Advertisement

Infections in Systemic Lupus Erythematosus

  • Luis J. Jara
  • Gabriela Medina
  • María del Pilar Cruz-Domínguez
  • Michel Augusto Martinez Bencomo
  • Josehp Lira Tecpa
  • Miguel Angel Saavedra
Chapter

Abstract

Despite the progress made in the diagnosis and treatment of patients with systemic lupus erythematosus (SLE), infections remain the leading cause of morbidity and mortality in patients with SLE.

SLE is the same entity in all parts of the world; however genetic variants and environmental factors are different. Therefore, it is necessary that in each country and region risk factors should be adequately identified, in order to take preventive measures and diagnose and treat infections in patients with SLE in a timely manner.

The interaction between viruses, bacteria, parasites, and fungi, with the immune system of patients with SLE, is very complex. It is possible that each patient with SLE has a type of individual immune/inflammatory response. Knowledge of the mechanisms of this interaction helps to correctly diagnose and treat infections in these patients.

Many infectious agents have the ability to mimic active SLE. Therefore it is necessary to use the biomarkers to make a difference, without forgetting that the correct clinical judgment will define whether it is a reactivation of the SLE or a serious infection that endangers the life of the patient with SLE.

This chapter will review the current situation of infections in SLE, its impact in different regions of the world, the interactions between infectious agents and the immune system, and the strategies to be followed to decrease the morbidity and mortality in SLE patients.

Keywords

SLE infections SLE infection epidemiology SLE infections and risk factors SLE infections and immune system SLE infections and biomarkers SLE infections and prevention 

