Chickpea (Cicer arietinum L.) Cytogenetics, Genetic Diversity and Breeding

  • Aamir Raina
  • Samiullah Khan
  • Mohammad Rafiq Wani
  • Rafiul Amin Laskar
  • Waseem Mushtaq


Climate change, depleting natural resources, declining arable land and sky-high population represent the main obstacles to the attainment of global food security. Therefore, to make a significant breakthrough in the food production and to combat global food insecurity, sustainable intensification of the agricultural production through low-input agriculture and development of cultivar with improved yield and adaptability is required. By traditional and modern plant breeding methods, breeding of pulses, cereals, and other important food crops, especially chickpea, can be accomplished by exploiting available genetic diversity. Chickpea and other pulse crops are important foods in many nations and play a vital role in the diet of malnourished populations world wide. Globally, chickpea is mainly grown in developing countries, accounting for ~97% of world area and 96% of world production. At present the average global yield of chickpea is 0.9 mt/ha, very low comparedto its estimated potential of 6 mt/ha under favorable growthconditions. The main constraints that limit desired goals of chick peaproductivity include low genetic variability, low and unstable yield and low resistance to biotic and abiotic stresses. Chickpea being a self-pollinated crop harbors low genetic variability. Mutation breeding is the logical tool to create variability in a crop species in a very short span of time, as compared to breeding methods. This chapter cover sorigin, classification, cytogenetics, germplasm and breeding methods for chickpea improvement.


Breeding approaches Chickpea Genetic variability Marker assisted Mutation breeding Production constraints 


  1. Aasim M, Day S, Rezaei F et al (2011) In vitro shoot regeneration from preconditioned explants of chickpea (Cicer arietinum L.) cv. Gokce. Afr J Biotech 10(11):2020–2023Google Scholar
  2. Abbo S, Miller TE, Reader SM et al (1994) Detection of ribosomal DNA sites in lentil and chickpea by fluorescent in situ hybridization. Genome 37:713–716CrossRefPubMedGoogle Scholar
  3. Abbo S, Berger J, Turner NC (2003) Evolution of cultivated chickpea: Four bottlenecks limit diversity and constrain adaptation. Funct Plant Biol 30:1081–1087CrossRefGoogle Scholar
  4. Abdollahi MR, Rashidi S (2018) Production and conversion of haploid embryos in chickpea (Cicerarietinum L.) anther cultures using high 2, 4-D and silver nitrate containing media. Plant Cell Tiss Organ Cult 133(1):39–49CrossRefGoogle Scholar
  5. Abu JO, Duodu KG, Minnaar A (2006) Effect of γ-irradiation on some physicochemical and thermal properties of cowpea (Vigna unguiculata L. Walp) starch. Food Chem 95:386–393CrossRefGoogle Scholar
  6. Adamu AK, Aliyu H (2007) Morphological effects of sodium azide on tomato (Lycopersicon esculentum Mill). Sci World J 2(4):9–12Google Scholar
  7. Agarwal G, Jhanwar S, Priya P et al (2012) Comparative analysis of kabuli chickpea transcriptome with desi and wild chickpea provides a rich resource for development of functional markers. PLOS One 7:e52443CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ahlawat IP, Gangaiah B, Zahid MA (2007) Nutrient management in chickpea. In: Yadav SS, Redden R, Chen W, Sharma B (eds) Chickpea breeding and management. CAB International, Wallingford, Oxon, UK, pp 213–232CrossRefGoogle Scholar
  9. Ahloowalia BS, Maluszynski M (2001) Induced mutations -a new paradigm in plant breeding. Euphy 118:167–173Google Scholar
  10. Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation derived varieties. Euphy 135:187–204CrossRefGoogle Scholar
  11. Ahmad F (1989) The chromosomal architecture of Cicer arietinum Alef. a wild relative of chickpea. Cytologia 54:753–757CrossRefGoogle Scholar
  12. Ahmad F (2000) A comparative study of chromosome morphology among the nine annual species of Cicer L. Cytobios 101:37–53PubMedGoogle Scholar
  13. Ahmad S, Godward MBE (1980) Cytological studies on the cultivars of Cicer arietinum (L.) from Pakistan. Caryol 33:55–68CrossRefGoogle Scholar
  14. Ahmad F, Hymowitz T (1993) The fine structure of chickpea (Cicer arietinum L.) chromosomes as revealed by pachytene analysis. Theor Appl Genet 86:637–641CrossRefPubMedGoogle Scholar
  15. Ahmad B, Raina A, Naikoo MI, Khan S (2019a) Role of methyl jasmonates in salt stress tolerance in crop plants. In: Khan MIR, Reddy PS, Ferrante A, Khan NA (eds) Plant signalling molecules. Woodhead Publishing, Elsevier, Duxford, pp. 371–384.
  16. Ahmad B, Raina A, Khan S (2019b) Biotic and abiotic stresses, impact on plants and their response. In: Wani SH (ed) Disease resistance in crop plants.
  17. Allard RW (1960) Principles of plant breeding. Wiley, New YorkGoogle Scholar
  18. Al-Qurainy F, Khan S (2009) Mutagenic effects of sodium azide and its application in crop improvement. World Appl Sci J 6(12):1589–1601Google Scholar
  19. Altaf N, Ahmad MS (1986) Plant regeneration and propagation of chickpea (Cicer arietinum L.) through tissue-culture techniques. In: Proceedings of the symposium on nuclear techniques and in vitro culture for plant improvement, August 1985. International Atomic Energy Agency, Vienna, pp 407–417Google Scholar
  20. Altaf N, Iqbal J, Salih AM (1999) Tissue culture of microsperma lentis (Lens culinaris Medik) cv. Massoor-85. Pak J Bot 31(2):283–292Google Scholar
  21. Amin R, Laskar RA, Khursheed S et al (2016) Genetic sensitivity towards mms mutagenesis assessed through in vitro growth and cytological test in Nigella sativa L. Life Sci Int Res J 3:1–9Google Scholar
  22. Amin R, Wani MR, Raina A (2019) Induced morphological and chromosomal diversity in the mutagenized population of black cumin (Nigella sativa L.) using single and combination treatments of gamma rays and ethyl methane sulfonate. Jordan J Biol Sci 12(1):23–33Google Scholar
  23. Amssa M, De Buyser J, Henry Y (1980) Origin of diploid plants obtained by in vitro culture of anthers of young wheat (Triticum aestivum L.). Cr Acad Sci D Nat 290:1095–1097Google Scholar
  24. Anuradha C, Gaur PM, Pande S et al (2011) Mapping QTL for resistance to botrytis grey mould in chickpea. Euphy 182:1–9CrossRefGoogle Scholar
  25. Archak S, Tyagi RK, Harer PN et al (2016) Characterization of chickpea germplasm conserved in the Indian National Genebank and development of a core set using qualitative and quantitative trait data. Crop J 4:417–424CrossRefGoogle Scholar
  26. Arora A, Chawla HS (2005) Organogenic plant regeneration via callus induction in chickpea (Cicerarietinum). Role of genotypes, growth regulators and explants. Indian J Biotech 4:251–256Google Scholar
  27. Aryamanesh N, Nelson MN, Yan G et al (2010) Mapping a major gene for growth habit and QTLs for ascochyta blight resistance and flowering time in a population between chickpea and Cicer reticulatum. Euphy 173:307–319CrossRefGoogle Scholar
  28. Asharani BM (2009) Development of transgenic chickpea (Cicer arietinum L.) lines resistant to Helicoverpaarmigera (F.). PhD thesis, University of Agricultural Sciences GKVK, BangaloreGoogle Scholar
