botaniques, GeneveGoogle Scholar
  77. Maréchal R, Mascherpa JM, Stainier F (1978) Etude taxonomique d’un groupe complexe d’especes des genres Phaseolus et Vigna (Papilionaceae) sur la base de donnees morphologiques et polliniques, traitees par l’analyse informatique. Boiss 28:1–273Google Scholar
  78. Mehta DR, Zaveri PP (1997) Single seed versus single plant selection in cowpea. Legume Res 20(2):130–132Google Scholar
  79. Mignouna HD, Ng NQ, Ikea J, Thottapilly G (1998) Genetic diversity in cowpea as revealed by random amplified polymorphic DNA. J Genet Breed 52:151–159Google Scholar
  80. Mishra SN, Verma JS, Jayasekara SJB (1985) Breeding cowpeas to suit Asian cropping systems and consumer tastes. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, New York, pp 117–123Google Scholar
  81. Monti LM, Murdock LL, Thottappilly G (1997) Opportunities for biotechnology in cowpea. In: Singh BB, Mohan Raj DR, Dashiell KE, LEN J (eds) Advances in cowpea research. Copublication of IITA and Japan International Research Center for Agricultural Sciences (JIRCAS). IITA, Ibadan, pp 341–351Google Scholar
  82. Muchero W, Diop N-N, Bhat PR et al (2009a) A consensus genetic map of cowpea [Vigna unguiculata (L.) Walp.] and syntheny based on EST-derived SNPs. Proc Natl Acad Sci USA 106:118159–118164CrossRefGoogle Scholar
  83. Muchero W, Ehlers JD, Close TJ, Roberts PA (2009b) Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.]. Theor Appl Genet 118:849–863CrossRefPubMedGoogle Scholar
  84. Muchero W, Ehlers JD, Close TJ, Roberts PA (2011) Genic SNP markers and legume synteny reveal candidate genes underlying QTL for Macrophomina phaseolina resistance and maturity in cowpea [Vigna unguiculata (L) Walp.]. BMC Genomics 12:8.  https://doi.org/10.1186/1471-2164-12-8CrossRefPubMedPubMedCentralGoogle Scholar
  85. Muñoz-Amatriaín M, Mirebrahim H, Xu P et al (2016) Genome resources for climate-resilient cowpea, an essential crop for food security. Plant J 89(5):1042–1054CrossRefGoogle Scholar
  86. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Phys Plant 15:473–497CrossRefGoogle Scholar
  87. Ng N (1995) Cowpea Vigna unguiculata (Leguminosae-Papilionideae). In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman, Essex, pp 326–332Google Scholar
  88. Ng NQ, Singh BB (1997) Cowpea. In: Fuccillo D, Sears L, Stapleton P (eds) Biodiversity and trust. Cambridge University Press, Cambridge, pp 82–89CrossRefGoogle Scholar
  89. Nielsen SS, Brandt WE, Singh BB (1993) Genetic variability for nutritional composition and cooking time of improved cowpea lines. Crop Sci 33:469–472CrossRefGoogle Scholar
  90. Nielsen SS, Ohler TA, Mitchell CA (1997) Cowpea leaves for human consumption: production, utilization and nutrient composition. In: Singh BB, Mohan-Raj DR, Dashiell KE, LEN J (eds) Advances in cowpea research. Co-publication of IITA and Japan International Research Center for Agricultural Sciences (JIRCAS). IITA, Ibadan, pp 326–332Google Scholar
  91. Nkongolo KK (2003) Genetic characterization of Malawian cowpea (Vigna unguiculata (L.) Walp.) landraces: diversity and gene flow among accessions. Euphytica 129:219–228CrossRefGoogle Scholar
  92. Odeigah PGC, Osanyinpeju AO, Myers GO (1998) Induced mutations in cowpea, Vigna unguiculata (Leguminosae). Rev Biol Trop. San José. 46(3) Online version ISSN 0034-7744Google Scholar
  93. Ogunkanmi LA, Ogundipe OT, Ng NQ, Fatokun CA (2008) Genetic diversity in wild relatives of cowpea (Vigna unguiculata) as revealed by simple sequence repeats (SSR) markers. J Food Agric Envir 6:253–268Google Scholar
  94. Ojomo AO (1973) Breeding and improvement of cowpea in the Western State of Nigeria. In: Proceedings of the first IITA grain legume improvement workshop, 29th October – 2nd November. IITA, Ibadan, Nigeria, pp 21–25Google Scholar
  95. Oladosu Y, Rafii MY, Abdullah N et al (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotech Biotech Equip 30:1–16.  https://doi.org/10.1080/13102818.2015.1087333CrossRefGoogle Scholar