Abbreviations

cGAS

Cyclic GMP-AMP synthase

CHIKV

Chikungunya virus

CMA

Cardiac muscle antibodies

DAH

Diffuse alveolar hemorrhage

DC

Dendritic cells

EBV

Epstein-Barr virus

HAART

Highly active antiretroviral therapy

HPV

Human papillomavirus

IRIS

Immune reconstitution inflammatory syndrome

MBL

Mannose-binding lectin

MeSH

Medical Subject Headings

SHS

Strongyloidiasis hyperinfection syndrome

TLRs

Toll-like receptors

ZIKV

Zika virus

References

  1. 1.
    Abramovich E, Barrett O, Dreiher J, Novack V, Abu-Shakra M. Incidence and variables associated with short and long-term mortality in patients with systemic lupus erythematosus and sepsis admitted in intensive care units. Lupus. 2018;27:961203318796288.  https://doi.org/10.1177/0961203318796288.CrossRefGoogle Scholar
  2. 2.
    Bhattacharya J, Pappas K, Toz B, Aranow C, Mackay M, Gregersen PK, et al. Serologic features of cohorts with variable genetic risk for systemic lupus erythematosus. Mol Med. 2018;24:24.  https://doi.org/10.1186/s10020-018-0019-4.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wu XY, Yang M, Xie YS, Xiao WG, Lin J, Zhou B, et al. Causes of death in hospitalized patients with systemic lupus erythematosus: a 10-year multicenter nation wide Chinese cohort. Clin Rheumatol. 2018.  https://doi.org/10.1007/s10067-018-4259-z.CrossRefGoogle Scholar
  4. 4.
    Méndez-Martínez S, García-Carrasco M, Jiménez-Herrera EA, Mendoza-Pinto C, Etchegaray-Morales I, Barahona-Rubio PW, et al. Factors of the epidemiological triad that influence the persistence of human papilloma virus infection in women with systemic lupus erythematosus. Lupus. 2018;27:1542–6.  https://doi.org/10.1177/0961203318773176.CrossRefPubMedGoogle Scholar
  5. 5.
    Mackay M, Oswald M, Sanchez-Guerrero J, Lichauco J, Aranow C, Kotkin S, Korsunsky I, Gregersen PK, Diamond B. Molecular signatures in systemic lupus erythematosus: distinction between disease flare and infection. Lupus Sci Med. 2016;3:e000159.  https://doi.org/10.1136/lupus-2016-000159.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jara LJ, Medina G, Saavedra MA. Autoimmune manifestations of infections. Curr Opin Rheumatol. 2018;30:373–9.  https://doi.org/10.1097/BOR.0000000000000505.CrossRefPubMedGoogle Scholar
  7. 7.
    Ginzler E, Diamond H, Kaplan D, Weiner M, Schlesinger M, Seleznick M. Computer analysis of factors influencing frequency of infection in systemic lupus erythematosus. Arthritis Rheum. 1978;21:37–44.CrossRefGoogle Scholar
  8. 8.
    Nived O, Sturfelt G, Wollheim F. Systemic lupus erythematosus and infection: a controlled and prospective study including an epidemiological group. Q J Med. 1985;55:271–87.PubMedGoogle Scholar
  9. 9.
    Reveille JD, Bartolucci A, Alarcón GS. Prognosis in systemic lupus erythematosus. Negative impact of increasing age at onset, black race, and thrombocytopenia, as well as causes of death. Arthritis Rheum. 1990;33:37–48.CrossRefGoogle Scholar
  10. 10.
    Duffy KN, Duffy CM, Gladman DD. Infection and disease activity in systemic lupus erythematosus: a review of hospitalized patients. J Rheumatol. 1991;18:1180–4.PubMedGoogle Scholar
  11. 11.
    Danza A, Ruiz-Irastorza G. Infection risk in systemic lupus erythematosus patients: susceptibility factors and preventive strategies. Lupus. 2013;22(12):1286–94.  https://doi.org/10.1177/0961203313493032.CrossRefPubMedGoogle Scholar
  12. 12.