  29. Attri H, Jamwal BS, Kour A et al (2018) Evaluation of chickpea (Cicer arietinum L.) F4 derived F5 MAGIC lines for seed yield and its component traits. Chem Sci Rev Lett 7:599–607Google Scholar
  30. Auckland AK, Van der Maesen LJG (1980) Chickpea. In: Fehr WR, Hadely HH (eds) Hybridization of crop plants. American Society of Agronomy, Madison, pp 249–259Google Scholar
  31. Auerbach C (1965) Past achievements and future task of research in chemical mutagenesis. In: Geerts SJ (ed) Genetics today. Pergamon Press, Oxford, pp 275–284Google Scholar
  32. Badr A, Ahmed HIS, Hamouda M et al (2014) Variation in growth, yield and molecular genetic diversity of M2 plants of cowpea following exposure to gamma radiation. Life Sci J 11:10–19Google Scholar
  33. Bahl PN, Gowda CLL (1975) Pod setting in crosses of Bengal gram. Indian J Genet 35:13–16Google Scholar
  34. Barna KS, Wakhlu AK (1995) Modified single node culture method a new micropropagation method for chickpea. In Vitro Cell Dev Biol Plant 31:150–152CrossRefGoogle Scholar
  35. Barve DM, Mehta AR (1993) Clonal propagation of mature elite trees of Commiphora wightii. Plant Cell Tiss Organ Cult 35:237–244CrossRefGoogle Scholar
  36. Basu PS, Ali M, Chaturvedi SK (2009) Terminal heat stress adversely affects chickpea productivity in northern India – strategies to improve thermo-tolerance in the crop under climate change. In: Panigrahy S, Shankar SR, Parihar JS (eds) W3 Workshop proceedings: impact of climate change on agriculture. ISPRS Archives, Ahmedabad, pp 189–193Google Scholar
  37. Beckmann JS, Soller M (1990) Towards a unified approach to genetic mapping of eukaryotes based on sequence tagged microsatellite sites. Nat Biotechnol 8:930–932CrossRefGoogle Scholar
  38. Bejiga G, Tessema T (1981) Identification on the optimum time of emasculation and pollination to increase percentage of hybrid seed set in chickpea. J Agric Sci 3:129–134Google Scholar
  39. Bennett J (1994) DNA-based techniques for control of rice insects and diseases. In: Teng PS, Heong KL, Moody K (eds) Transformation, gene tagging and DNA fingerprinting. Rice pest science and management. IRRI, Los Baños, Philippines, pp 147–172Google Scholar
  40. Bernardo R, Charcosset A (2006) Usefulness of gene information in marker assisted recurrent selection: a simulation appraisal. Crop Sci 46:614–621CrossRefGoogle Scholar
  41. Brock RD (1965) Induced mutations affecting quantitative characters. Rad Bot 5:451–464CrossRefGoogle Scholar
  42. Brock RD (1977) Prospects and perspectives in mutation breeding. In: Muhammed A, Askel R, von Borstel RC (eds) Genetic diversity in plants. Plenum Press, New York, pp 117–132Google Scholar
  43. Buckler ES, Holland JB, Bradbury PJ et al (2009) The genetic architecture of maize flowering time. Sci 325(5941):714–718CrossRefGoogle Scholar
  44. Byth DE, Green JM, Hawtin GC (1980) ICRISAT/ICARDA chickpea breeding strategies. In: Proceedings of the international workshop on chickpea improvement. ICRISAT, Hyderabad, pp 11–27Google Scholar
  45. Carranza JM (1965) Wilt of chickpea (Cicer arietinum) caused by B. cinerea. Rev Facul Agron, Univ Nac de la Plata 41:135–138Google Scholar
  46. Castro P, Rubio J, Madrid E et al (2015) Efficiency of marker-assisted selection for Ascochyta blight in chickpea. J Agric Sci 153:56–67CrossRefGoogle Scholar
  47. Celik O, Atak C (2017) Applications of ionizing radiation in mutation breeding. In: New insights on gamma rays. InTech, London, UK. Scholar
  48. Chandra S, Buhariwalla HK, Kashiwagi J et al (2004) Identifying QTL-linked markers in marker-deficient crops. In: Fisher T (ed) Proceedings of the 4th international crop science congress. Brisbane, Australia, Regional Institute Ltd, Gosford, NSW, Australia, pp 235–238Google Scholar
  49. Chhun T, Taketa S, Tsurumi S et al (2003) Interaction between two auxin resistant mutants and their effects on lateral root formation in rice Oryza sativa (L.). J Exp Bot (393):2701–2708Google Scholar
  50. Choudhary S, Gaur R, Gupta S, Bhatia S (2012) EST-derived genic molecular markers: development and utilization for generating an advanced transcript map of chickpea. Theor Appl Genet 124:1449–1462CrossRefPubMedGoogle Scholar
  51. Chowdhury KA, Sarswat KS, Hasan SN et al (1970) 4000–3500 years old barley, rye and pulses from Atranji Khera. Sci Cult 37:531–533Google Scholar
  52. Collard BC, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep 27(1):86–93CrossRefGoogle Scholar
  53. Coolhaas C (1952) Large-scale use of F1 hybrids in “Vorstenlanden” tobacco. Euphy 1:3–9CrossRefGoogle Scholar
  54. Croser JS (2002) Haploid and zygotic embryogenesis in chickpea (Cicer arietinum L.). In: PhD Thesis. University of Melbourne, MelbourneGoogle Scholar
  55. Croser JS, Lülsdorf MM, Davies PA et al (2006) Toward doubled-haploid production in the Fabaceae: progress, constraints and opportunities. Crit Rev Plant Sci 25:139–157CrossRefGoogle Scholar
  56. Custers JBM, Cordewener JHG, Nöllen Y et al (1994) Temperature controls both gametophytic and sporophytic development in microspore cultures of Brassica napus. Plant Cell Rep 13:267–271CrossRefPubMedGoogle Scholar
  57. De Candolle A (1883) Origine des plantes cultivees. Paris, pp:208–260Google Scholar
  58. De Vries H (1901) Die mutation theorie. Viet and Co, LeipzigGoogle Scholar
  59. Deka AC, Kalita MC, Baruah A (1999) Micro propagation of a potent herbal medicinal plant, Withania somnifera. Envir Ecol 17:594–596Google Scholar
  60. Delaitre C, Ochatt SJ, Deleury E (2001) Electroporation modulates the embryogenic responses of asparagus (Asparagus officinalis L.) microspores. Protoplasma 216:39–46CrossRefPubMedGoogle Scholar
  61. Deokar AA, Ramsay L, Sharpe AG et al (2014) Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. BMC Genomics (1):708Google Scholar
  62. Devasirvatham V, Tan D (2018) Impact of high temperature and drought stresses on chickpea production. Agron 8(8):2–9Google Scholar
  63. Dua RP, Chaturvedi SK, Shiv S (2001) Reference varieties of chickpea for IPR regime. Indian Institute of Pulses Research, Kanpur duration genotypes in chickpea (Cicer arietinum L.). Legum Res 21:121–124Google Scholar
  64. Duncan EJ, Heberle E (1976) Effect of temperature shock on nuclear phenomena in microspores of Nicotiana tabacum and consequently on plantlet production. Protoplasma 90:173–177CrossRefGoogle Scholar
  65. Eapen S, George L (1990) Ontogeny of somatic embryos of Vigna mungo L. Ann Bot 66:219–222CrossRefGoogle Scholar
  66. Encheva J (2009) Creating sunflower mutant lines (Helianthus annuus L.) using induced mutagenesis. Bulgar J Agric Sci 15:109–118Google Scholar
  67. Erskine W, Chandra S, Chaudhury M et al (1998) A bottleneck in lentil: widening the genetic base in South Asia. Euphy 101:207–211CrossRefGoogle Scholar
  68. Fan JB, Oliphant A, Shen R et al (2003) Highly parallel SNP genotyping. Cold Spring Harb Symp Quant Biol 68:69–78CrossRefPubMedGoogle Scholar
  69. FAO (2016) FAOSTAT Statistical Database of the United Nation Food and Agriculture Organization (FAO) Statistical Division., RomeGoogle Scholar
  70. FAO (2018) FAOSTAT Production share of chickpea by regionGoogle Scholar
  71. Galasso I, Frediani M, Maggiani M et al (1996) Chromatin characterization by banding techniques, in situ hybridization and nuclear DNA content in Cicer L (Leguminosae). Genome 39:258–265CrossRefPubMedGoogle Scholar