  96. Olasupo FO, Ilori CO, Muyiwa AA (2016) Radio-sensitivity of cowpea to ultra-violet radiation by pollen treatment. Plant Breed Crop Sci 8(11):228–239.  https://doi.org/10.5897/JPBCS2016.0602CrossRefGoogle Scholar
  97. Omo-Ikerodah EE, Fawole I, Fatokun C (2008) Genetic mapping of quantitative trait loci (QTLs) with effects on resistance to flower bud thrips (Megalurothrips sjostedti) in recombinant inbred lines of cowpea [Vigna unguiculata (L.) Walp.]. Afr J Biotech 7:263–270Google Scholar
  98. Oppong-Konadu EYR, Akromah IK, Adu-Dapaah OE (2005) Genetic diversity within Ghanaian cowpea germplasm based on SDS-PAGE of seed proteins. Afr Crop Sci J 13:117–123Google Scholar
  99. Ouédraogo JT, Maheshwari V, Berner DK et al (2001) Identification of AFLP markers linked to resistance of (Vigna unguiculata L.) to parasitism by Striga gesnerioides. Theor Appl Genet 102:1029–1036.  https://doi.org/10.1007/s001220000499CrossRefGoogle Scholar
  100. Ouédraogo JT, Gowda BS, Jean M et al (2002) An improved genetic linkage map for cowpea (Vigna unguiculata L.) combining AFLP, RFLP, RAPD, biochemical markers, and biological resistance traits. Genome 45:175–188.  https://doi.org/10.1139/g01-102CrossRefPubMedGoogle Scholar
  101. Ouédraogo JT, Ouédraogo M, Gowda BS, Timko MP (2012) Development of sequence characterized amplified region (SCAR) markers linked to race-specific resistance to Striga gesnerioides in cowpea (Vigna unguiculata L.). Afr J Biotech 11:12555–12562.  https://doi.org/10.5897/AJB12.805CrossRefGoogle Scholar
  102. Padulosi S (1993) Genetic diversity, taxonomy and ecogeographic survey of the wild relatives of cowpea (Vigna unguiculata (L.) Walpers). PhD thesis, Université Catholique, Louvain la Neuve, BelgiumGoogle Scholar
  103. Padulosi S, Ng NQ (1993) A useful and unexploited herb, Vigna marina (Leguminosae-Papilionoideae) and the taxonomic revision of its genetic diversity. Syst Geogr Plants 62(1–4):119–126Google Scholar
  104. Padulosi S, Laghetti G, Pienaar B et al (1991) Survey of wild Vigna in southern Africa. Plant Genet Resour Newsl 83/84:5–8Google Scholar
  105. Panella L, Gepts P (1992) Genetic relationships with Vigna unguiculata (L.) Walp. based on isozyme analyses. Genet Resour Crop Evol 39:71–88Google Scholar
  106. Pant K, Chandel K, Joshi B (1982) Analysis of diversity in Indian cowpea genetic resources. SABRAO J 14:103–111Google Scholar
  107. Pasquet RS (1993) Classification infraspecifique des forms spontanees de Vigna unguiculata (L.) Walp. a partir de donnees morphologiques. Syst Geogr Plants 62:127–173Google Scholar
  108. Pasquet RS (1999) Genetic relationships among subspecies of Vigna unguiculata (L.) Walp. based on allozyme variation. Theor Appl Genet 98:1104–1119CrossRefGoogle Scholar
  109. Pasquet RS (2000) Allozyme diversity of cultivated cowpea Vigna unguiculata (L.) Walp. Theor Appl Genet 101:211–219CrossRefGoogle Scholar
  110. Pasquet RS, Padulosi S (2012) Genus Vigna and cowpea (Vigna unguiculata (L.) Walp.) taxonomy: current status and prospects. In: Boukar O, Coulibaly O, Fatokun CA et al (eds) Innovative research along the cowpea value chain. Proceedings of the fifth world cowpea conference on improving livelihoods in the cowpea value chain through advancement in science, held in Saly, Senegal, 27 September – 1 October 2010. IITA, Nigeria, pp 66–87Google Scholar
  111. Penning de Vries FWT, Djiteye MA (1991) La productivité des pâturages sahéliens: une étude des sols, de la végétation et de l’exploitation de cette ressource naturelle. Center for Agricultural Publishing and Documentation (Pudoc-DLO), WageningenGoogle Scholar
  112. Perrino P, Laghetti G, Spagnoletti Zeuli PL, Monti LM (1993) Diversification of cowpea in the Mediterranean and other centers of cultivation. Genet Resour Crop Evol 40:121–132CrossRefGoogle Scholar
  113. Phillips EP (1951) The genera of South African flowering plants. Government Printer, PretoriaGoogle Scholar