    Rúa-Figueroa Í, López-Longo J, Galindo-Izquierdo M, Calvo-Alén J, Del Campo V, Olivé-Marqués A, et al. Incidence, associated factors and clinical impact of severe infections in a large, multicentric cohort of patients with systemic lupus erythematosus. Semin Arthritis Rheum. 2017;47(1):38–45.CrossRefGoogle Scholar
  13. 13.
    Hou C, Jin O, Zhang X. Clinical characteristics and risk factors of infections in patients with systemic lupus erythematosus. Clin Rheumatol. 2018;37:2699–705.  https://doi.org/10.1007/s10067-018-4198-8.CrossRefPubMedGoogle Scholar
  14. 14.
    Herrinton LJ, Liu L, Goldfien R, Michaels MA, Tran TN. Risk of serious infection for patients with systemic lupus erythematosus starting glucocorticoids with or without antimalarials. J Rheumatol. 2016;43(8):1503–9.CrossRefGoogle Scholar
  15. 15.
    Feldman CH, Marty FM, Winkelmayer WC, Guan H, Franklin JM, Solomon DH, Costenbader KH, Kim SC. Comparative rates of serious infections among patients with systemic lupus erythematosus receiving immunosuppressive medications. Arthritis Rheumatol. 2017;69(2):387–97.CrossRefGoogle Scholar
  16. 16.
    Liu P, Tan HZ, Li H, Lim CC, Choo JCJ. Infections in hospitalized lupus nephritis patients: characteristics, risk factors, and outcomes. Lupus. 2018;27(7):1150–8.CrossRefGoogle Scholar
  17. 17.
    Chen D, Xie J, Chen H, Yang Y, Zhan Z, Liang L, Yang X. Infection in Southern Chinese patients with systemic lupus erythematosus: spectrum, drug resistance, outcomes, and risk factors. J Rheumatol. 2016;43(9):1650–6.CrossRefGoogle Scholar
  18. 18.
    Singh JA, Hossain A, Kotb A, Wells G. Risk of serious infections with immunosuppressive drugs and glucocorticoids for lupus nephritis: a systematic review and network meta-analysis. BMC Med. 2016;14(1):137.CrossRefGoogle Scholar
  19. 19.
    Martinez-Martinez MU, Sturbaum AK, Alcocer-Varela J, Merayo-Chalico J, Gómez-Martin D, De Jesus Eduardo Gomez-Banuelos J, et al. Factors associated with mortality and infections in patients with systemic lupus erythematosus with diffuse alveolar hemorrhage. J Rheumatol. 2014;41(8):1656–61.CrossRefGoogle Scholar
  20. 20.
    Roberts JE, Mandl LA, Su EP, Mayman DJ, Figgie MP, Fein AW, Lee YY, Shah U, Goodman SM. Patients with systemic lupus erythematosus have increased risk of short-term adverse events after total hip arthroplasty. J Rheumatol. 2016;43(8):1498–502.CrossRefGoogle Scholar
  21. 21.
    Quintanilla-González L, Torres-Villalobos G, Hinojosa-Azaola A. Risk factors for development of early infectious and noninfectious complications in systemic lupus erythematosus patients undergoing major surgery. Lupus. 2018;27(12):1960–72.CrossRefGoogle Scholar
  22. 22.
    Barrett O, Abramovich E, Dreiher J, Novack V, Abu-Shakra M. Mortality due to sepsis in patients with systemic lupus erythematosus and rheumatoid arthritis. Isr Med Assoc J. 2014;16(10):634–5.PubMedGoogle Scholar
  23. 23.
    Teh CL, Wan SA, Ling GR. Severe infections in systemic lupus erythematosus: disease pattern and predictors of infection-related mortality. Clin Rheumatol. 2018;37(8):2081–6.CrossRefGoogle Scholar
  24. 24.
    Barrera-Vargas A, Gómez-Martín D, Merayo-Chalico J, Ponce-de-León A, Alcocer-Varela J. Risk factors for drug-resistant bloodstream infections in patients with systemic lupuserythematosus. J Rheumatol. 2014;41(7):1311–6.CrossRefGoogle Scholar
  25. 25.
