Advertisement

Common Bean (Phaseolus vulgaris L.) Breeding

  • Oswalt R. JiménezEmail author
Chapter

Abstract

The common bean (Phaseolus vulgaris L.) is a grain legume species, mostly cultivated in many developing countries of Africa, America and Asia. It is considered a key crop for improving food security of people vulnerable to malnutrition. From the 1930s, common bean genetic improvement has historically been conducted by international programs in coordination with government institutions and following traditional methods. Those efforts have created successful varieties in recent decades. But, current climate change effects and the reduced adoption of adequate technologies for cultivation, have threatened common bean productivity. Probably, challenges for the next decades cannot meet using only traditional breeding. Thus, new techniques and approaches for conducting breeding should be soon adopted to obtain new varieties with broad resistance to varied biotic and abiotic stresses. When planning new breeding programs, it is important to consider the current agro-biotechnology advances in molecular markers, functional genomics, mutagenesis, tissue culture and even genetic engineering, which could improve breeding efficiency. Additionally, the conservation, utilization of genetic resources and the promotion of participatory breeding will be crucial to strengthen the least productive common bean systems. It will be important to provide varieties that respond well to agro-ecological management under an integral ecology approach. Finally, it is evident that there is still an opportunity to improve productivity by improving access and adoption of more resilient technologies. In this particular case, community seed banks can play an important role in the future.

Keywords

Agro-biotechnology Climate change Food security Participatory breeding Traditional breeding 

References

  1. Acquaah G (2007) Principles of plant genetics and breeding, 1st edn. Wiley, LondonGoogle Scholar
  2. Acquaah G (2012) Principles of plant genetics and breeding, 2nd edn. John Wiley, LondonCrossRefGoogle Scholar
  3. Allen DJ, Dessert M, Trutmann T, Voss J (1989) Common beans in Africa and their constraints. In: Schwartz HF, Pastor-Corrales MA (eds) Bean production problems in the tropics, 2nd edn. CIAT, Cali, pp 9–31Google Scholar
  4. Almekinders CJM (2011) The joint development of JM-12.7: a technographic description of the making of a bean variety. NJAS-Wageningen J Life Sci 57:207–216CrossRefGoogle Scholar
  5. Amugune NO, Anyango B, Mukiama TK (2011) Agrobacterium-mediated transformation of common bean. Afr Crop Sci J 19:137–147Google Scholar
  6. Anderson JW, Smith BM, Washnock CS (1999) Cardiovascular and renal benefits of dry bean and soybean intake. Am J Clin Nutr 70(Suppl):464S–474SCrossRefPubMedGoogle Scholar
  7. Andrade-Aguilar JA, Jackson MT (1988) Attempts at interspecific hybridization between Phaseolus vulgaris L. and P. acutifolius A. Gray using embryo rescue. Plant Breed 101:173–180CrossRefGoogle Scholar
  8. Angioi SA, Rau D, Attene G et al (2010) Beans in Europe: origin and structure of the European landraces of Phaseolus vulgaris L. Theor Appl Genet 121:829–843CrossRefPubMedGoogle Scholar
  9. Aparicio-Fabre R, Guillén G, Loredo M et al (2013) Common bean (Phaseolus vulgaris L.) PvTIFY orchestrates global changes in transcript profile response to jasmonate and phosphorus deficiency. BMC Plant Biol 13:26CrossRefPubMedPubMedCentralGoogle Scholar
  10. Aragão FJL, Nogueira EOPL, Tinoco MLP, Faria JC (2013) Molecular characterization of the first commercial transgenic common bean immune to the bean golden mosaic virus. J Biotech 166:42–50CrossRefGoogle Scholar
  11. Araya R, Hernández JC (2007) Variedades de frijol de grano rojo, obtenidas por fitomejoramiento participativo en Costa Rica 2000–2007. http://www.mag.go.cr/bibliotecavirtual/F01-9381.pdf. Accessed 7 July 2018
  12. Argaw A, Muleta D (2017) Effect of genotypes-Rhizobium-environment interaction on nodulation and productivity of common bean (Phaseolus vulgaris L.) in eastern Ethiopia. Environ Syst Res.  https://doi.org/10.1186/s40068-017-0091-8
  13. Arthikala MK, Nanjareddy K, Lara M (2018) In BPS1 downregulated roots, the BYPASS1 signal disrupts the induction of cortical cell divisions in bean-Rhizobium symbiosis. Genes 9.  https://doi.org/10.3390/genes9010011
  14. Aruna C, Audilakshmi S (2008) A strategy to identify potential germplasm for improving yield attributes using diversity analysis in sorghum. Plant Genet Resour 6:187–194CrossRefGoogle Scholar
  15. Asfaw A, Blair MW, Almekinders CJM (2009) Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) landraces from East African highlands. Theor Appl Genet 120:1–12CrossRefPubMedGoogle Scholar
  16. Asfaw A, Almekinders CJM, Blair MW, Struik PC (2012) Participatory approach in common bean (Phaseolus vulgaris L.) breeding for drought tolerance for southern Ethiopia. Plant Breed 131:125–134CrossRefGoogle Scholar
  17. Asfaw A, Almekinders CJM, Struik PC, Blair MW (2013) Farmers’ common bean variety and seed management in the face of drought and climate instability in southern Ethiopia. Sci Res Essays 8:1022–1037Google Scholar
  18. Ávila T, Blair MW, Reyes X, Bertin P (2012) Genetic diversity of bean (Phaseolus) landraces and wild relatives from the primary centre of origin of the Southern Andes. Plant Genet Resour 10:83–92CrossRefGoogle Scholar
  19. Balestre M, Torga PP, Von Pinho RG, Dos Santos JB (2013) Applications of multi-trait selection in common bean using real and simulated experiments. Euphytica 189:225–238CrossRefGoogle Scholar
  20. Barabaschi D, Tondelli A, Desiderio F et al (2016) Next generation breeding. Plant Sci 242:3–13CrossRefPubMedGoogle Scholar
  21. Basset MJ (1991) A revised linkage map of common bean. HortSci 26:834–836CrossRefGoogle Scholar
  22. Bassi D, Briñez B, Rosa JS et al (2017) Linkage and mapping of quantitative trait loci associated with angular leaf spot and powdery mildew resistance in common beans. Genet Mol Biol 40:109–122CrossRefPubMedPubMedCentralGoogle Scholar