  114. Pignone D, Cecarelli S, Perrino P (1990) Chromosome identification in Vigna unguiculata (L.) Walp. In: Ng NQ, Monti LM (eds) Cowpea genetic resources. IITA, Ibadan, pp 144–150Google Scholar
  115. Pienaar S (1992) Genetic diversity, taxonomy and ecogeographic survey of the wild relatives of cowpea subspecies protracta var. rhomboidea Padulosi. S Afr J Bot 58(6):420CrossRefGoogle Scholar
  116. Popelka JC, Gollasch S, Moore A et al (2006) Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of transgenes to progeny. Plant Cell Rep 25:304–312CrossRefPubMedGoogle Scholar
  117. Porter WM, Rachie KO, Rawal KM et al (1974) Cowpea germplasm catalogue no. 1. SAS Institute, IbadanGoogle Scholar
  118. Potchefstroom College of Agriculture (1948) Annual report 1947–1948. Field Husbandry Research and Education College of Agriculture Potchefstroom, South AfricaGoogle Scholar
  119. Punniyamoorthy D, Reddy KS, Dhanasekar SP (2007) IANCAS bulletin, Nov 2007, pp 299–307Google Scholar
  120. Rodrigues MA, Santos CAF, Santana JRF (2012) Mapping of AFLP loci linked to tolerance to cowpea golden mosaic virus. Genet Mol Res 11:3789–3797.  https://doi.org/10.4238/2012.August.17.12CrossRefPubMedGoogle Scholar
  121. Roy RS, Richaria RH (1948) Breeding and inheritance studies on cowpea, Vigna sinensis. Agron J 40:479–489CrossRefGoogle Scholar
  122. Saccardo, F, Del Guidice A, Galasso I (1992) Cytogenetics of cowpea. In: Thottappilly G, Monti LM, Mohan Raj, DR, Moore AW (eds) Biotechnology: enhancing research on tropical crops in Africa. CTA/IITA co-publication. IITA, Ibadan, pp 89–98Google Scholar
  123. Samireddypalle A, Boukar O, Grings E et al (2017) Cowpea and groundnut haulms fodder trading and its lessons for multidimensional cowpea improvement for mixed crop livestock systems in West Africa. Front Plant Sci 8:30.  https://doi.org/10.3389/fpls.2017.00030CrossRefPubMedPubMedCentralGoogle Scholar
  124. Sen NK, Bhowal JG (1962) A male sterile mutant cowpea. J Hered 53:44–46CrossRefGoogle Scholar
  125. Simon MV, Benko-Iseppon AM, Resende LV et al (2007) Genetic diversity and phylogenetic relationships in Vigna savi germplasm revealed by DNA amplification fingerprinting. Genome 50:538–547CrossRefPubMedGoogle Scholar
  126. Singh BB, Ntare BR (1985) Development of improved cowpea varieties in Africa. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, New York, pp 105–115Google Scholar
  127. Singh BB, Chambliss OL, Sharma B (1997) Recent advances in cowpea breeding. In: Singh BB, Mohan Raj DR, Dashiell KE, LEN J (eds) Advances in cowpea research. Copublication of IITA and Japan International Research Center for Agricultural Sciences (JIRCAS). IITA, Ibadan, pp 30–49Google Scholar
  128. Singh BB, Ehlers JD, Sharma B, Freire Filho FR (2002) Recent progress in cowpea breeding. In: Fatokun CA, Tarawali SA, Singh BB et al (eds) Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the world cowpea conference III held at IITA, Ibadan, Nigeria, 4–8 September 2000. IITA, Ibadan, Nigeria, pp 22–40Google Scholar
  129. Singh SR, Singh BB, Jackai LEN, Ntare BR (1983) Cowpea research at IITA. Ibadan, Nigeria, IITA. Information series 14:1–20Google Scholar
  130. Singh SR, Jackai LEN, Dos Santos JHR, Adalla CB (1990) Insect pests of cowpea. In: Singh SR (ed) Insect pests of food legumes. Wiley, New York, pp 43–89Google Scholar
  131. Spillman WJ (1911) Inheritance of the ‘eye’ in Vigna. Am Nat 45:513–523CrossRefGoogle Scholar
  132. Spillman WJ (1913) Color correlation in cowpea. Science 38:302CrossRefPubMedGoogle Scholar
  133. Steele W (1976) Cowpea, Vigna unguiculata (Leguminosae-Papillionatae). In: Simmonds N (ed) Evolution of crop plants. Longman, London, pp 183–185Google Scholar
  134. Suzuki K, Fatokun C, Boukar O (2018) Responses of cowpea genotypes to indigenous rock phosphate application. Agron J 110:1–14CrossRefGoogle Scholar