    Arce-Salinas CA, Villaseñor-Ovies P. Systemic lupus erythematosus and infections. In: Almoallin H, editor. Systemic lupus erythematosus. Rijeka: Intech (Open Access Publisher; 2011. IBSN 978-935-307-868-7.Google Scholar
  26. 26.
    Hsieh SC, Tsai CY, Sun KH, et al. Decreased spontaneous and lipopolysaccharide stimulated production of interleukin 8 by polymorphonuclear neutrophils of patients with active systemic lupuserythematosus. Clin Exp Rheumatol. 1994;12:627–33.PubMedGoogle Scholar
  27. 27.
    Wu SA, Yeh KW, Lee WI, Yao TC, Kuo ML, Huang B, Huang JL. Impaired phagocytosis and susceptibility to infection in pediatric-onset systemic lupus erythematosus. Lupus. 2013;22(3):279–88.CrossRefGoogle Scholar
  28. 28.
    Bengtsson AA, Pettersson A, Wichert S, Gullstrand B, Hansson M, Hellmark T, et al. Low production of reactive oxygen species in granulocytes is associated with organ damage in systemic lupus erythematosus. Arthritis Res Ther. 2014;16:R120.CrossRefGoogle Scholar
  29. 29.
    Mitander A, Fei Y, Trysberg E, Mohammad M, Hu Z, Sakiniene E, Pullerits R, Jin T. Complement consumption in systemic lupus erythematosus leads to decreased opsonophagocytosis in vitro. J Rheumatol. 2018;45(11):1557–64.CrossRefGoogle Scholar
  30. 30.
    Mok MY, Ip WK, Lau CS, Lo Y, Wong WH, Lau YL. Mannose-binding lectin and susceptibility to infection in Chinese patients with systemic lupus erythematosus. J Rheumatol. 2007;34(6):1270–6.PubMedGoogle Scholar
  31. 31.
    Merayo-Chalico J, Gómez-Martín D, Piñeirúa-Menéndez A, Santana-De Anda K, Alcocer-Varela J. Lymphopenia as risk factor for development of severe infections in patients with systemic lupus erythematosus: a case-control study. QJM. 2013;106(5):451–7.  https://doi.org/10.1093/qjmed/hct046. Epub 2013 Mar 4.CrossRefPubMedGoogle Scholar
  32. 32.
    Carli L, Tani C, Vagnani S, Signorini V, Mosca M. Leukopenia, lymphopenia, and neutropenia in systemic lupus erythematosus: prevalence and clinical impact—a systematic literature review. Semin Arthritis Rheum. 2015;45:190–4.CrossRefGoogle Scholar
  33. 33.
    Jansen AFM, Raijmakers RPH, Keijmel SP, van der Molen RG, Vervoort GM, van der Meer JWM, van Deuren M, Bleeker-Rovers CP. Autoimmunity and B-cell dyscrasia in acute and chronic Q fever: a review of the literature. Eur J Intern Med. 2018;54:6–12.CrossRefGoogle Scholar
  34. 34.
    Dar SA, Janahi EM, Haque S, Akhter N, Jawed A, Wahid M, Ramachandran VG, Bhattacharya SN, Banerjee BD, Das S. Superantigen influence in conjunction with cytokine polymorphism potentiates autoimmunity in systemic lupus erythematosus patients. Immunol Res. 2016;64(4):1001–12.CrossRefGoogle Scholar
  35. 35.
    Jog NR, Chakravarty EF, Guthridge JM, James JA. Epstein Barr virus interleukin 10 suppresses anti-inflammatory phenotype in human monocytes. Front Immunol. 2018;9:2198.CrossRefGoogle Scholar
  36. 36.
    Crow MK, Olferiev M, Kirou KA. Type I interferons in autoimmune disease. Annu Rev Pathol. 2018.  https://doi.org/10.1146/annurev-pathol-020117-043952.CrossRefGoogle Scholar
  37. 37.
    Doonan J, Thomas D, Wong MH, Ramage HJ, Al-Riyami L, Lumb FE, et al. Failure of the anti-inflammatory parasitic worm product ES-62 to provide protection in mouse models of type i diabetes, multiple sclerosis, and inflammatory bowel disease. Molecules. 2018;23(10):2669.CrossRefGoogle Scholar
  38. 38.
    Katz-Agranov N, Zandman-Goddard G. Themicrobiome and systemic lupus erythematosus. Immunol Res. 2017;65(2):432–7.CrossRefGoogle Scholar