  72. Ganesh K, Ganesan K, Jayabalan M (2008) Somatic embryogenesis and plant regeneration in Ricinus communis. Biol Plant 52:17–25CrossRefGoogle Scholar
  73. Ganger CS, Blakeslee AE (1927) Chromosome and gene mutations in Datura following exposure to radium rays. Proc Nat Acad Sci 10:75–70CrossRefGoogle Scholar
  74. Gatehouse JA (2008) Biotechnological prospects for engineering insect-resistant plants. Plant Physiol 146:881–887CrossRefPubMedPubMedCentralGoogle Scholar
  75. Gaul H (1964) Mutations in plant breeding. Rad Bot 4:155–232CrossRefGoogle Scholar
  76. Gaur PM, Gour VK (2002) A gene producing one to nine flowers per flowering node in chickpea. Euphy 128:231–235CrossRefGoogle Scholar
  77. Gaur PM, Gowda CLL, Knights EJ et al (2007) Breeding achievements. In: Yadav SS, Redden B, Chen W, Sharma B (eds) Chickpea breeding and management. CABI, Wallingford, pp 391–416CrossRefGoogle Scholar
  78. Gaur PM, Gour VK, Srinivasan S (2008) An induced brachytic mutant of chickpea and its possible use in ideotype breeding. Euphy 159:35–41CrossRefGoogle Scholar
  79. Gaur PM, Mallikarjuna N, Knights T et al (2010) Gene introgression in grain legumes. In: Gupta S, Ali M, Singh BB (eds) Grain legumes: genetic improvement, management and trade. Indian Society of Pulses Research and Development, Kanpur, pp 1–17Google Scholar
  80. Gaur RA, Azam SA, Jeena GA et al (2012) High-throughput SNP discovery and genotyping for constructing a saturated linkage map of chickpea (Cicer arietinum L.). DNA Res (5):357–373Google Scholar
  81. Gaur R, Jeena G, Shah N et al (2015) High density linkage mapping of genomic and transcriptomic SNPs for synteny analysis and anchoring the genome sequence of chickpea. Sci Rep 5:13387CrossRefPubMedPubMedCentralGoogle Scholar
  82. Gaur PM, Samineni S, Tripathi S et al (2016) Allelic relationships of flowering time genes in chickpea. Euphy 203:295–308CrossRefGoogle Scholar
  83. Geetha N, Venkatachalam P, Lakshmisita G (1999) Agrobacterium mediated genetic transformation of pigeonpea (Cajanus cajan L.) and development to transgenic plants via direct organogenesis. Plant Biotech 16:213–218CrossRefGoogle Scholar
  84. Ghanti SK, Sujata KG, Rao MS, Kishor PK (2010) Direct somatic embryogenesis and plant regeneration from immature explants of chickpea. Biol Plant 54(1):121–125CrossRefGoogle Scholar
  85. Gharyl PK, Maheswari SC (1982) In vitro differentiation plantlets from tissues culture of Albizzialebbeck L. Plant Cell Tiss Organ Cult 2:49–53CrossRefGoogle Scholar
  86. Gil J, Cubero JL (1993) Inheritance of seed coat thickness in chickpea (Cicer arietinum L.) and its evolutionary implications. Plant Breed 111:257–260CrossRefGoogle Scholar
  87. Girija S, Ganapathi A, Ananthakrishnan G (2000) Somatic embryogenesis in Vigna radiata (L.) Wilczek. Indian J Exp Biol 38:1241–1244PubMedGoogle Scholar
  88. Glaszmann JC, Kilian G, Upadhyaya HD et al (2010) Accessing genetic diversity for crop improvement. Curr Opin Plant Biol 13:167–173CrossRefPubMedGoogle Scholar
  89. Goodspeed TB (1929) The effects of X–rays and radium on species of genus Nicotiana. J Hered 20:243–259CrossRefGoogle Scholar
  90. Gortner G, Nenno M, Weising K et al (1998) Chromosomal localization and distribution of simple sequence repeat and the Arabidopsis-type telomere sequence in the genome of Cicer arietinum L. Chrom Res 6:97–104CrossRefPubMedGoogle Scholar
  91. Gosal SS, Bajaj YPS (1988) Pollen embryogenesis and chromosomal variations in anther of three food legumes Cicer arietinum, Pisum sativum and Vigna mungo. Sabrao J 20(1):51–58Google Scholar
  92. Gottschalk W (1978a) The dependence of the penetrance of mutant genes on environment and genotypic background. Genet 49:21–29Google Scholar
  93. Gottschalk W (1978b) Prospects and limits of mutation breeding. Indian Agric 22:65–69Google Scholar
  94. Gottschalk W, Wolff G (1983) Induced mutations in plant breeding. Springer, Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  95. Goyal S, Khan S (2010a) Differential response of single and combined treatment in moist seeds of urdbean. Indian J Bot Res 6:183–188Google Scholar
  96. Goyal S, Khan S (2010b) Induced mutagenesis in urdbean (Vigna mungo L. Hepper) a review. Int J Bot 6(3):194–206CrossRefGoogle Scholar
  97. Grewal RK, Lulsdorf M, Croser J (2009) Doubled-haploid production in chickpea (Cicer arietinum L.): role of stress treatments. Plant Cell Rep 28(8):1289–1299CrossRefPubMedGoogle Scholar
  98. Griga M, Kubala KM, Tejk LE (1986) Somatic embryogenesis in Vicia faba L. Plant Cell Tiss Organ Cult 3:319–324Google Scholar
  99. Grusak MA, Penna D (1999) Improving the nutrient composition of plants to enhance human nutrition and health. Ann Rev Plant Phys Plant Mol Biol 50:133–161CrossRefGoogle Scholar
  100. Gujaria N, Kumar A, Dauthal P et al (2011) Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.). Theor Appl Genet 122:1577–1589CrossRefPubMedPubMedCentralGoogle Scholar
  101. Gupta PK, Nadgir AL, Mascarenhas AF, Jagannathan V (1980) Tissue culture of forest, trees: clonal multiplication of Tectona grandis L. (Teak) by tissue culture. Plant Sci Lett 17:259–268CrossRefGoogle Scholar
  102. Gustafson VD, Baenziger PS, Wright MS et al (1995) Isolated wheat microspore culture. Plant Cell Tiss Organ Cult 42:207–213CrossRefGoogle Scholar
  103. Gustafsson A (1947) Mutations in agricultural plants. Hered 33:1–99Google Scholar
  104. Handro W (1981) Mutagenesis and in vitro selection. In: Thorpe TA (ed) Plant tissue culture. Academic, New York, pp 155–179CrossRefGoogle Scholar
  105. Haq MA, Singh KB (1994) Induction of cold tolerance in kabuli chickpea (Cicer arietinum L.) through induced mutations. Mut Breed Newsl 41:6–7Google Scholar
  106. Harlan JR, De Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517CrossRefGoogle Scholar
  107. Van Harten AM (1998) Mutation breeding theory and practical applications. Cambridge University Press, CambridgeGoogle Scholar
  108. Hassan N, Laskar RA, Raina A, Khan S (2018) Maleic hydrazide induced variability in fenugreek (Trigonella foenum-graecum L.) cultivars CO1 and Rmt-1. Res Rev J Bot Sci 7(1):19–28Google Scholar
  109. Hawtin GC, Singh KB (1980) Kabuli-desi introgression: problems and prospects. In: Green JM, Nene YL, Smithson JB (eds) Proceedings of the international workshop on chickpea improvement. ICRISAT, Hyderabad, pp 51–60Google Scholar
  110. Hegde VS (2011) Morphology and genetics of a new found determinate genotype in chickpea. Euphy 182:35–42CrossRefGoogle Scholar
  111. Hillman GC (1975) The plant remains from Tell Abu Hureya in Syria: a preliminary report. In: Moore AMT (ed) The excavation of Tell Abu Hureya in Syria. Proc prehist soc 41:70–73Google Scholar
  112. Hiremath J, Kumar A, Penmetsa RV et al (2012) Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnol J 10:716–732CrossRefPubMedPubMedCentralGoogle Scholar
  113. Hu J, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Rep 21:289–294CrossRefGoogle Scholar
  114. Huda S, Islam R, Bari MA, Asaduzzaman M (2001) Anther culture of chickpea. Int Chickpea Pigeonpea Newsl 8:24–26Google Scholar