  135. Timko MP, Rushton PJ, Laudeman TW et al (2008) Sequencing and analysis of the gene-rich space of cowpea. BMC Genomics 9:103CrossRefPubMedPubMedCentralGoogle Scholar
  136. Uma MS, Hittalamani S, Murthy BCK, Viswanatha KP (2009) Microsatellite DNA marker aided diversity analysis in cowpea [Vigna unguiculata (L.) Walp.]. Indian J Genet Plant Breed 69:35–43Google Scholar
  137. Vaillancourt RE, Weeden NF (1992) Chloroplast DNA polymorphism suggests a Nigerian centre of domestication for the cowpea Vigna unguiculata (Leguminisae). Am J Bot 79:1194–1199CrossRefPubMedGoogle Scholar
  138. Vaillancourt RE, Weeden NF, Barnard J (1993) Isozyme diversity in the cowpea species complex. Crop Sci 33:606–613CrossRefGoogle Scholar
  139. Varshney RK, Chabane K, Hendre PS et al (2007) Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Sci 173:638–649CrossRefGoogle Scholar
  140. Vasconcelos EV, Fonsêca AF, Pedrosa-Harand A et al (2014) Intra- and interchromosomal rearrangements between cowpea [Vigna unguiculata (L.) Walp.] and common bean (Phaseolus vulgaris L.) revealed by BAC-FISH. Chromos Res 23:253–266.  https://doi.org/10.1007/s10577-014-9464-2CrossRefGoogle Scholar
  141. Venora G, Padulosi S (1997) Karyotypic analysis of wild taxa of Vigna unguiculata (L.) Walpers. Caryologia 50:125–138CrossRefGoogle Scholar
  142. Verdcourt B (1970) Studies in the leguminosae-papilionoideae for the flora of tropical East Africa. IV. Kew Bull 24:507–509CrossRefGoogle Scholar
  143. Vir R, Bhat KV, Lakhanpaul (2009) Transferability of sequence tagged microsatellite sites (STMS) primers to pulse yielding taxa belonging to Phaseolae. Int J Integr Biol 5(1):62–66Google Scholar
  144. Wang ML, Barkley NA, Gillaspie GA, Pederson GA (2008) Phylogenetic relationships and genetic diversity of the USDA Vigna germplasm collection revealed by gene-derived markers and sequencing. Genet Res 90:467–480CrossRefGoogle Scholar
  145. Widders IE (2012) Cowpea: a solution to global challenges. In: Boukar O, Coulibaly O, Fatokun CA et al (eds) Innovative research along the cowpea value chain. Proceedings of the fifth world cowpea conference on improving livelihoods in the cowpea value chain through advancement in science, held in Saly, Senegal, September 27–October 1, 2010. IITA, Ibadan, Nigeria, pp xi–xviiiGoogle Scholar
  146. Whit WC (2007) Soul food as cultural creation. In: Bower A (ed) African American foodways: explorations of history and culture. University of Illinois Press, Urbana, pp 45–58Google Scholar
  147. Xavier GR, Martins LMV, Rumjanek NG, Filho FRF (2005) Variabilidade genética em acessos de caupi analisada por meio de marcadores RAPD. Pesqui Agropecu Bras 40:353–359CrossRefGoogle Scholar
  148. Xu P, Wu X, Wang B et al (2010) Development and polymorphism of Vigna unguiculata ssp. unguiculata microsatellite markers used for phylogenetic analysis in asparagus bean (Vigna unguiculata ssp. sesquipedialis (L.) Verdc.). Mol Breed 25(4):675–684.  https://doi.org/10.1007/s11032-009-9364-xCrossRefGoogle Scholar
  149. Xiong H, Shi A, Mou B et al (2016) Genetic diversity and population structure of cowpea (Vigna unguiculata L. Walp). PLoS One 11(8):e0160941.  https://doi.org/10.1371/journal.pone.0160941CrossRefPubMedPubMedCentralGoogle Scholar
  150. Zannou A, Kossou DK, Ahanchedé A et al (2008) Genetic variability of cultivated cowpea in Benin assessed by random amplified polymorphic DNA. Afr J Biotech 7:4407–4414Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ousmane Boukar
    • 1
    Email author
  • Abou Togola
    • 1
  • Siva Chamarthi
    • 1
  • Nouhoun Belko
    • 1
  • Haruki Ishikawa
    • 2
  • Kanako Suzuki
    • 3
  • Christian Fatokun
    • 2
  1. 1.Cowpea Breeding UnitInternational Institute of Tropical AgricultureKanoNigeria
  2. 2.Cowpea Breeding UnitInternational Institute of Tropical AgricultureIbadanNigeria
  3. 3.Cowpea Breeding UnitInternational Institute of Tropical AgricultureLusakaZambia

Personalised recommendations