  39. 39.
    Hidalgo-Tenorio C, Jiménez-Alonso J, de Dios Luna J, Tallada M, Martínez-Brocal A, Sabio JM, Virgen de las Nieves Lupus Research Group. Urinary tract infections and lupus erythematosus. Ann Rheum Dis. 2004;63(4):431–7.CrossRefGoogle Scholar
  40. 40.
    Ruiz-Irastorza G, Olivares N, Ruiz-Arruza I, Martinez-Berriotxoa A, Egurbide M-V, Aguirre C. Predictors of major infections in systemic lupus erythematosus. Arthritis Res Ther. 2009;11:R109.CrossRefGoogle Scholar
  41. 41.
    Marcos M, Fernández C, Soriano A, et al. Epidemiology and clinical outcomes of bloodstream infections among lupus patients. Lupus. 2011;20:965–71.CrossRefGoogle Scholar
  42. 42.
    Jung JY, Suh CH. Infection in systemic lupus erythematosus, similarities, and differences with lupus flare. Korean J Intern Med. 2017;32(3):429–38.  https://doi.org/10.3904/kjim.2016.234.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Fei Y, Shi X, Gan F, Li X, Zhang W, Li M, Hou Y, Zhang X, Zhao Y, Zeng X, Zhang F. Death causes and pathogens analysis of systemic lupus erythematosus during the past 26 years. Clin Rheumatol. 2014;33:57–63.CrossRefGoogle Scholar
  44. 44.
    Pons-Estel BA, Catoggio LJ, Cardiel MH, Soriano ER, Gentiletti S, Villa AR, Abadi I, Caeiro F, Alvarellos A, Alarcón-Segovia D, Grupo Latinoamericano de Estudio del Lupus, et al. The GLADEL multinational Latin American prospective inception cohort of 1,214 patients with systemic lupus erythematosus: ethnic and disease heterogeneity among “Hispanics”. Medicine (Baltimore). 2004;83:1–17.CrossRefGoogle Scholar
  45. 45.
    Balbi GGM, Machado-Ribeiro F, Marques CDL, Signorelli F, Levy RA. The interplay between tuberculosis and systemic lupus erythematosus. Curr Opin Rheumatol. 2018;30(4):395–402.  https://doi.org/10.1097/BOR.0000000000000493.CrossRefPubMedGoogle Scholar
  46. 46.
    Erdozain JG, Ruiz-Irastorza G, Egurbide MV, Martinez-Berriotxoa A, Aguirre C. High risk of tuberculosis in systemic lupus erythematosus? Lupus. 2006;15:232–5.CrossRefGoogle Scholar
  47. 47.
    Lao M, Chen D, Wu X, Chen H, Qiu Q, Yang X, Zhan Z. Active tuberculosis in patients with systemic lupus erythematosus from Southern China: a retrospective study. Clin Rheumatol. 2019;38:535–43.  https://doi.org/10.1007/s10067-018-4303-z. CrossRefPubMedGoogle Scholar
  48. 48.
    Torres-González P, Romero-Díaz J, Cervera-Hernández ME, Ocampo-Torres M, Chaires-Garza LG, Lastiri-González EA, Atisha-Fregoso Y, Bobadilla-Del-Valle M, Ponce-de-León A, Sifuentes-Osornio J. Tuberculosis and systemic lupus erythematosus: a case-control study in Mexico City. Clin Rheumatol. 2018;37(8):2095–102.  https://doi.org/10.1007/s10067-018-4109-z. CrossRefPubMedGoogle Scholar
  49. 49.
    Poole BD, Scofield RH, Harley JB, James JA. Epstein-Barr virus and molecular mimicry in systemic lupus erythematosus. Autoimmunity. 2006;39(1):63–70.CrossRefGoogle Scholar
  50. 50.
    Cui J, Yan W, Xu S, Wang Q, Zhang W, Liu W, Ni A. Anti-Epstein-Barr virus antibodies in Beijing during 2013–2017: what we have found in the different patients. PLoS One. 2018;13(3):e0193171.  https://doi.org/10.1371/journal.pone.0193171.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Piroozmand A, Haddad Kashani H, Zamani B. Correlation between Epstein-Barr virus infection and disease activity of systemic lupus erythematosus: a cross-sectional study. Asian Pac J Cancer Prev. 2017;18(2):523–7.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Segal Y, Dahan S, Calabrò M, Kanduc D, Shoenfeld Y. HPV and systemic lupus erythematosus: a mosaic of potential crossreactions. Immunol Res. 2017;65(2):564–71.  https://doi.org/10.1007/s12026-016-8890-y.CrossRefPubMedGoogle Scholar