  23. Beaver J, Osorno JM (2009) Achievements and limitations of contemporary common bean breeding using conventional and molecular approaches. Euphytica 168:145–175CrossRefGoogle Scholar
  24. Beebe S (2012) Common bean breeding in the tropics. In: Janick J (ed) Plant breeding reviews, vol 36, 1st edn. Wiley-Blackwell, Hoboken, pp 357–426CrossRefGoogle Scholar
  25. Beebe S, Ramírez J, Jarvis A et al (2011) Genetic improvement of common beans and the challenges of climate change. In: Yadav SS, Redden RJ, Hatfield JL et al (eds) Crop adaptation to climate change. Wiley, Sussex, pp 356–369CrossRefGoogle Scholar
  26. Bennett AE, Daniell TJ, White PJ (2013) Benefits of breeding crops for yield response to soil organisms. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 1. 1st Wiley, Hoboken, pp 17–27Google Scholar
  27. Bitocchi E, Nanni L, Bellucci E et al (2012) Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. PNAS 109:E788–E796CrossRefPubMedGoogle Scholar
  28. Bitocchi E, Bellucci E, Giardini A et al (2013) Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytol 197:300–313CrossRefPubMedGoogle Scholar
  29. Blair MW (2013) Breeding approaches to increasing nutrient-use efficiency: examples from common beans. In: Rengel Z (ed) Improving water and nutrient-use efficiency in food production systems, 1st edn. John Wiley, Oxford, pp 161–175CrossRefGoogle Scholar
  30. Blair MW, Giraldo MC, Buendía HF et al (2006) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 113:100–109CrossRefPubMedGoogle Scholar
  31. Blair MW, Fregene MA, Beebe SE, Ceballos H (2007) Marker-assisted selection in common beans and cassava. In: Guimarães E, Ruane J, Scherf B et al (eds) Marker-assisted selection – current status and future perspectives in crops, livestock, forestry and fish. FAO, Rome, pp 81–164Google Scholar
  32. Blair MW, Díaz LM, Buendia HF, Duque MC (2009) Genetic diversity, seed size associations and population structure of a core collection of common beans (Phaseolus vulgaris L.). Theor Appl Genet 119:955–972CrossRefPubMedGoogle Scholar
  33. Blair MW, Hurtado N, Chavarro CM et al (2011) Gene-based SSR markers for common bean (Phaseolus vulgaris L.) derived from root and leaf tissue ESTs: an integration of the BMc series. BMC Plant Biol 11:50CrossRefPubMedPubMedCentralGoogle Scholar
  34. Blair MW, Soler A, Cortes AJ (2012) Diversification and population structure in common beans (Phaseolus vulgaris L.). PLoS ONE.  https://doi.org/10.1371/journal.pone.0049488
  35. Bonfim K, Faria JC, Nogueira EOPL et al (2007) RNAi mediated resistance to bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant Microbe Interat 20:717–726CrossRefGoogle Scholar
  36. Bonifácio EM, Fonseca A, Almeida C et al (2012) Comparative cytogenetic mapping between the lima bean (Phaseolus lunatus L.) and the common bean (P. vulgaris L.). Theor Appl Genet 124:1513–1520CrossRefPubMedGoogle Scholar
  37. Briñez B, Perseguini JMKC, Rosa JS et al (2017) Mapping QTLs for drought tolerance in a SEA 5 x AND 277 common bean cross with SSRs and SNP markers. Genet Mol Biol 40:813–823CrossRefPubMedPubMedCentralGoogle Scholar
  38. Bukasov SM (1931) The cultivated plants of Mexico, Guatemala and Colombia. Bull Appl Bot Genet Plant Breed 47:1–553Google Scholar
  39. Burle ML, Fonseca JR, Kami JA, Gepts P (2010) Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity. Theor Appl Genet 121:801–813CrossRefPubMedPubMedCentralGoogle Scholar
  40. Cabral PDS, Soares TCB, Lima ABP et al (2011) Genetic diversity in local and commercial dry bean (Phaseolus vulgaris) accessions based on microsatellite markers. Genet Mol Res 10:140–149CrossRefPubMedGoogle Scholar
  41. Cabrera-Ponce JL, López L, León-Ramírez CG et al (2015) Stress induced acquisition of somatic embryogenesis in common bean Phaseolus vulgaris L. Protoplasma 252:559–570.  https://doi.org/10.1007/s00709-014-0702-4CrossRefPubMedGoogle Scholar
  42. CENTA (2018) Centro Nacional de Tecnología Agropecuaria y Forestal “Enrique Álvarez Córdova”, guías técnicas y documentos del cultivo del frijol. http://www.centa.gob.sv/2015/frijol/. Accessed 8 July 2018
  43. Chacon MI, Pickersgill SB, Debouck DG (2005) Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theor Appl Genet 110:432–444CrossRefGoogle Scholar
  44. Chen CL, Wang HH, Jeng TL et al (2011) Genetic diversity in NaN3-induced common bean mutants and commercial varieties detected by AFLP. Crop Breed Appl Biotech 11:365–369CrossRefGoogle Scholar
  45. Chen M, Wu J, Wang L et al (2017) Mapping and genetic structure analysis of the anthracnose resistance locus Co-1HY in the common bean (Phaseolus vulgaris L.). PLoS One 12:e0169954.  https://doi.org/10.1371/journal.pone.0169954CrossRefPubMedPubMedCentralGoogle Scholar
  46. Chiba S, Kondo H, Tani A et al (2011) Widespread endogenization of genome sequences of non-retroviral RNA viruses into plant genomes. PLoS Pathog 7:e1002146.  https://doi.org/10.1371/journal.ppat.1002146CrossRefPubMedPubMedCentralGoogle Scholar
  47. Christensen JH, Kumar KK, Aldrian E et al (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF, Qin D, Plattner GK et al (eds) Climate change 2013: the physical science basis contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1217–1308Google Scholar
  48. CIAT (2018) Bean diversity. http://ciat.cgiar.org/what-we-do/crop-conservation-and-use/bean-diversity/. Accessed 27 March 2018
  49. Collado R, Bermúdez-Caraballoso I, García RL et al (2016) Epicotyl sections as targets for plant regeneration and transient transformation of common bean using Agrobacterium tumefaciens. In Vitro Cell Dev Biol Plant 52:500–511CrossRefGoogle Scholar
  50. Coomes OT, McGuire SJ, Garine E et al (2015) Farmer seed networks make a limited contribution to agriculture? Four common misconceptions. Food Policy 56:41–50CrossRefGoogle Scholar