  115. Huda S, Siddique NA, Khatun N et al (2003) Regeneration of shoot from cotyledon derived callus of chickpea (Cicer arietinum L.). Pak J Biol Sci 6(15):1310–1313CrossRefGoogle Scholar
  116. Ilbas AI, Eroglu Y, Eroglu HE (2005) Effect of the application of different concentrations of SA for different times on the morphological and cytogenetic characteristics of Barley (Hordeum vulgare L.) seedling. Acta Botan Sin 47:1101–1106Google Scholar
  117. Jaganathan D, Thudi M, Kale S et al (2015) Genotyping-by-sequencing based intra-specific genetic map refines a “QTL-hotspot” region for drought tolerance in chickpea. Mol Genet Genom 290:559–571CrossRefGoogle Scholar
  118. Jain SM, Sopory SK, Veilleux RE (eds) (1996) In vitro haploid production in higher plants, 5 vol. Kluwer Academic Publishers, DordrechtGoogle Scholar
  119. Jain M, Misra G, Patel RK et al (2013) A draft genome sequence of the pulse crop chickpea (Cicerarietinum L.). Plant J 74(5):715–729CrossRefPubMedGoogle Scholar
  120. Javed MA, Khatri A, Khan IA et al (2000) Utilization of gamma irradiation for the genetics improvement of oriental mustard (Brassica juncea Coss). Pak J Bot 32:77–83Google Scholar
  121. Javed I, Ahsan M, Ahmad HM et al (2016) Role of mutation breeding to improve mungbean (Vigna radiata L. Wilczek) yield: an overview. Nat Sci 14(1):63–77Google Scholar
  122. Jhanwar S, Priya P, Garg R et al (2012) Transcriptome sequencing of wild chickpea as a rich resource for marker development. Plant Biotechnol J 10:690–702CrossRefPubMedGoogle Scholar
  123. Jiang J, Bikram SG (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068CrossRefPubMedGoogle Scholar
  124. Jimenez-Diaz RM, Trapero-Casas A, Cabrera de la Colina J (1989) Races of Fusarium oxysporum f. sp. Cicer isinfecting chickpea in southern Spain. In: Tjamos EC, Beckman CH (eds) Vascular wilt disease of plants. Springer, Berlin, pp 515–520CrossRefGoogle Scholar
  125. Johnson R (2003) Marker-assisted selection. In: Janick J (ed) Plant breeding reviews, Part I long-term selection: maize, vol 24. Wiley, Hoboken, pp 293–309Google Scholar
  126. Joung JK, Sander JD (2013) Innovation Talens: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55CrossRefPubMedGoogle Scholar
  127. Jukanti AK, Gaur PM, Gowda CL, Chibbar RN (2012) Nutritional quality and health benefits of chickpea (Cicer arietinum L.)-a review. Brit J Nutr 108(1):S11–S26. Scholar
  128. Kadiri A, Halfaoui Y, Bouabdallah L, Ighilhariz Z (2014) Chickpea (Cicer arietinum L.) in vitro micropropagation. Türk Tarım ve Doğa Bilimleri Dergisi 1:1304–1309Google Scholar
  129. Kalapchieva S, Tomlekova NB (2016) Sensitivity of two garden pea genotypes to physical and chemical mutagens. J Biosci Biotech 5:167–171Google Scholar
  130. Kaur P, Bhalla JK (1998) Regeneration of haploid plants from microspore culture of pigeon pea (Cajanus cajan L.). Indian J Exp Bot 36:736–738Google Scholar
  131. Kay DE (1979) Chickpea (Cicer arietinum). In: Crop production digest No. 3, Food legumes. Tropical Products Institute, London, pp 48–71Google Scholar
  132. Kebeish R, Deef HE, El-Bialy N (2015) Effect of gamma radiation on growth, oxidative stress, antioxidant system, and alliin producing gene transcripts in Allium sativum. Int J Res Stand Biosci 3:161–174Google Scholar
  133. Khajuria YP, Saxena MS, Gaur R et al (2015) Development and integration of genome-wide polymorphic microsatellite markers onto a reference linkage map for constructing a high-density genetic map of chickpea. PLoS ONE 10(5):e0125583CrossRefPubMedPubMedCentralGoogle Scholar
  134. Khan S, Parveen K, Goyal S (2011) Induced mutations in chickpea-morphological mutants. Front Agric China 5(1):35–39CrossRefGoogle Scholar
  135. Khanna-Chopra R, Sinha SK (1987) Chickpea: physiological aspects on growth and yield. In: Saxena MC, Singh KB (eds) The chickpea. CAB International, Wallingford, pp 163–189Google Scholar
  136. Kharkwal MC (1996) Accomplishments of mutation breeding in crop improvement in India. In: Sachdev MS, Sachdev P, Deb DL (eds) Isotopes and radiations in agriculture and environment research. Indian Society for Nuclear Techniques in Agriculture and Biology. Nuclear Research Laboratory, IARI, New Delhi, pp 196–218Google Scholar
  137. Kharkwal MC, Shu QY (2009) The role of induced mutations in world food security. In: Shu QY (ed) Induced plant mutations in the genomics era. FAO, Rome, pp 33–38Google Scholar
  138. Khosh-Khui M, Niknejad M (1972) Plant height and width inheritance and their correlation with some of the yield components in chickpea. J Agric Sci 78:37–38CrossRefGoogle Scholar
  139. Khursheed S, Laskar RA, Raina A et al (2015) Comparative analysis of cytological abnormalities induced in Vicia faba L. genotypes using physical and chemical mutagenesis. Chrom Sci 18(3-4):47–51Google Scholar
  140. Khursheed S, Raina A, Khan S (2016) Improvement of yield and mineral content in two cultivars of Vicia faba L. through physical and chemical mutagenesis and their character association analysis. Arch Curr Res Int 4(1):1–7CrossRefGoogle Scholar
  141. Khursheed S, Raina A, Parveen K, Khan S (2017) Induced phenotypic diversity in the mutagenized populations of faba bean using physical and chemical mutagenesis. J Saudi Soc Agric Sci.
  142. Khursheed S, Raina A, Amin R et al (2018a) Quantitative analysis of genetic parameters in the mutagenized population of faba bean (Vicia faba L.). Res Crops 19(2):276–284CrossRefGoogle Scholar
  143. Khursheed S, Raina A, Laskar RA, Khan S (2018b) Effect of gamma radiation and EMS on mutation rate: their effectiveness and efficiency in faba bean (Vicia faba L.). Caryol 71(4):397–404CrossRefGoogle Scholar
  144. Khursheed S, Raina A, Khan S (2018c) Physiological response of two cultivars of faba bean using physical and chemical mutagenesis. International Journal of Advance Research in Science and Engineering 7(4):897–905Google Scholar
  145. Kilikova S, Šebánek J, Vlašic T (2004) The effect of cytokinins and other plant hormones on the growth of cotyledonary axilars of flax (Linum usitatissimum), sunflower (Helianthus annuus)and pea (Pisumsativum). Plant Soil Envir 50(4):182–187CrossRefGoogle Scholar
  146. Kim M (1999) The influence of temperature pretreatment on the production of microspore embryos in anther culture of Capsicum annuum L. Kor J Plant Tiss Cult 26:71–76Google Scholar
  147. Kodym A, Afza R (2003) Physical and chemical mutagenesis. Meth Mol Biol 236:189–203Google Scholar
  148. Kohlenbach HW (1977) In: Barz Reinhard WE, Zenk MH (eds) Plant tissue culture and its biotechnological application. Springer, Heidelberg, pp 355–366CrossRefGoogle Scholar
  149. Konzak CF (1957) Genetic effects of radiation on higher plants. Quat Rev Biol 32:27–45CrossRefGoogle Scholar
  150. Konzak CF, Nilan RA, Wagner J et al (1965) Efficient chemical mutagenesis. Rad Bot 5:49–70Google Scholar
  151. Konzak CF, Nilan RA, Kleinhofs A (1977) Artificial mutagenesis as an aid in overcoming genetic vulnerability of crop plants. In: Muhammed A, Aksel R, Von Borstel RC (eds) Genetic diversity in plants. Plenum, New York, pp 163–177Google Scholar
  152. Kordi M, Majd A, Valizadeh M et al (2006) A comparative study of chromosome morphology among some genotypes of Cicer arietinum L. Pak J Biol Sci 9:1225–1230CrossRefGoogle Scholar
  153. Kozgar MI (2012) Studies on the induction of mutation for quantitative traits in chickpea (Cicer arietinum L.). PhD thesis. Aligarh Muslim University, AligarhGoogle Scholar
  154. Kozgar MI, Wani MR, Tomlekova NB (2014) In: Tomlekova NB, Kozgar MI, Wani MR (eds) Mutagenesis-exploring novel genes and pathways. Induced mutagenesis in edible crop plants and its impact on human beings. Wageningen Academic Publishers, Dordrecht, pp 167–182CrossRefGoogle Scholar
  155. Krishna MCR (1975) Biochemical studies on bengal gram. J Sci Ind Res 34:266–281Google Scholar
  156. Kudapa H, Bharti AK, Cannon SB et al (2012) A comprehensive transcriptome assembly of pigeonpea (Cajanus cajan L.) using sanger and second-generation sequencing platforms. Mol Plant 5:1020–1028CrossRefPubMedPubMedCentralGoogle Scholar
  157. Kumar M, Shukla AK, Singh H et al (2013a) Genotype-independent Agrobacterium mediated transformation of germinated embryo of cotton (Gossypium hirsutum L.). Intl J BioTech Res 3(1):91–90Google Scholar
  158. Kumar S, Thakur P, Kaushal N et al (2013b) Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing in heat sensitivity. Arch Agron Soil Sci 59:823–843CrossRefGoogle Scholar
  159. Kupicha FK (1977) The delimitation of the tribe Vicieae and the relationships of Cicer L. Bot J Linn Soc 74:131–162CrossRefGoogle Scholar
  160. Ladizinsky G, Adler A (1976) The origin of chickpea Cicer arietinum L. Euphy 25:211–217CrossRefGoogle Scholar
  161. Lal S, Singh SN, Lal SB et al (1973) Improvement in gram through pedigree method of breeding. In: Proceedings of the 10th workshop on rabi pulses AICRP (ICAR), Bose Institute. ICAR, New Delhi, pp 70–80Google Scholar
  162. Laskar RA, Khan S, Khursheed S et al (2015) Quantitative analysis of induced phenotypic diversity in chickpea using physical and chemical mutagenesis. J Agron 14(3):102–111CrossRefGoogle Scholar
  163. Laskar RA, Laskar AA, Raina A et al (2018a) Induced mutation analysis with biochemical and molecular characterization of high yielding lentil mutant lines. Int J Biol Macromol 109:167–179CrossRefPubMedGoogle Scholar
  164. Laskar RA, Wani MR, Raina A et al (2018b) Morphological characterization of gamma rays induced multipodding mutant (mp) in lentil cultivar Pant L 406. Intl J Rad Biol 94(11):1049–1053CrossRefGoogle Scholar
  165. Lazzeri PA, Hilderbrand DF, Collins GB (1990) Soybean somatic embryogenesis – effects of hormones and culture manipulations. Plant Cell Tiss Organ Cult 10:197–200CrossRefGoogle Scholar
  166. Leterme P (2002) Recommendations by health organizations for pulse consumption. British J Nutr 88:239–242CrossRefGoogle Scholar
  167. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461CrossRefGoogle Scholar
  168. Mahandjiev A, Kosturkova G, Mihov M (2001) Enrichment of Pisum sativum gene resources through combine use of physical and chemical mutagens. Israel J Plant Sci 49(4):279–284Google Scholar
  169. Mallikarjuna BP, Samineni S, Thudi M et al (2017) Molecular mapping of flowering time major genes and QTLs in Chickpea (Cicer arietinum L.). Front Plant Sci 8:1–10CrossRefGoogle Scholar
  170. Malti, Shivanna KR (1983) Pollen pistil interaction in chickpea. Int Chickpea Newsl 9:10–11Google Scholar
  171. Mba C (2013) Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomy 3:200–231. Scholar
  172. Mercy ST, Kakar SN, Chowdhury JB (1974) Cytological studies in three species of the genus Cicer. Cytologia 39:383–390CrossRefGoogle Scholar
  173. Micke A (1988a) Genetic improvement of food legumes in developing countries by mutation induction. In: Summerfield RJ (ed) World crops: cool season food legumes. Kluwer Academic, Dordrecht, pp 1031–1047CrossRefGoogle Scholar
  174. Micke A (1988b) Improvement of grain legumes production using induced mutation. An overview. In: Proceedings of a workshop on the improvement of grain legume production using induced mutations. FAO/IAEA Division, Pullman, Washington. International Atomic Energy Agency, Vienna, Austria, pp 1–51Google Scholar
  175. Micke A (1995) Radiation mutagenesis for genetic improvement of plants. In: Genetic research and education: current trends and the next fifty years. Indian Society Genet Plant Breed, New Delhi, pp 1129–1142Google Scholar
  176. Mir RR, Varshney RK (2013) Future prospects of molecular markers in plants. In: Henry RJ (ed) Molecular markers in plants. Blackwell Publishing Ltd., Oxford, UK, pp 170–190Google Scholar
  177. Momin KC, Gonge VS, Dalal SR et al (2012) Radiation induced variability studies in Chrysanthemum under net house. Asian J Hort 7:524–527Google Scholar
  178. Moreno MT, Cubero JI (1978) Variation in Cicer arietinum L. Euphy 27:465–485CrossRefGoogle Scholar
  179. Muehlbauer FJ, Kaiser WJ, Simon CJ (1993) Potential for wild species in cool season food legume breeding. Euphy 73:109–114CrossRefGoogle Scholar
  180. Muller HJ (1927) Artificial transmutation of genes. Sci 66:84–144CrossRefGoogle Scholar
  181. Muñoz LC, Baudoin JP (2002) Improvement of in vitro induction of androgenesis in Phaseolus beans (P. vulgaris L. and P. coccineus L.). Acta Agron 51(4):81–87Google Scholar
  182. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Phys Plant 15:473–497CrossRefGoogle Scholar
  183. Naikoo MI, Dar MI, Raghib F et al (2019) Role and regulation of plants phenolics in abiotic stress tolerance: an overview. In: Khan MIR, Reddy PS, Ferrante A, Khan NA (eds) Plant signalling molecules. Woodhead Publishing, Elsevier, Duxford, pp.157–168.
  184. Nakagawa H, Annai T, Okabe A et al (2011) Mutation breeding of soybean in Japan. In: Khan S, Kozgar MI (eds) Breeding of pulse crops. Kalyani Publishers, Ludhiana, pp 55–84Google Scholar
  185. Nayak SN, Zhu H, Varghese N et al (2010) Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor Appl Genet 120:1415–1441CrossRefPubMedPubMedCentralGoogle Scholar
  186. Nayyar H, Bains TS, Kumar S (2005) Chilling stressed chickpea seedlings: effect of cold acclimation, calcium and abscisic acid on cryoprotective solutes and oxidative damage. Envir Exp Bot 54:275–285CrossRefGoogle Scholar
  187. Nene YL, Reddy MV (1987) Chickpea diseases and their control. In: Saxena MC, Singh KB (eds) The chickpea. CAB International, Wallingford, pp 233–270Google Scholar
  188. Nene YL, Reddy MV, Haware MP et al (1991) Field diagnosis of chickpea diseases and their control. Info Bull No. 28, ICRISAT, Hyderabad, IndiaGoogle Scholar
  189. Ocampo B, Venora G, Errico A et al (1992) Karyotype analysis in the genus Cicer. J Genet Breed 46:229–240Google Scholar
  190. Ochatt SJ, Atif RM, Patat-Ochatt E et al (2010) Competence versus recalcitrance for in vitro regeneration. World J Agric Sci 6(5):630–634Google Scholar
  191. Ohri D, Pal M (1991) The origin of chickpea (Cicer arietinum L.): karyotype and nuclear DNA amount. Hered 66:367–372CrossRefGoogle Scholar
  192. Oladosu Y, Rafii MY, Abdullah N et al (2015) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30:1–16. Scholar
  193. Ozias AP, Anderson WF, Halbrook AC (1992) Somatic embryogenesis in Arachis hypogaea L – effect of genotype and comparison. Plant Sci 83:103–111CrossRefGoogle Scholar
  194. Pande S, Stevenson P, Rao JN et al (2005) Reviving chickpea production in Nepal through integrated crop management, with emphasis on botrytis gray mold. Plant Dis 89:1252–1262CrossRefPubMedGoogle Scholar
  195. Parida SK, Dalal V, Singh AK et al (2009) Genic non-coding microsatellites in the rice genome: characterization, marker design and use in assessing genetic and evolutionary relationships among domesticated groups. BMC Genomics 10:140CrossRefPubMedPubMedCentralGoogle Scholar
  196. Parveen K (2006) Mutation studies with early generation selection for polygenic variability in chickpea (Cicer arietinum L.). PhD thesis, Aligarh Muslim University, Aligarh, IndiaGoogle Scholar
  197. Pattnaik S, Chand PK (1996) In vitro propagation of the medicinal herbs Ocimum americanum L. syn. O. canum Sims. (hoary basil) and Ocimum sanctum L. (holy basil). Plant Cell Rep 15:846–850CrossRefPubMedGoogle Scholar
  198. Phillips GC, Collins GB (1979) In vitro tissue culture of selected legumes and plant regeneration from callus culture of red clover. Crop Sci 19:59–64CrossRefGoogle Scholar
  199. Poland JA, Bradbury PJ, Buckler ES et al (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Nat Acad Sci 108:6893–6898CrossRefPubMedGoogle Scholar
  200. Pundir RPS, Mengesha MH (1995) Cross compatibility between chickpea and its wild relative Cicer echinospermum Davis. Euphy 83:241–245CrossRefGoogle Scholar
  201. Pundir RPS, Reddy GU (1998) Two new traits-open flower and small leaf in chickpea (Cicer arietinum L.). Euphy 102:357–361CrossRefGoogle Scholar
  202. Rahman MA, Bahl PN (1985) Comparison of single seed descent, mass selection and random bulk methods in chickpea. Indian J Genet 45:186–193Google Scholar
  203. Raina A, Laskar RA, Khursheed S et al (2016) Role of mutation breeding in crop improvement-past, present and future. Asian Res J Agric 2(2):1–3CrossRefGoogle Scholar
  204. Raina A, Laskar RA, Khursheed S et al (2017) Induce physical and chemical mutagenesis for improvement of yield attributing traits and their correlation analysis in chickpea. Int Let Nat Sci 61:14–22Google Scholar
  205. Raina A, Khursheed S, Khan S (2018a) Optimisation of mutagen doses for gamma rays and sodium azide in cowpea genotypes. Trends Biosci 11(13):2386–2389Google Scholar
  206. Raina A, Laskar RK, Jahan R et al (2018b) Mutation breeding for crop improvement. In: Ansari MW, Kumar S, Babeeta CK, Wattal RK (eds) Introduction to challenges and strategies to improve crop productivity in changing environment. Enriched Publications. PVT. lTD, New Delhi, pp 303–317Google Scholar
  207. Rajput MA, Sarwar G, Siddiqui KA (2001) Development of high yielding mutants in lentil. Mut Breed Newslet 45:35Google Scholar
  208. Ramanujam S (1976) Chickpea. In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 157–159Google Scholar
  209. Rao BG, Chopra VL (1989) Regeneration in chickpea (Cicer arietinum L.) through somatic embryogenesis. J Plant Physiol 134(5):637–638CrossRefGoogle Scholar
  210. Rech EL, Ochatt SJ, Chand PK et al (1987) Electro enhancement of division of plant protoplast-derived cells. Protoplasma 141:169–176CrossRefGoogle Scholar
  211. Ribaut JM, De Vicente MC, Delannay X (2010) Molecular breeding in developing countries: challenges and perspectives. Curr Opin Plant Biol 13(2):213–218CrossRefPubMedGoogle Scholar
  212. Roorkiwal M, Sawargaonkar SL, Chitikineni A et al (2013) Single nucleotide polymorphism genotyping for breeding and genetics applications in chickpea and pigeonpea using the BeadXpress platform. Plant Genome 6(2)Google Scholar
  213. Ruperao P, Chan CKK, Azam S et al (2014) A chromosomal genomics approach to assess and validate the desi and kabuli draft chickpea genome assemblies. Plant Biotech J (6):778–786Google Scholar
  214. Sagare AP, Suhasini K, Krishnamurthy KV (1993) Plant regeneration via somatic embryogenesis in chickpea (Cicer arietinum L.). Plant Cell Rep 12:652–655CrossRefPubMedGoogle Scholar
  215. Saleem MY, Mukhtar Z, Cheema AA et al (2005) Induced mutation and in vitro techniques as a method to induce salt tolerance in Basmati rice (Oryza sativa L.). Int J Env Sci Tech 2:141–145CrossRefGoogle Scholar
  216. Salimath PM, Bahl PN, Mehra RB (1984) Genetic diversity in chickpea (Cicer arietinum L.). Pflanzenzucht Z 92:52–60Google Scholar
  217. Salimath PM, Toker C, Sandhu JS et al (2007) Conventional breeding methods. In: Yadav SS (ed) Chickpea breeding and management, pp 369–390Google Scholar
  218. Salnikova TV (1995) Achievements of chemical mutagenesis in the breeding of cultivated plants in the USSR. In: Genetic research and education: current trends and the next fifty years, vol. III, New Delhi. pp 1196–1209Google Scholar
  219. Sanchez-Mata MC, Penuela-Teruel MJ, Camara-Hurtado M et al (1998) Determination of mono, di, and oligosaccharides in legumes by high-performance liquid chromatography using an amino-bonded silica column. J Agric Food Chem 46:3648–3652CrossRefGoogle Scholar
  220. Sandhu JS, Gupta SK, Singh G et al (2006) Interspecific hybridization between Cicer arietinum L. and Cicer pinnatifidum Jaub. et. Spach for improvement of yield and other traits. In: 4th international food legumes research conference. Indian Society Genet Plant Breed, New DelhiGoogle Scholar
  221. Sarmah BK, Moore A, Tate W et al (2004) Transgenic chickpea seeds expressing high level of a beanα-amylase inhibitor. Mol Breed 14:73–82CrossRefGoogle Scholar
  222. Saxena HP, Raina AK (1970) Abruchid resistant strain of Bengal gram. Curr Sci 39:189–190Google Scholar
  223. Saxena RK, Cui X, Thakur V et al (2011) Single feature polymorphisms (SFPs) for drought tolerance in pigeonpea (Cajanus spp.). Funct Integr Genomics 11:651–657CrossRefPubMedPubMedCentralGoogle Scholar
  224. Saxena RK, Penmetsa RV, Upadhyaya HD et al (2012) Large-scale development of cost-effective single-nucleotide polymorphism marker assays for genetic mapping in pigeonpea and comparative mapping in legumes. DNA Res 19:449–461CrossRefPubMedPubMedCentralGoogle Scholar
  225. Schwarzacher T (2003) DNA, chromosomes, and in situ hybridization. Genome 46:953–962CrossRefPubMedGoogle Scholar
  226. Sehgal CB, Abbas SN (1994) Somatic embryogenesis and plant regeneration from hypocotyl tissue of Trachyspermum ammi (L.) sprague. Phytomorph 44:265–271Google Scholar
  227. Sethy NK, Shokeen B, Edwards KJ, Bhatia S (2006) Development of microsatellite markers and analysis of intra-specific genetic variability in chickpea (Cicer arietinum L.). Theor Appl Genet 112:1416–1428CrossRefPubMedGoogle Scholar
  228. Shahzad A, Sidique AS (2000) In vitro organogenesis in Ocimum sanctum L. -a multipurpose herb. Phytomorph 50:27–35Google Scholar
  229. Sharma B (1985) Chemical mutagens. In: Advances in chromosome and cell genetics. IBH Publishing, New Delhi, pp 255–283Google Scholar
  230. Sharma PC, Winter P, Bünger T et al (1995) Abundance and polymorphism of di-, tri- and tetra-nucleotide tandem repeats in chickpea (Cicer arietinum L.). Theor Appl Genet 90:90–96CrossRefPubMedGoogle Scholar
  231. Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety and Social consequences of the deployment of Bt transgenic plants. Ann Rev Entom 47:845–881CrossRefPubMedGoogle Scholar
  232. Shu QY, Forster BP, Nakagawa H (2012) Plant mutation breeding and biotechnology. CAB International and FAO, RomeCrossRefGoogle Scholar
  233. Simon CJ, Muehlbauer FJ (1997) Construction of a chickpea linkage map and its comparison with maps of pea and lentil. J Hered 88:115–119CrossRefGoogle Scholar
  234. Sinclair TR, Vadez V (2012) The future of grain legumes in cropping systems. Crop Past 63:501–512CrossRefGoogle Scholar
  235. Sindhu JS, Lal SB, Singh RP (1981) Studies on the factors determining crossing success in chickpea (Cicer arietinum). Pulse Crops Newsl 1:21–22Google Scholar
  236. Sing KB, Malhotra RS, etal HHM (1994) Current status and future strategy in breeding chickpea for resistance to biotic and abiotic stress. Euphy 73:137–149CrossRefGoogle Scholar
  237. Singh U (1985) Nutritional quality of chickpea (Cicer arietinum L.): current status and future research needs. Plant Foods Human Nutr 35:339–351CrossRefGoogle Scholar
  238. Singh KB (1987) Chickpea breeding. In: Saxena MC, Singh KB (eds) The chickpea. CAB International, Wallingford, pp 127–162Google Scholar
  239. Singh KB (1990) Patterns of resistance and susceptibility to races of Ascochyta rabiei among germplasm accessions and breeding lines of chickpea. Plant Dis 74:127–129CrossRefGoogle Scholar
  240. Singh KB Auckland AK (1975) Chickpea breeding at ICRISAT. In: Proceedings of the international workshop on grain legumes. ICRISAT, Hyderabad, pp 3–17Google Scholar
  241. Singh KB, Ocampo B (1993) Interspecific hybridization in annual Cicer species. J Genet Breed 47:199–204Google Scholar
  242. Singh KB, Ocampo B (1997) Exploitation of wild Cicer species for yield improvement in chickpea. Theor Appl Genet 95:418–423CrossRefGoogle Scholar
  243. Singh KB, Reddy MV (1991) Advances in disease resistance breeding in chickpea. Adv Agron 45:191–222CrossRefGoogle Scholar
  244. Singh G, Sharma YR (2002) Fungal diseases of pulses. In: Gupta VK, Paul YS (eds) Diseases of field crops. Indus Publishing, New Delhi, pp 155–192Google Scholar
  245. Singh KB, Singh O (1997) Prospects of creating higher yield potential in chickpea. In: Asthana AN, Ali M (eds) Recent advances in pulses research. Indian Society of Pulses Research and Development, IIPR, KanpurGoogle Scholar
  246. Singh I, Waldia RS (1994) Comparison of selection methods in chickpea under late sown condition. Crop Res Hissar 8:508–511Google Scholar
  247. Singh KB, Omar M, Saxena MC, Johansen C (1997a) Screening for drought resistance in spring chickpea in the Mediterranean region. J Agron Crop Sci 178:227–235CrossRefGoogle Scholar
  248. Singh VP, Chaturvedi SN, Srivastava A (1997b) Genetic improvement in pulse crops through mutation breeding. In: Bahar AS, Khan S (eds) Plant breeding advances and in vitro culture. CBS Publishing, New Delhi, pp 25–72Google Scholar
  249. Singh S, Gumber RK, Joshi N et al (2005) Introgression from wild Cicer reticulatum to cultivated chickpea for productivity and disease resistance. Plant Breed 124:477–480CrossRefGoogle Scholar
  250. Singh M, Khan Z, Kumar K et al (2012a) Sources of resistance to Fusarium wilt and root knot nematode in indigenous chickpea germplasm. Plant Genet Res 10(3):258–260CrossRefGoogle Scholar
  251. Singh RP, Singh I, Singh S et al (2012b) Assessment of genetic diversity among interspecific derivatives in chickpea. J Food Legum 25:150–152Google Scholar
  252. Singh I, Singh RP, Singh S et al (2012c) Introgression of productivity genes from wild to cultivated Cicer. In: Sandhu SK, Sidhu N, Rang A (eds) International conference on sustainable agriculture for food and livelihood security, Crop improve 39 (Special issue), Crop Improvement Society of India, Ludhiana, pp 155–156Google Scholar
  253. Singh AK, Rana MK, Singh S et al (2014a) CAAT box-derived polymorphism (CBDP): a novel promoter-targeted molecular marker for plants. J Plant Biochem Biotech 23:175–183CrossRefGoogle Scholar
  254. Singh M, Bisht IS, Dutta M et al (2014b) Characterization and evaluation of wild annual Cicer species for agro-morphological traits and major biotic stresses under northwestern Indian conditions. Crop Sci 54:229–239CrossRefGoogle Scholar
  255. Singh S, Singh I, Kapoor K et al (2014c) Chickpea. In: Gaur PM, Chaturvedi SK, Singh NP et al (eds) Broadening the genetic base of grain legumes. Springer, New Delhi, pp 51–73Google Scholar
  256. Smartt J (1976) Comparative evolution of pulse crops. Euphy 25:139–143CrossRefGoogle Scholar
  257. Sounder RV, Tejavathi DH, Nijalingappa BHM (1989) Shoot tip culture in Dolichos biflorus L. Curr Sci 58:1385–1388Google Scholar
  258. Srinivasan A, Saxena NP, Johansen C (1999) Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.): genetic variation in gamete development and function. Field Crops Res 60:209–222CrossRefGoogle Scholar
  259. Stadler LJ (1928) Mutations in barley induced by x-rays and radium. Sci 68:186–187CrossRefGoogle Scholar
  260. Staginnus C, Winter P, Desel C et al (1999) Molecular structure and chromosomal localization of major repetitive DNA families in the chickpea (Cicer arietinum L.) genome. Plant Mol Biol 39:1037–1050CrossRefPubMedGoogle Scholar
  261. Stalker HT (1980) Utilization of wild species for crop improvement. Adv Agron 33:111–145CrossRefGoogle Scholar
  262. Sudharshan C, Aboel MN, Hussain J (2000) in vitro propagation of Ziziphus mauritianscultivar Umran by shoot tip ad nodal multiplication. Curr Sci 80:290–292Google Scholar
  263. Summerfield RJ, Hadley P, Roberts EH et al (1984) Sensitivity of chickpeas (Cicer arietinum) to hot temperatures during the reproductive period. Exp Agric 20:77–93CrossRefGoogle Scholar
  264. Tanno K, Willcox G (2006) The origins of cultivation of Cicer arietinum L. and Vicia faba L. early finds from Tell el-Kerkh, north-west Syria, late 10th millennium B.P. Veget Hist Archaeobot15:197–204Google Scholar
  265. Tantray AY, Raina A, Khursheed S et al (2017) Chemical mutagen affects pollination and locule formation in capsules of black cumin (Nigella sativa L.). Int J Agric Sci 8(1):108–117Google Scholar
  266. Tayyar RI, Lukaszewski AJ, Waines JG (1994) Chromosome banding pattern in the annual species of Cicer. Genome 37:656–663CrossRefPubMedGoogle Scholar
  267. Tekeoglu M, Tullu A, Kaiser WJ et al (2000) Inheritance and linkage of two genes that confer resistance to Fusarium wilt in chickpea. Crop Sci 40:1247–1251CrossRefGoogle Scholar
  268. Thimmaiah SK, Mahadevu P, Srinivasappa KN et al (1998) Effect of gamma radiation on seed germination and seedling vigour in cowpea [Vigna unguiculata (L.) Walp.]. J Nucl Agric Biol 27:142–145Google Scholar
  269. Thomas WTB (2003) Prospects for molecular breeding of barley. Ann Appl Biol 142:1–12CrossRefGoogle Scholar
  270. Thudi M, Bohra A, Nayak SN et al (2011) Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1,291 marker loci for chickpea (Cicer arietinum L.). PLoSOne 6:e27275CrossRefGoogle Scholar
  271. Thudi M, Li Y, Jackson SA et al (2012) Current state-of-art of sequencing technologies for plant genomics research. Brief Funct Genom 11:3–11CrossRefGoogle Scholar
  272. Thudi M, Upadhyaya HD, Rathore A et al (2014) Genetic dissection of drought and heattolerance in chickpea through genone-wide and candidate gene-based association mapping approaches. PLoS One.