  53. 53.
    Silva KR, Bica BERG, Pimenta ES, Serafim RB, Abreu MM, Gonçalves JLS, Santana LS, Cabral-Castro MJ, Peralta JM, Cavalcanti MG. Fatal human case of zika and chikungunya virus co-infection with prolonged viremia and viruria. Diseases. 2018;6(3):pii: E53.  https://doi.org/10.3390/diseases6030053.CrossRefGoogle Scholar
  54. 54.
    Chen HS, Tsai WP, Leu HS, Ho HH, Liou LB. Invasive fungal infection in systemic lupus erythematosus: an analysis of 15 cases and a literature review. Rheumatology. 2007;46:539–44.CrossRefGoogle Scholar
  55. 55.
    Martínez-Martínez MU, Herrera-Van Oosdam D, Roman-Acosta S, Magaña-Aquino M, Baranda-Cándido L, Abud-Mendoza C. Invasive fungal infections in patients with systemic lupus erythematosus. J Rheumatol. 2012;39:1814–8.CrossRefGoogle Scholar
  56. 56.
    Santamaría-Alza Y, Sánchez-Bautista J, Fajardo-Rivero JF, Figueroa CL. Invasive fungal infections in Colombian patients with systemic lupus erythematosus. Lupus. 2018;27(7):1116–22.  https://doi.org/10.1177/0961203318763743.CrossRefPubMedGoogle Scholar
  57. 57.
    Ge HF, Liu XQ, Zhu YQ, Chen HQ, Chen GZ. Invasive pulmonary fungal infections in patients with connective tissue disease: a retrospective study from northern China. Braz J Med Biol Res. 2016;49(10):e5531.  https://doi.org/10.1590/1414-431X20165531.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Falagas ME, Manta KG, Betsi GI, Pappas G. Infection-related morbidity and mortality in patients with connective tissue diseases: a systematic review. Clin Rheumatol. 2007;26(5):663–70.CrossRefGoogle Scholar
  59. 59.
    Wolfe RM, Peacock JE Jr. Pneumocystis pneumonia and the rheumatologist: which patients are at risk and how can PCP be prevented? Curr Rheumatol Rep. 2017;19(6):35.  https://doi.org/10.1007/s11926-017-0664-6.CrossRefPubMedGoogle Scholar
  60. 60.
    Fang W, Chen M, Liu J, Hagen F, Ms A, Al-Hatmi, Zhang P, Guo Y, Boekhout T, Deng D, Xu J, Pan W, Liao W. Cryptococcal meningitis in systemic lupus erythematosus patients: pooled analysis and systematic review. Emerg Microbes Infect. 2016;5(9):e95.  https://doi.org/10.1038/emi.2016.93.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Larocca Skare T, Scherer Dagostini J, Zanardi PI, MitsunoriNisihara R. Infections and systemic lupus erythematosus. Einstein (Sao Paulo). 2016;14(1):47–51.  https://doi.org/10.1590/S1679-45082016AO3490.CrossRefGoogle Scholar
  62. 62.
    Senthilnayagam B, Kumar T, Sukumaran J, Jeya M, Rao RK. Automated measurement of immature granulocytes: performance characteristics and utility in routine clinical practice. Pathol Res Int. 2012;2012:483670.CrossRefGoogle Scholar
  63. 63.
    Ospina FE, Echeverri A, Zambrano D, Suso JP, Martínez-Blanco J, Cañas CA, Tobón GJ. Distinguishing infections vs flares in patients with systemic lupus erythematosus. Rheumatology (Oxford). 2017;56(suppl_1):i46–54.  https://doi.org/10.1093/rheumatology/kew340.CrossRefGoogle Scholar
  64. 64.
    Russwurm S, Vickers J, Meier-Hellmann A, Spangenberg P, Bredle D, Reinhart K, Lösche W. Platelet and leukocyte activation correlate with the severity of septic organ dysfunction. Shock. 2002;17:263–8.CrossRefGoogle Scholar