  51. Cordoba JM, Chavarro C, Schlueter JA et al (2010) Integration of physical and genetic maps of common bean through BAC-derived microsatellite markers. BMC Genomics 11:436CrossRefPubMedPubMedCentralGoogle Scholar
  52. Cortes AJ, Chavarro MC, Blair MW (2011) SNP marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 123:827–845CrossRefPubMedGoogle Scholar
  53. Cruz de Carvalho MH, Van Le B, Zuily-Fodil Y et al (2000) Efficient whole plant regeneration of common bean (Phaseolus vulgaris L.) using thin-cell-layer culture and silver nitrate. Plant Sci 159:223–232CrossRefPubMedGoogle Scholar
  54. Dall’Agnol RF, Ribeiro RA, Ormeño-Orrillo E et al (2013) Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. Int J Syst Evol Microbiol 63:4167–4173CrossRefPubMedGoogle Scholar
  55. Dawson JC, Goldringer I (2012) Breeding for genetically diverse populations: variety mixtures and evolutionary populations. In: Lammerts van Bueren ET, Myers JR (eds) Organic crop breeding. Wiley, Oxford, pp 77–98Google Scholar
  56. Delgado-Salinas A, Bibler R, Lavin M (2006) Phylogeny of the genus Phaseolus (Leguminosae): a recent diversification in an ancient landscape. Syst Bot 31:779–791CrossRefGoogle Scholar
  57. Delgado-Sánchez P, Saucedo-Ruiz M, Guzman-Maldonado HS, Mora-Aviles MA (2006) An organogenic plant regeneration system for common bean (Phaseolus vulgaris L.). Plant Sci 170:822–827CrossRefGoogle Scholar
  58. Díaz AM, Caldas GV, Blair MW (2010a) Concentrations of condensed tannins and anthocyanins in common bean seed coats. Food Res Int 43:595–601CrossRefGoogle Scholar
  59. Díaz LM, Buendía HF, Duque MC, Blair MW (2010b) Genetic diversity of Colombian landraces of common bean as detected through the use of silver-stained and fluorescently labelled microsatellites. Plant Genet Resour 9:86–96CrossRefGoogle Scholar
  60. DICTA (2018) Dirección de Ciencia y Tecnología Agropecuaria, Publicaciones del Editorial DICTA. Granos básicos, Frijol. http://www.dicta.hn/frijol.html. Accessed 13 July 2018Google Scholar
  61. Dillen W, Engler G, Van Montagu M, Angenon G (1995) Electroporation-mediated DNA delivery to seedling tissues of Phaseolus vulgaris L. (common bean). Plant Cell Rep 15:119–124CrossRefPubMedGoogle Scholar
  62. Dressler RL (1953) The pre-Columbian cultivated plants of Mexico. Bot Mus Leaf Harv Univ 16:115–172Google Scholar
  63. Dusabumuremyi P, Niyibigira C, Mashingaidze AB (2014) Narrow row planting increases yield and suppresses weeds in common bean (Phaseolus vulgaris L.) in a semi-arid agro-ecology of Nyagatare, Rwanda. Crop Prot 64:13–18CrossRefGoogle Scholar
  64. Dwivedi SL, Upadhyaya HD, Balaji J et al (2006) Using genomics to exploit grain legume biodiversity in crop improvement. In: Janick J (ed) Plant breeding reviews, vol 26. Wiley, Hoboken, pp 171–357Google Scholar
  65. Embrapa (2013) Catálogo de cultivares de feijão comun. https://www.cnpaf.embrapa.br/transferencia/tecnologiaseprodutos/cultivares/. Accessed 18 April 2018
  66. Ender M, Terpstra K, Kelly JD (2008) Marker-assisted selection for white mold resistance in common bean. Mol Breed 21:149–157CrossRefGoogle Scholar
  67. FAO (2014) Community seed banks, junior farmer field and life school – facilitator’s guide. FAO, RomeGoogle Scholar
  68. FAOSTAT (2018) Food and agriculture data, crops. http://www.fao.org/faostat/en/#data/QC. Accessed 2 January 2018
  69. Faria JC, Carneiro GES, Aragão FJL (2010) Gene flow from transgenic common beans expressing the bar gene. GM Crops 1:94–98CrossRefPubMedGoogle Scholar
  70. Faria LC, Santos-Melo PG, Santos-Pereira H et al (2013) Genetic progress during 22 years of improvement of carioca-type common bean in Brazil. Field Crop Res 142:68–74CrossRefGoogle Scholar
  71. Ferreira LG, Buso GSC, Brondani RPV et al (2010) Genetic map of the common bean using a breeding population derived from the Mesoamerican gene pool. Crop Breed Appl Biotech 10:1–8CrossRefGoogle Scholar
  72. Fisseha Z, Tesfaye K, Dagne K et al (2016) Genetic diversity and population structure of common bean (Phaseolus vulgaris L) germplasm of Ethiopia as revealed by microsatellite markers. Afr J Biotech 15:2824–2847CrossRefGoogle Scholar
  73. Fonseca A, Ferreira J, dos Santos TRB et al (2010) Cytogenetic map of common bean (Phaseolus vulgaris L.). Chromosom Res 18:487–502CrossRefGoogle Scholar
  74. Formey D, Martín-Rodríguez JA, Leija A et al (2016) Regulation of small RNAs and corresponding targets in nod factor-induced Phaseolus vulgaris root hair cells. Int J Mol Sci 17.  https://doi.org/10.3390/ijms17060887
  75. Galeano CH, Fernandez AC, Franco-Herrera N et al (2011) Saturation of an intra-gene pool linkage map: towards a unified consensus linkage map for fine mapping and synteny analysis in common bean. PLoS One 6:e28135.  https://doi.org/10.1371/journal.pone.0028135CrossRefPubMedPubMedCentralGoogle Scholar
  76. García LR, Bermúdez-Caraballoso I, Veitía N et al (2012) Regeneración de plantas de cinco variedades de Phaseolus vulgaris L. vía organogénesis directa. Biotec Veg 12:49–52Google Scholar
  77. Geerts P, Toussaint A, Mergeai G, Baudoin JP (2002) Study of the early abortion in reciprocal crosses between Phaseolus vulgaris L. and Phaseolus polyanthus Greenm. Biotech Agron Soc Environ 6:109–119Google Scholar
  78. Geerts P, Druart P, Ochatt S, Baudoin JP (2008) Protoplast fusion technology for somatic hybridisation in Phaseolus. Biotech Agron Soc Environ 12:41–46Google Scholar
  79. Gepts P, Debouck D (1991) Origin, domestication and evolution of the common bean (Phaseolus vulgaris L.). In: van Schoohoven A, Voysest O (eds) Common beans: research for crop improvement. CAB International, CIAT, Cali, pp 7–43Google Scholar
  80. Goettsch LH (2016) Improved production systems for common bean in south-central Uganda. Iowa State University, Ames. MSc thesisGoogle Scholar
  81. Gómez OJ, Blair MW, Frankow-Lindberg BE, Gullberg U (2004) Molecular and phenotypic diversity of common bean landraces from Nicaragua. Crop Sci 44:1412–1418CrossRefGoogle Scholar