  273. Toker C (2009) A note on the evolution of kabuli chickpeas as shown by induced mutations in Cicer reticulatum Ladizinsky. Genet Res Crop Evol 56:7–12CrossRefGoogle Scholar
  274. Toker C, Cagirgan MI (2004) Spectrum and frequency of induced mutations in chickpea. Int Chickpea Pigeonpea Newslet 11:8–10Google Scholar
  275. Toker C, Canci H (2006) Selection for drought and heat resistance in chickpea under terminal drought conditions. In: Kharkwal MC (ed) Food legumes for nutritional security and sustainable agriculture, 4th international food legumes research conference. Indian Agricultural Research Institute, Indian Society Genet Plant Breed, New Delhi, pp 18–22Google Scholar
  276. Toker C, Canci H (2009) Evaluation of yield criteria for drought and heat resistance in chickpea (Cicer arietinum L.). J Agron Crop Sci 195:47–54CrossRefGoogle Scholar
  277. Toker C, Yadav SS, Solanki IS (2007) Mutation breeding. In: Yadav SS, McNeil D, Stevenson PC (eds) Lentil – an ancient crop for modern times. Springer, Dordrecht, pp 209–224Google Scholar
  278. Tollenaar D (1934) Untersuchungenueber Mutation beiTabak. I Entstehungsweise und Wesenkuenstlicherzeugter. Gen-MutantenGenetica 16:111–152Google Scholar
  279. Tollenaar D (1938) Untersuchungenueber Mutation beiTabak. II Einigekuenstlicherzeugte Chromosom-MutantenGenetica 20:285–294Google Scholar
  280. Torres AM (2009) Application of molecular markers for breeding disease resistant varieties in crop plants. In: Jain SM, Brar DS (eds) Molecular techniques in crop improvement. Springer, Dordrecht, pp 185–205Google Scholar
  281. Touraev A, Indrianto A, Wratschko I et al (1996) Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperature. Sex Plant Reprod 9:209–215CrossRefGoogle Scholar
  282. Ugandhar T, Venkateshwarlu M, Sammailah D, Reddy JM (2012) Rapid in vitro micro propagation of chick pea (Cicer arietinum L.) from shoot tip and cotyledonary node explants. J Biotechnol Biomater 2(6):1–6Google Scholar
  283. Upadhyaya HD, Gowda CLL (2009) Managing and enhancing the use of germplasm-strategies and methodologies. Tech Man 10. Patancheru, ICRISAT, Andhra Pradesh, IndiaGoogle Scholar
  284. Upadhyaya HD, Dwivedi SL, Baum M et al (2008) Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.). BMC Plant Biol 8:106CrossRefPubMedPubMedCentralGoogle Scholar
  285. Valente F, Gauthier F, Bardol N et al (2013) OptiMAS: a decision support tool for marker-assisted assembly of diverse alleles. J Hered 104:586–590CrossRefPubMedPubMedCentralGoogle Scholar
  286. Van der Maesen LJG (1972) Cicer L. a monograph of the genus, with special reference to the chickpea (Cicer arietinum L.), its ecology and cultivation. Meded Lingenland Bou Whoge School Wageningen 72(10):342Google Scholar
  287. Van der Maesen LJG (1984) Taxonomy, distribution and evolution of chickpea. In: Witcombe JR, Erskine W (eds) Genetic resources and their exploitation-chickpeas, faba beans and lentils. MartinusNijhoff/Junk, The Hague, Netherlands, pp 95–104CrossRefGoogle Scholar
  288. Van der Maesen LJG (1987) Cicer L. origin, history and taxonomy of chickpea. In: Saxena MC, Singh KB (eds) The chickpea. CAB International, Wallingford, pp 11–34Google Scholar
  289. Van der Maesen LJG, Maxted N, Javadi F et al (2007) Taxonomy of the genus Cicer revisited. In: Yadav SS, Redden B, Chen W, Sharma B (eds) Chickpea breeding and management. CAB International, Wallingford, pp 14–46CrossRefGoogle Scholar
  290. Van Zeist W, Bakker-Heeres J (1982) Archeobotanical studies in the Levant 1. Neolithic sites in the Damascus basin: Aswad, Ghoraife, and Ramad. Palaeohistor 24:165–256Google Scholar
  291. Varshney RK (2011) Application of next generation sequencing and genotyping technologies to develop large-scale genomic resources in SAT legume crops. In: Muralidharan K, Siddiq EA (eds) Genomics and crop improvement. Relevance and reservations. Acharya NG Ranga Agricultural University, Hyderabad, pp 1–10Google Scholar
  292. Varshney RK, Graner A, Sorrells ME (2005a) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630CrossRefPubMedGoogle Scholar
  293. Varshney RK, Graner A, Sorrells ME (2005b) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55CrossRefPubMedGoogle Scholar
  294. Varshney RK, Thudi M, May GD (2010) Legume genomics and breeding. Plant Breed Rev 33:257–304Google Scholar
  295. Varshney RK, Mohan SM, Gaur PM et al (2013a) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv.
  296. Varshney RK, Song C, Saxena RK (2013b) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246CrossRefPubMedGoogle Scholar
  297. Varshney RK, Thudi M, Nayak SN et al (2014) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127:445–462CrossRefPubMedGoogle Scholar
  298. Vavilov NI (1926) Studies on the origin of cultivated plants. Bulletin, 1. Bulletin of Applied Botany and Plant Breeding, LeningradGoogle Scholar
  299. Venu CH, Pavan U, Jayashree T (1999) Genotype dependent embryogenesis, organogenesis and Agrobacterium mediated transformation in pigeon pea (Cajanus cajan L.). Plant Cell Tissue Organ Cult 9:89–95Google Scholar
  300. Verma B, Kant U (1996) Micropropagation of Embilica officinale Gaertz through mature nodel explant. J Phytol Res 9:107–109Google Scholar
  301. Vishnu-Mitre (1974) The beginnings of agriculture: palaeobotanical evidence in India. In: Hutchinson JB (ed) Evolutionary studies in world crops, diversity and changes in the Indian sub-continent. Cambridge University Press, Cambridge, pp 3–30Google Scholar
  302. Vláčilová K, Ohri D, Vrána J et al (2002) Development of flow cytogenetics and physical mapping in chickpea (Cicer arietinum L.). Chromosome Res 10:695–706CrossRefPubMedGoogle Scholar
  303. Walley FL, Kyei-Boahen S, Hnatowich G et al (2005) Nitrogen and phosphorus fertility management for desi and kabuli chickpea. Canad J Plant Sci85:73–79Google Scholar
  304. Wang J, Gan YT, Clarke F et al (2006) Response of chickpea yield to high temperature stress during reproductive development. Crop Sci 46:2171–2178CrossRefGoogle Scholar
  305. Wang Q, Zhang B, Lu Q (2009) Conserved region amplification polymorphism (CoRAP), a novel marker technique for plant genotyping in Salvia miltiorrhiza. Plant Mol Biol Rep 27:139CrossRefGoogle Scholar
  306. Wani MR, Kozgar MI, Khan S et al (2014) Induced mutagenesis for the improvement of pulse crops with special reference to mung bean: a review update. In: Improvement of crops in the era of climatic changes. Springer, New York, pp 247–288CrossRefGoogle Scholar
  307. Wani MR, Dar AR, Tak A et al (2017) Chemo-induced pod and seed mutants in mungbean (Vigna radiata L. Wilczek). SAARC J Agric 15(2):57–67CrossRefGoogle Scholar
  308. Weerakoon SR (2010) Direct and indirect somatic embryogenesis from petiole and leaf explants of purple fan flower (Scaevola aemula R. Br. cv. ‘Purple Fanfare’). World Acad Sci Eng Tech 5:701–709Google Scholar
  309. Wery J, Turc O, Lecoeur J (1993) Mechanism of resistance to cold, heat and drought in cool-season legumes, with special reference to chickpea and pea. In: Singh KB, Saxena MC (eds) Breeding for tolerance in cool season food legumes. Wiley, Chichester, pp 271–291Google Scholar
  310. Winter P, Benko-Iseppon AM, Huttel B et al (2000) A linkage map of chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum x C. reticulatum cross: localization of resistance genes for fusarium wilt races 4 and 5. Theor Appl Genet 101:1155–1163CrossRefGoogle Scholar
  311. Yadav V, Malan L, Jaiswal VS (1990) Micropropagation of Morus niger from shoot tip and nodal explants of mature trees. Scient Hort 44:61–64CrossRefGoogle Scholar
  312. Yadav SK, Katikala S, Yellisetty V et al (2012) Optimization of Agrobacterium mediated genetic transformation of cotyledonary node explants of Vigna radiate. Springerplus 59:1–8Google Scholar
  313. Yankova V, Sovkova-Bobcheva S (2009). Studying of bean varieties (Phaseolus vulgaris L) reaction to bean weevil infestation (Acanthoscelides obtectus Say). Reports of bean improvement cooperative and national dry bean council research conference, pp 144–145Google Scholar
  314. Yousef GG, Juvik JA (2001) Comparison of phenotypic and marker-assisted selection for quantitative traits in sweet corn. Crop Sci 41:645–655CrossRefGoogle Scholar
  315. Zahid MA, Islam MM, etal RMH (2008) Determination of economic injury levels of Helicoverpa armigera (Hubner) in chickpea. Bangla J Agric Res 33(3):555–563Google Scholar
  316. Zatloukalova P, Hřibová E, Kubaláková M et al (2011) Integration of genetic and physical maps of the chickpea (Cicer arietinum L.) genome using flow-sorted chromosomes. Chromosome Res 19:729–739CrossRefPubMedGoogle Scholar
  317. Zheng Z, Wang HB, Chen GD et al (2013) A procedure allowing up to eight generations of wheat and nine generations of barley per annum. Euphy 191:311–316CrossRefGoogle Scholar
  318. Zryd JP (1988) Cultures de cellules, tissus et organs végétaux. Fondements théoriques et utilisations pratiques. Presses Polytechniques RomandesGoogle Scholar
  319. Zur I, Dubas E, Golemiec E et al (2008) Stress-induced changes important for effective androgenic induction in isolated microspore culture of triticale (Tritico secale Wittm.). Plant Cell Tiss Organ Cult 94:319–328CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aamir Raina
    • 1
    • 2
  • Samiullah Khan
    • 1
  • Mohammad Rafiq Wani
    • 3
  • Rafiul Amin Laskar
    • 1
  • Waseem Mushtaq
    • 4
  1. 1.Mutation Breeding Laboratory, Department of BotanyAligarh Muslim UniversityAligarhIndia
  2. 2.Botany Section, Women’s CollegeAligarh Muslim UniversityAligarhIndia
  3. 3.Abdul Ahad Azad Memorial Degree College, BeminaCluster UniversitySrinagarIndia
  4. 4.Allelopathy Laboratory, Department of BotanyAligarh Muslim UniversityAligarhIndia

Personalised recommendations