  65. 65.
    Caza T, Oaks Z, Perl A. Interplay of infections, autoimmunity, and immunosuppression in systemic lupus erythematosus. Int Rev Immunol. 2014;33(4):330–63.  https://doi.org/10.3109/08830185.2013.863305.CrossRefPubMedGoogle Scholar
  66. 66.
    Holvast B, Huckriede A, Wilschut J, et al. Safety and efficacy of influenza vaccination in systemic lupus erythematosus patients with quiescent disease. Ann Rheum Dis. 2006;65:913–8.CrossRefGoogle Scholar
  67. 67.
    Ruiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, Khamashta MA. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis. 2010;69:20–8.CrossRefGoogle Scholar
  68. 68.
    Lertnawapan R1, Totemchokchyakarn K, Nantiruj K, Janwityanujit S. Risk factors of Pneumocystis jeroveci pneumonia in patients with systemic lupus erythematosus. Rheumatol Int. 2009;29(5):491–6.  https://doi.org/10.1007/s00296-008-0721-6. 70.CrossRefPubMedGoogle Scholar
  69. 69.
    Vega LE, Espinoza LR. HIV infection and its effects on the development of autoimmune disorders. Pharmacol Res. 2018;129:1–9.  https://doi.org/10.1016/j.phrs.2018.01.005. Epub 2018 Jan 10.CrossRefPubMedGoogle Scholar
  70. 70.
    Modjinou DV, Osman JL, Haberman RH, Izmirly PM, Belmont HM. Systemic lupus erythematosus onset seven years after initiation of highly active antiretroviral therapy in a patient with human immunodeficiency virus: literature review and update on disease mechanism of this unusual presentation. J Clin Rheumatol. 2016;22(6):338–40.  https://doi.org/10.1097/RHU.0000000000000426.CrossRefPubMedGoogle Scholar
  71. 71.
    Drake WP, Byrd VM, Olsen NJ. Reactivation of systemic lupus erythematosus after initiation of highly active antiretroviral therapy for acquired immunodeficiency syndrome. J Clin Rheumatol. 2003;9:176–80.CrossRefGoogle Scholar
  72. 72.
    French MA. Immune reconstitution inflammatory syndrome: immune restoration disease 20 years on. Med J Aust. 2012;196:318–21.CrossRefGoogle Scholar
  73. 73.
    Liao HY, Tao CM, Su J. Concomitant systemic lupus erythematosus and HIV infection: a rare case report and literature review. Medicine (Baltimore). 2017;96:e9337.  https://doi.org/10.1097/MD.0000000000009337.CrossRefGoogle Scholar
  74. 74.
    Scowden EB, Schaffner W, Stone WJ. Overwhelming strongyloidiasis: an unappreciated opportunistic infection. Medicine (Baltimore). 1978;57:527–44.CrossRefGoogle Scholar
  75. 75.
    Rivera E, Maldonado N, Vélez-García E, Grillo AJ, Malaret G. Hyperinfection syndrome with Strongyloides stercoralis. Ann Intern Med. 1970;72:199–204.CrossRefGoogle Scholar
  76. 76.
    Mora CS, Segami MI, Hidalgo JA. Strongyloides stercoralis hyperinfection in systemic lupus erythematosus and the antiphospholipid syndrome. Semin Arthritis Rheum. 2006;36:135–43.CrossRefGoogle Scholar
  77. 77.
    Narata R, Wangkaew S, Kasitanon N, Louthrenoo W. Community-acquired pneumonia in Thai patients with systemic lupus erythematosus. Southeast Asian J Trop Med Public Health. 2007;38:528–36.PubMedGoogle Scholar
  78. 78.
    Hunter CJ, Petrosyan M, Asch M. Dissemination of Strongyloides stercoralis in a patient with systemic lupus erythematosus after initiation of albendazole: a case report. J Med Case Rep. 2008;14:156.CrossRefGoogle Scholar
  79. 79.
    Rojo-Marcos G, Cuadros-González J, González-Juárez MJ, Gómez-Ayerbe C. Strongyloides stercoralis hyperinfection syndrome in a Colombian patient receiving immunosuppressive treatment. Enferm Infecc Microbiol Clin. 2009;27:432–4.CrossRefGoogle Scholar