  82. Gonçalves-Vidigal MC, Mora F, Bignotto TS et al (2008) Heritability of quantitative traits in segregating common bean families using a Bayesian approach. Euphytica 164:551–560CrossRefGoogle Scholar
  83. Gonzalez AM, Yuste-Lisbona FJ, Fernández-Lozano A et al (2017) Genetic mapping and QTL analysis in Common bean. In: Santalla M, Marsolais F (eds) Pérez de la Vega M. The common bean genome. Compendium of plant genomes. Springer International, Kalyani, pp 69–107Google Scholar
  84. Goretti D, Bitocchi E, Bellucci E et al (2013) Development of single nucleotide polymorphisms in Phaseolus vulgaris and related Phaseolus spp. Mol Breed.  https://doi.org/10.1007/s11032–013–9970–5
  85. Gross Y, Kigel J (1994) Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.). Field Crops Res 36:201–212CrossRefGoogle Scholar
  86. Gujaria-Verma N, Ramsay L, Sharpe AG et al (2016) Gene-based SNP discovery in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris) for diversity analysis and comparative mapping. BMC Genomics 17:239CrossRefPubMedPubMedCentralGoogle Scholar
  87. Gupta PK, Kumar J, Mirr LL, Kumar A (2010) Marker assisted-selection as a component of convectional plant breeding. In: Janick J (ed) Plant breeding reviews, vol 33. Wiley, Hoboken, pp 145–217CrossRefGoogle Scholar
  88. Hanai LR, Santini L, Camargo LE et al (2010) Extension of the core map of common bean with EST-SSR, RGA, AFLP, and putative functional markers. Mol Breed 25:25–45CrossRefPubMedGoogle Scholar
  89. Heinemann AB, Ramírez-Villegas J, Stone LF, Didonet AD (2017) Climate change determined drought stress profiles in rainfed common bean production systems in Brazil. Agric For Meteorol 246:64–77CrossRefGoogle Scholar
  90. Hillocks RJ, Madata CS, Chirwa R et al (2006) Phaseolus bean improvement in Tanzania, 1959–2005. Euphytica 150:215–231CrossRefGoogle Scholar
  91. Hnatuszko-Konka K, Kowalczyk T, Gerszberg A et al (2014) Phaseolus vulgaris – recalcitrant potential. Biotech Adv 32:1205–1215CrossRefGoogle Scholar
  92. IAEA (2018) Mutant variety database of the joint FAO/IAEA division of nuclear techniques in food and agriculture. https://mvd.iaea.org/#!Search?Criteria[0][val]=Phaseolusvulgaris. Accessed 22 February 2018
  93. ICTA (2018) Instituto de Ciencia y Tecnología Agrícola, publicaciones de frijol. http://www.icta.gob.gt/publicacionesdefrijol. Accessed 7 July 2018
  94. IICA (2009) Mapeo del Mercado de semillas de maíz y frijol de Centroamérica. Instituto Inter–Americano de Cooperacion para la Agricultura, Managua, NicaraguaGoogle Scholar
  95. Iñiguez LP, Ramírez M, Barbazuk WB, Hernández G (2017) Identification and analysis of alternative splicing events in Phaseolus vulgaris and Glycine max. BMC Genomics 18:650CrossRefPubMedPubMedCentralGoogle Scholar
  96. INTA (2013) Catálogo de semillas de granos básicos, variedades de arroz frijol maíz y sorgo libradas por el INTA. Instituto Nicaragüense de Tecnología Agropecuaria. Managua, NicaraguaGoogle Scholar
  97. INTA (2018) Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria de Costa Rica, Plataforma de Tecnología, Información y Comunicación Agropecuaria y Rural PLATICAR. http://www.platicar.go.cr/infoteca. Accessed 7 July 2018
  98. ISAAA (2016) Global status of commercialized biotech/GM crops: 2016. https://www.isaaa.org/resources/publications/briefs/52/download/isaaa–brief–52–2016.pdf. Accessed 15 Mar 2018
  99. ISAAA (2018) International Service for the Acquisition of Agri-Biotech Applications: GM Approval Database. http://www.isaaa.org/gmapprovaldatabase/default.asp. Accessed 15 Mar 2018
  100. Ivančič A, Šiško M (2003) The variation of F2 progenies derived from interspecific crosses between Phaseolus vulgaris and Phaseolus coccineus. Agricultura 2:19–25Google Scholar
  101. Jha UC, Bohra A, Parida SK, Jha R (2017) Integrated “omics” approaches to sustain global productivity of major grain legumes under heat stress. Plant Breed 136:437–459CrossRefGoogle Scholar
  102. Jiménez OR (2014) Genetic improvement of the common bean (Phaseolus vulgaris L.) using local germplasm assisted by molecular markers. University of Helsinki, Helsinki, PhD thesisGoogle Scholar
  103. Jiménez OR, Korpelainen H (2012) Microsatellite markers reveal promising genetic diversity and seed trait associations in common bean landraces (Phaseolus vulgaris L.) from Nicaragua. Plant Genet Resour 10:108–118CrossRefGoogle Scholar
  104. Jiménez OR, Korpelainen H (2013) Preliminary evaluation of F1 generation derived from two common bean landraces (Phaseolus vulgaris) from Nicaragua. Plant Breed 132:205–210CrossRefGoogle Scholar
  105. Johnson NL, Pachico D, Voysest O (2003) The distribution of benefits from public international germplasm banks: the case of beans in Latin America. Agric Econ 29:277–286CrossRefGoogle Scholar
  106. Jones RAC (2016) Future scenarios for plant virus pathogens as climate change progresses. In: Kielian M, Maramorosch K, Mettenleiter TC (eds) Advances in virus research, vol 95. Elsevier, London, pp 88–140Google Scholar
  107. Jones RAC, Barbetti MJ (2012) Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. CAB Rev 7:1–31CrossRefGoogle Scholar
  108. Katungi E, Karanja D, Wozemba D et al (2011) A cost-benefit analysis of farmer based seed production for common bean in Kenya. Afr Crop Sci J 19:409–415Google Scholar
  109. Katungi E, Mutua M, Mutari B et al (2017) Improving bean production and consumption in Zimbabwe baseline report. CIAT, Pan-African Bean Research Alliance, Crop Institute of the Department of Agriculture Research Services of Zimbabwe and Agriculture Extension. https://cgspace.cgiar.org/bitstream/handle/10568/82724/Baseline_report_for_Zimbabwe_final.pdf?sequence=1 Accessed 8 July 2018
  110. Kawaka F, Dida MM, Opala PA et al (2014) Symbiotic efficiency of native rhizobia nodulating common bean (Phaseolus vulgaris L.) in soils of western Kenya. Int Sch Res Notices 2014:1–8CrossRefGoogle Scholar
  111. Kelly JD, Cichy KA (2013) Dry bean breeding and production technologies. In: Siddiq M, Uebersax MA (eds) Dry beans and pulses production, processing and nutrition. John Wiley, Oxford, pp 23–54Google Scholar
  112. Kelly J, Gepts P, Miklas P, Coyne D (2003) Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea. Field Crops Res 82:135–154CrossRefGoogle Scholar
  113. Kreuze JF, Valkonen JPT (2017) Utilization of engineered resistance to viruses in crops of the developing world, with emphasis on sub-Saharan Africa. Curr Opin Virol 26:90–97CrossRefPubMedPubMedCentralGoogle Scholar
  114. Kumar J, Choudhary AK, Solanki RK, Pratap A (2011) Towards marker-assisted selection in pulses: a review. Plant Breed 130:297–313CrossRefGoogle Scholar
  115. Kwak M, Gepts P (2009) Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor Appl Genet 118:979–992CrossRefPubMedGoogle Scholar
  116. Kwapata K, Sabzikar R, Sticklen MB, Kelly JD (2010) In vitro regeneration and morphogenesis studies in common bean. Plant Cell Tissue Organ Cult 100:97–105CrossRefGoogle Scholar
  117. Kwapata K, Nguyen T, Sticklen M (2012) Genetic transformation of common bean (Phaseolus vulgaris L.) with the gus color marker, the bar herbicide resistance, and the barley (Hordeum vulgare) HVA1 drought tolerance genes. Int J Agron 2012:1–8.  https://doi.org/10.1155/2012/198960CrossRefGoogle Scholar
  118. Kyndt T, Quispe D, Zhai H et al (2015) The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. PNAS 112:5844–5849CrossRefPubMedGoogle Scholar
  119. Lareo LR, Gonzalez F (1988) Acceptability and nutritional quality of the common beans (Phaseolus vulgaris L.) a bibliography. CIAT, CaliGoogle Scholar
  120. Luna DA, Gonzalez de Mejía D, Dia VP, Loarca-Piña G (2014) Peptides in common bean fractions inhibit human colorectal cancer cells. Food Chem 157:347–355CrossRefGoogle Scholar
  121. Macedo R, Sales LP, Yoshida F et al (2017) Potential worldwide distribution of Fusarium dry root rot in common beans based on the optimal environment for disease occurrence. PLoS One 12:e0187770.  https://doi.org/10.1371/journal.pone.0187770CrossRefPubMedPubMedCentralGoogle Scholar
  122. Mahuku G, Montoya C, Henriquez MA et al (2004) Inheritance and characterization of angular leaf spot resistance gene present in common bean accession G 10474 and identification of an AFLF marker linked to the resistance gene. Crop Sci 44:1817–1824CrossRefGoogle Scholar
  123. Maougal RT, Brauman A, Plassard C et al (2014) Bacterial capacities to mineralize phytate increase in the rhizosphere of nodulated common bean (Phaseolus vulgaris) under P deficiency. Eur J Soil Biol 62:8–14CrossRefGoogle Scholar
  124. Marcenaro D, Valkonen JPT (2016) Seedborne pathogenic fungi in common bean (Phaseolus vulgaris cv. INTA Rojo) in Nicaragua. PLoS One.  https://doi.org/10.1371/journal.pone.0168662
  125. Martin K, Singh J, Hill JH et al (2016) Dynamic transcriptome profiling of bean common mosaic virus (BCMV) infection in common bean (Phaseolus vulgaris L.). BMC Genomics 17:613CrossRefPubMedPubMedCentralGoogle Scholar
  126. Martínez-Castillo B, Rodríguez de la OJL, Mascorro Gallardo JO, Iturriaga G (2015) In vitro plants of common bean (Phaseolus vulgaris L.) obtained by direct organogenesis. J Agric Sci 7:169–179Google Scholar
  127. Mbogo KP (2007) Breeding for bruchid resistance in common bean (Phaseolus vulgaris L.): interspecific introgression of lectin-like seed proteins from tepary bean (P. acutifolius A. Gray), genetic control and bruchid resistance characterization. Oregon State University, Corvallis. PhD thesisGoogle Scholar
  128. McClean PE, Lavin M, Gepts P, Jackson SA (2008) Phaseolus vulgaris: a diploid model for soybean. In: Stacey G (ed) Genetics and genomics of soybean. Springer Science+Business Media, New York, pp 55–76CrossRefGoogle Scholar
  129. McClean PE, Terpstra J, McConnell M et al (2012) Population structure and genetic differentiation among the USDA common bean (Phaseolus vulgaris L.) core collection. Genet Resour Crop Evol 59:499–515CrossRefGoogle Scholar
  130. Mejía-Jiménez A, Muñoz C, Jacobsen HJ et al (1994) Interspecific hybridization between common and tepary beans: increased hybrid embryo growth, fertility, and efficiency of hybridization through recurrent and congruity backcrossing. Theor Appl Genet 88:324–331CrossRefPubMedGoogle Scholar
  131. Mendoza-Soto AB, Naya N, Leija A, Hernandez G (2015) Responses of symbiotic nitrogen fixing common bean to aluminum toxicity and delineation of nodule responsive microRNAs. Front Plant Sci 6:587CrossRefPubMedPubMedCentralGoogle Scholar
  132. Mercado-Ruano P, Delgado-Salinas A (1998) Cytogenetic studies in Phaseolus L. (Fabaceae). Genet Mol Biol 23:985–987CrossRefGoogle Scholar
  133. Miklas PN, Larsen RC, Riley R, Kelly JD (2000) Potential marker-assisted selection for bc–I2 resistance to bean common mosaic potyvirus in common bean. Euphytica 116:211–219CrossRefGoogle Scholar
  134. Miklas PN, Kelly JD, Beebe SE, Blair MW (2006) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147:105–131CrossRefGoogle Scholar
  135. Mondo VHV, Nascente AS, Neto MOC (2016) Common bean seed vigor affecting crop grain yield. J Seed Sci 38:365–370CrossRefGoogle Scholar
  136. Monyo Emmanuel S, Laxmipathi Gowda CL (eds) (2014) Grain legumes strategies and seed roadmaps for select countries in Sub-Saharan Africa and South Asia. Tropical legumes II project report. Patancheru 502 324, Andhra Pradesh, India. ICRISAT. http://oar.icrisat.org/8016/1/J401_2013.pdf Accessed 8 July 2018
  137. Mora-Aviles A, Lemus-Flores B, Miranda-Lopez R et al (2007) Effects of common bean enrichment on nutritional quality of tortillas produced from nixtamalized regular and quality protein maize flours. J Sci Food Agric 87:880–886CrossRefGoogle Scholar
  138. More AD, Borkar AT (2016) Mutagenic effectiveness and efficiency of Gamma rays and EMS in Phaseolus vulgaris L. Int J Curr Microbiol App Sci 5:544–554CrossRefGoogle Scholar
  139. Moreira SO, Morais Silva MG, Rodrigues R et al (2010) Breeding methods and history of bean cultivars released in CBAB – crop breeding and applied biotechnology. Crop Breed Appl Biotech 10:345–350CrossRefGoogle Scholar
  140. Mukankusi C, Raatz B, Nkalubo S et al (2018) Genomics, genetics and breeding of common bean (Phaseolus vulgaris L) in Africa. A review of tropical legume project. Plant Breed.  https://doi.org/10.1111/pbr.12573
  141. Mukeshimana G, Pañeda A, Rodríguez-Suárez C et al (2005) Markers linked to the bc-3 gene conditioning resistance to bean common mosaic potyviruses in common bean. Euphytica 144:291–299CrossRefGoogle Scholar
  142. Mukeshimana G, Ma Y, Walworth AE et al (2013) Factors influencing regeneration and Agrobacterium tumefaciens-mediated transformation of common bean (Phaseolus vulgaris L.). Plant Biotech Rep 7:59–70CrossRefGoogle Scholar
  143. Müller BSF, Sakamoto T, Menezes IPP et al (2014) Analysis of BAC-end sequences in common bean (Phaseolus vulgaris L.) towards the development and characterization of long motifs SSRs. Plant Mol Biol 86:455–470CrossRefPubMedGoogle Scholar
  144. Mulumba JW, Nankya R, Adokorach J et al (2012) A risk-minimizing argument for traditional crop varietal diversity use to reduce pest and disease damage in agricultural ecosystems of Uganda. Agric Ecosyst Environ 157:70–86CrossRefGoogle Scholar
  145. Muñoz G, Guiraldo G, De Soto JF (1993) Descriptores varietales: arroz, frijol, maíz y sorgo. CIAT, CaliGoogle Scholar
  146. Nanjareddy K, Blanco L, Arthikala MK et al (2016a) A Legume TOR protein kinase regulates Rhizobium symbiosis and is essential for infection and nodule development. Plant Phys 172:2002–2020CrossRefGoogle Scholar
  147. Nanjareddy K, Arthikala MK, Blanco L et al (2016b) Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: tools for rapid gene expression analysis. BMC Biotechnol 16:53CrossRefPubMedPubMedCentralGoogle Scholar
  148. Nemli S, Kaygisiz Aşçioğul T, Ateş D et al (2017) Diversity and genetic analysis through DArTseq in common bean (Phaseolus vulgaris L.) germplasm from Turkey. Turk J Agric For 41:389–404CrossRefGoogle Scholar
  149. Nova-Franco B, Iñiguez LP, Valdés-López O et al (2015) The Micro-RNA172c-APETALA2-1 node as a key regulator of the common bean-Rhizobium etli nitrogen fixation symbiosis. Plant Physiol 168:273–291CrossRefPubMedPubMedCentralGoogle Scholar
  150. O’Boyle PD, Kelly JD, Kirk WW (2007) Use of marker-assisted selection to breed for resistance to common bacterial blight in common bean. J Amer Soc Hort Sci 132:381–386CrossRefGoogle Scholar
  151. O’Rourke JA, Iñiguez LP, Fu F et al (2014) An RNA-Seq based gene expression atlas of the common bean. BMC Genomics 15:866CrossRefPubMedPubMedCentralGoogle Scholar
  152. Oliveira EJ, Alzate-Marin AL, Borem A et al (2005) Molecular marker-assisted selection for development of common bean lines resistant to angular leaf spot. Plant Breed 124:572–575CrossRefGoogle Scholar
  153. Oliveira EJ, Fraife Filho GA, Freitas JPX et al (2012) Plant selection in F2 segregating populations of papaya from commercial hybrids. Crop Breed Appl Biotech 12:191–198Google Scholar
  154. Opole RA, Mathenge PW, Auma EO et al (2003) On-farm seed production practices of common bean (Phaseolus vulgaris L.). Afr Crop Sci Conf Proc 6:722–725Google Scholar
  155. Oseguera-Toledo ME, Gonzalez de Mejía E, Dia VP, Amaya-Llano SL (2011) Common bean (Phaseolus vulgaris L.) hydrolysates inhibit inflammation in LPS-induced macrophages through suppression of NF-jB pathways. Food Chem 127:1175–1185CrossRefPubMedGoogle Scholar
  156. Pasev G, Kostova D, Sofkova S (2014) identification of genes for resistance to bean common mosaic virus and bean common mosaic necrosis virus in snap bean (Phaseolus vulgaris L.) breeding lines using conventional and molecular methods. J Phytopathol 162:19–25CrossRefGoogle Scholar
  157. Pathania A, Sharma SK, Sharma PN (2014) Common bean. In: Singh M, Bisht IS, Dutta M (eds) Broadening the genetic base of grain legumes. Springer, New Delhi, pp 11–50Google Scholar
  158. Peng S, Huang J, Cassman KG et al (2010) The importance of maintenance breeding: a case study of the first miracle rice variety-IR8. Field Crops Res 119:342–347CrossRefGoogle Scholar
  159. Petry N, Boy E, Wirth JP, Hurrell RF (2015) Review: the potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients 7:1144–1173CrossRefPubMedPubMedCentralGoogle Scholar
  160. Piepho HP, Möhring J, Melchinger AE, Büchse A (2008) BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161:209–228CrossRefGoogle Scholar
  161. Pinheiro PV, Quintela ED, Junqueira AMR et al (2014) Populational survey of arthropods on transgenic common bean expressing the rep gene from bean golden mosaic virus. GM Crops Food 5:139–148CrossRefPubMedPubMedCentralGoogle Scholar
  162. Porch TG, Jahn N (2001) Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant Cell Environ 24:723–731CrossRefGoogle Scholar
  163. Porch TG, Blair MW, Lariguet P et al (2009) Generation of a mutant population for TILLING common bean genotype BAT 93. J Amer Soc Hort Sci 134:348–355CrossRefGoogle Scholar
  164. Porch TG, Beaver JS, Debouck DG et al (2013) Use of wild relatives and closely related species to adapt common bean to climate change. Agronomy 3:433–461CrossRefGoogle Scholar
  165. Porter JR, Xie L, Challinor AJ et al (2014) Food security and food production systems. In: Field CB, Barros VR, Dokken DJ et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectorial aspects contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 485–533Google Scholar
  166. Quintero-Jiménez A, Espinosa E, Acosta-Gallegos JA et al (2010) An improved method for in vitro regeneration of common bean (Phaseolus vulgaris L.). Agrociencia 44:57–64Google Scholar
  167. Raggi L, Tiranti B, Negri V (2013) Italian common bean landraces: diversity and population structure. Genet Resour Crop Evol 60:1515–1530CrossRefGoogle Scholar
  168. Rainey KM, Griffiths PD (2005) Differential response of common bean genotypes to high temperature. J Am Soc Hortic Sci 130:18–23CrossRefGoogle Scholar
  169. Ramírez M, Flores-Pacheco G, Reyes JL et al (2013) Two common bean genotypes with contrasting response to phosphorus deficiency show variations in the microRNA 399-mediated PvPHO2 regulation within the PvPHR1 signaling pathway. Int J Mol Sci 14:8328–8344CrossRefPubMedPubMedCentralGoogle Scholar
  170. Ramírez-Cabral NYZ, Kumar L, Taylor S (2016) Crop niche modeling projects major shifts in common bean growing areas. Agric For Meteorol 218–219:102–113CrossRefGoogle Scholar
  171. Rana JC, Sharma TR, Tyagi RK et al (2015) Characterisation of 4274 accessions of common bean (Phaseolus vulgaris L.) germplasm conserved in the Indian gene bank for phenological, morphological and agricultural traits. Euphytica 205:441–457CrossRefGoogle Scholar
  172. Rech EL, Vianna GR, Aragão FJL (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Protoc Nat 3:410–418CrossRefGoogle Scholar
  173. Reddy PP (2013) Impact of climate change on insect pests, pathogens and nematodes. Pest Manag Hort Ecosyst 19:225–233Google Scholar
  174. Reyes BA (2012) The economic impact of improved bean varieties and determinants of market participation: evidence from Latin America and Angola. Michigan State University, Ann Arbor. PhD thesisGoogle Scholar
  175. Rocha GS, Pereira LPL, Carneiro PCS et al (2012) Common bean breeding for resistance to anthracnose and angular leaf spot assisted by SCAR molecular markers. Crop Breed Appl Biotech 12:34–42CrossRefGoogle Scholar
  176. Rodríguez JJ, Creamer B (2014) Major constraints and trends for common bean production and commercialization; establishing priorities for future research. Agron Colomb 32:423–431CrossRefGoogle Scholar
  177. Saltzman A, Birol E, Oparinde A et al (2017) Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential. Ann N Y Acad Sci 1390:104–114CrossRefPubMedGoogle Scholar
  178. Samago TY, Anniye EW, Dakora FD (2017) Grain yield of common bean (Phaseolus vulgaris L.) varieties is markedly increased by rhizobial inoculation and phosphorus application in Ethiopia. Symbiosis.  https://doi.org/10.1007/s13199–017–0529–9
  179. Santalla M, De Ron AM, De La Fuente M (2010) Integration of genome and phenotypic scanning gives evidence of genetic structure in Mesoamerican common bean (Phaseolus vulgaris L.) landraces from the southwest of Europe. Theor Appl Genet 120:1635–1651CrossRefPubMedGoogle Scholar
  180. Scheben A, Wolter F, Batley J et al (2017) Towards CRISPR/Cas crops – bringing together genomics and genome editing. New Phytol 216:682–698CrossRefPubMedGoogle Scholar
  181. Schmutz J, McClean PE, Mamidi S et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–716CrossRefPubMedGoogle Scholar
  182. Schneider KA, Brothers ME, Kelly JD (1997) Marker-assisted selection to improve drought resistance in common bean. Crop Sci 37:51–60CrossRefGoogle Scholar
  183. Seidel SJ, Rachmilevitch S, Schütze N, Lazarovitch N (2016) Modelling the impact of drought and heat stress on common bean with two different photosynthesis model approaches. Environ Model Softw 81:111–121CrossRefGoogle Scholar
  184. Sharma HC, Srivastava CP, Durairaj C, Gowda CLL (2010) Pest management in grain legumes and climate change. In: Yadav SS, Redden R (eds) Climate change and management of cool season grain legume crops. Springer, Dordrecht, pp 115–139CrossRefGoogle Scholar
  185. Sharma P, Díaz LM, Blair MW (2012) Genetic diversity of two Indian common bean germplasm collections based on morphological and microsatellite markers. Plant Genet Resour 11:1–10Google Scholar
  186. Singh SP (1989) Patterns of variation in cultivated common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 43:39–57CrossRefGoogle Scholar
  187. Singh SP (1992) Common bean improvement in the tropics. In: Janick J (ed) Plant breeding reviews, vol 10. Wiley, New York, pp 199–269Google Scholar
  188. Singh I (2016) Regeneration and transformation of common bean (Phaseolus vulgaris L.). University of Nebraska, Lincoln. MSc thesisGoogle Scholar
  189. Singh SP, Teran H, Lema M et al (2007) Seventy-five years of breeding dry bean of the western USA. Crop Sci 47:981–989CrossRefGoogle Scholar
  190. Snoeck C, Vanderleyden J, Beebe S (2003) Strategies for genetic improvement of common bean and rhizobia towards efficient interactions. In: Janick J (ed) Plant breeding reviews, vol 23. Wiley, Hoboken, pp 21–72Google Scholar
  191. Song Q, Jia G, Hyten DL et al (2015) SNP assay development for linkage map construction, anchoring whole-genome sequence, and other genetic and genomic applications in common bean. G3.  https://doi.org/10.1534/g3.115.020594
  192. Souza TLPO, Ragagnin VA, Dessaune SN et al (2014) DNA marker-assisted selection to pyramid rust resistance genes in “carioca” seeded common bean lines. Euphytica 199:303–316CrossRefGoogle Scholar
  193. Ssekandi W, Mulumba JW, Colangelo P et al (2016) The use of common bean (Phaseolus vulgaris) traditional varieties and their mixtures with commercial varieties to manage bean fly (Ophiomyia spp.) infestations in Uganda. J Pest Sci 89:45–57CrossRefGoogle Scholar
  194. Svetleva D, Velcheva M, Bhowmik G (2003) Biotechnology as a useful tool in common bean (Phaseolus vulgaris L.) improvement. Euphytica 131:189–200CrossRefGoogle Scholar
  195. Taylor JD, Day JM, Dudley CL (1983) The effect of Rhizobium inoculation and nitrogen fertiliser on nitrogen fixation and seed yield of dry beans (Phaseolus vulgaris). Ann Appl Biol 103:419–429CrossRefGoogle Scholar
  196. Taylor RAJ, Herms DA, Cardina J, Moore RH (2018) Climate change and pest management: unanticipated consequences of trophic dislocation. Agronomy 8.  https://doi.org/10.3390/agronomy8010007
  197. Teran H, Lema M, Webster D, Singh SP (2009) 75 years of breeding pinto bean for resistance to diseases in the United States. Euphytica 167:341–351CrossRefGoogle Scholar
  198. Thomas M, Thépot S, Galic N et al (2015) Diversifying mechanisms in the on-farm evolution of crop mixtures. Mol Ecol 24:2937–2954CrossRefPubMedGoogle Scholar
  199. Thung M (1991) Bean agronomy in monoculture. In: van Schoohoven A, Voysest O (eds) Common beans: research for crop improvement. CAB International, CIAT, Cali, pp 737–816Google Scholar
  200. Tiranti B, Negri V (2007) Selective microenvironmental effects play a role in shaping genetic diversity and structure in a Phaseolus vulgaris L. landrace: implications for on-farm conservation. Mol Ecol 16:4942–4955CrossRefPubMedGoogle Scholar
  201. Tiwari M, Singh NK, Rathore M, Kumar N (2005) RAPD markers in the analysis of genetic diversity among common bean germplasm from Central Himalaya. Genet Resour Crop Evol 52:315–324CrossRefGoogle Scholar
  202. Ulukapi K, Ozmen SF (2017) Study of the effect of irradiation (60Co) on M1 plants of common bean (Phaseolus vulgaris L.) cultivars and determined of proper doses for mutation breeding. J Radiat Res Appl Sci.  https://doi.org/10.1016/j.jrras.2017.12.004
  203. Upadhyaya HD, Pundir RPS, Dwivedi SL et al (2009) Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci 49:1769–1780CrossRefGoogle Scholar
  204. UPOV (1991) Act of 1991: international convention for the protection of new varieties of plants.http://www.upov.int/export/sites/upov/upovlex/en/conventions/1991/pdf/act1991.pdf. Accessed 15 Jan 2018
  205. UPOV (2017) Explanatory notes on essentially derived varieties under the 1991 act of the UPOV convention. http://www.upov.int/edocs/expndocs/en/upov_exn_edv.pdf. Accessed 15 January 2018
  206. USDA (2018) United States Department of Agriculture, Natural Resources Conservation Services – Plant Data Base. https://plants.usda.gov/core/profile?symbol=PHVU. Accessed 2 January 2018
  207. Valdisser PAMR, Pereira WJ, Almeida Filho JE et al (2017) In-depth genome characterization of a Brazilian common bean core collection using DArTseq high-density SNP genotyping. BMC Genomics 18:423Google Scholar
  208. Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630CrossRefPubMedGoogle Scholar
  209. Varshney RK, Thudi M, May GD, Jackson SA (2010) Legumes genomics and breeding. In: Janick J (ed) Plant breeding reviews, vol 33. Wiley, Hoboken, pp 257–304CrossRefGoogle Scholar
  210. Veltcheva M, Svetleva D, Petkova SP, Perl A (2005) In vitro regeneration and genetic transformation of common bean (Phaseolus vulgaris L.) – problems and progress. Sci Hort 107:2–10CrossRefGoogle Scholar
  211. Vernooy R, Shrestha P, Sthapit B (eds) (2015) Community seed banks – origins, evolution and protects. Taylor and Francis, LondonGoogle Scholar
  212. Vernooy R, Sthapit B, Otieno G et al (2017) The roles of community seed banks in climate change adaption. Dev Pract 27:316–327CrossRefGoogle Scholar
  213. Vidak M, Carović-Stanko K, Barešić A et al (2017) Microsatellite markers in common bean (Phaseolus vulgaris L.). J Cent Eur Agric 18:902–917CrossRefGoogle Scholar
  214. Vlasova A, Capella-Gutiérrez S, Rendón-Anaya M et al (2016) Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol 17:32CrossRefPubMedPubMedCentralGoogle Scholar
  215. Voysest O (1983) Variedades de frijol en América Latina y su origen. CIAT, CaliGoogle Scholar
  216. Voysest O (2000) Mejoramiento genético del frijol (Phaseolus vulgaris L.): legado de variedades de América Latina 1930–1999. CIAT, CaliGoogle Scholar
  217. Waldman KB, Kerr JM, Isaacs KB (2014) Combining participatory crop trials and experimental auctions to estimate farmer preferences for improved common bean in Rwanda. Food Policy 46:183–192CrossRefGoogle Scholar
  218. Wang YK, Zhang X, Chen GL et al (2016) Antioxidant property and their free, soluble conjugate and insoluble-bound phenolic contents in selected beans. J Funct Foods 24:359–372CrossRefGoogle Scholar
  219. Weisany W, Zehtab-Salmasi S, Raei Y et al (2016) Can arbuscular mycorrhizal fungi improve competitive ability of dill + common bean intercrops against weeds? Eur J Agron 75:60–71CrossRefGoogle Scholar
  220. White JW, Hoogenboom G, Jones JW, Boote KJ (1995) Evaluation of the dry bean model Beangro V1.01 for crop production research in a tropical environment. Exp Agric 31:241–254CrossRefGoogle Scholar
  221. Woolley J, Davis JHC (1991) The agronomy of intercropping with beans. In: van Schoohoven A, Voysest O (eds) Common beans: research for crop improvement. CAB International, CIAT, Cali, pp 707–730Google Scholar
  222. Woolley J, Lepiz R, Portes TA, Voss J (1991) Bean cropping systems in the tropics and subtropics and their determinants. In: van Schoohoven A, Voysest O (eds) Common beans: research for crop improvement. CAB International, CIAT, Cali, pp 679–704Google Scholar
  223. Wortmann CS, Kirkby RA, Eledu CA, Allen DJ (1998) Atlas of common bean (Phaseolus vulgaris L.) production in Africa. CIAT, Cali, p 133Google Scholar
  224. Wu J, Wang L, Wang S (2016) Comprehensive analysis and discovery of drought-related NAC transcription factors in common bean. BMC Plant Biol 16:193CrossRefPubMedPubMedCentralGoogle Scholar
  225. Xu S, Wang G, Mao W et al (2014) Genetic diversity and population structure of common bean (Phaseolus vulgaris) landraces from China revealed by a new set of EST-SSR markers. Biochem Syst Ecol 57:250–256CrossRefGoogle Scholar
  226. Yu K, Park SJ, Poysa V (2000) Marker-assisted selection of common beans for resistance to common bacterial blight: efficacy and economics. Plant Breed 119:411–415CrossRefGoogle Scholar
  227. Yuste-Lisbona F, Santalla M, Capel C et al (2012) Marker-based linkage map of Andean common bean (Phaseolus vulgaris L.) and mapping of QTLs underlying popping ability traits. BMC Plant Biol 12:136CrossRefPubMedPubMedCentralGoogle Scholar
  228. Zargar SM, Mahajan R, Nazir M et al (2017) Common bean proteomics: present status and future strategies. J Proteome 169:239–248CrossRefGoogle Scholar
  229. Zhang X, Blair MW, Wang S (2008) Genetic diversity of Chinese common bean (Phaseolus vulgaris L.) landraces assessed with simple sequence repeat markers. Theor Appl Genet 117:629–640CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.The Institute for Training, Research and Environmental Development (CIDEA)University of Central AmericaManaguaNicaragua

Personalised recommendations