  80. 80.
    Mohanasundaram K, Rajasekaran K, Selvaraj J, Balasubramanian A. Successful treatment of Strongyloides stercoralis hyperinfection in a case of systemic lupus erythematosus – review of the literature regarding various treatment schedules. Trop Dr. 2012;42:223–5.CrossRefGoogle Scholar
  81. 81.
    Gonzalez-Ibarra F, Chevli P, Schachter L, Kaur M, Eivaz-Mohammadi S, Tashtoush B, Matta J, Syed AK, Marian V. Strongyloidiasis and diffuse alveolar hemorrhage in a patient with systemic lupus erythematosus. Case Rep Med. 2014;2014:278390.  https://doi.org/10.1155/2014/278390.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Yung EE, Lee CM, Boys J, Grabo DJ, Buxbaum JL, Chandrasoma PT. Strongyloidiasis hyperinfection in a patient with a history of systemic lupus erythematosus. Am J Trop Med Hyg. 2014;91:806–9.CrossRefGoogle Scholar
  83. 83.
    de Souza JN, Inês Ede J, Santiago M, Teixeira MC, Soares NM. Strongyloides stercoralis infection in patients with systemic lupus erythematosus: diagnosis and prevention of severe strongyloidiasis. Int J Rheum Dis. 2016;19:700–5.CrossRefGoogle Scholar
  84. 84.
    González-Echavarri C, Capdevila O, Espinosa G, Suárez S, Marín-Ballvé A, González-León R, Rodríguez-Carballeira M, Fonseca-Aizpuru E, Pinilla B, Pallarés L, Ruiz-Irastorza G, RELES, Autoimmune Diseases Study Group GEAS. Infections in newly diagnosed Spanish patients with systemic lupus erythematosus: data from the RELES cohort. Lupus. 2018;27:2253–61.  https://doi.org/10.1177/0961203318811598. CrossRefPubMedGoogle Scholar
  85. 85.
    Ocampo-Piraquive V, Nieto-Aristizábal I, Cañas CA, Tobón GJ. Mortality in systemic lupus erythematosus: causes, predictors and interventions. Expert Rev Clin Immunol. 2018;14:1043–53.  https://doi.org/10.1080/1744666X.2018.1538789.CrossRefPubMedGoogle Scholar
  86. 86.
    Ajmani S, Singh H, Chaturvedi S, Mishra R, Rai MK, Jain A, Misra DP, Agarwal V. Utility of neutrophil CD64 and serum TREM-1 in distinguishing bacterial infection from disease flare in SLE and ANCA-associated vasculitis. Clin Rheumatol. 2018.  https://doi.org/10.1007/s10067-018-4334-5.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luis J. Jara
    • 1
  • Gabriela Medina
    • 2
  • María del Pilar Cruz-Domínguez
    • 3
  • Michel Augusto Martinez Bencomo
    • 4
  • Josehp Lira Tecpa
    • 5
  • Miguel Angel Saavedra
    • 6
  1. 1.Education and Research, Hospital de Especialidades, Centro Médico La Raza, Instituto Mexicano del Seguro Social, Universidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Clinical Research Unit, Hospital de Especialidades, Centro Medico La RazaMexico CityMexico
  3. 3.Health Research Division, Hospital de Especialidades, Centro Médico La RazaMexico CityMexico
  4. 4.Research DivisionHospital de Especialidades Centro Médico Nacional La Raza, IMSS, Universidad Nacional Autónoma de MéxicoMexico CityMexico
  5. 5.Clinical Research Unit, Hospital de Especialidades “Dr. Antonio Fraga Mouret” Centro Medico La Raza, Instituto Mexicano del Seguro Social, Universidad Popular Autónoma del Estado de Puebla (UPAEP)Mexico CityMexico
  6. 6.Department of Rheumatology, Hospital de Especialidades, Centro Médico La Raza, Instituto Mexicano del Seguro Social, Universidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations