Advertisement

HTLV-1: A View from the Rheumatologist

  • Alejandro Fuentes
  • Paula I. Burgos
Chapter

Abstract

The human T-cell lymphotropic virus type 1 (HTLV-1) is part of the family of retroviruses. Its prevalence is higher in Japan, the Caribbean basin, and some parts of Africa, South America, and the Middle East. The transmission is dependent on the transfusion of non-leukocyte depleted contaminated blood products, vertical transmission (especially by breastfeeding), and sexual intercourse mainly from male to female. The majority of patients are asymptomatic carriers, but 4–9% of patients can be complicated by the appearance of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) or adult T-cell leukemia/lymphoma (ATLL). Also, there is an increasing amount of literature that relates HTLV-1 infection with other inflammatory disorders such as uveitis, arthritis, Sjögren’s syndrome, dermatitis, thyroiditis, bronchiolitis-alveolitis-pneumonitis, myositis, nephritis, and hepatitis – cholangitis. However, there is no exact data regarding the prevalence or incidence of these manifestations or specific treatment for them.

Keywords

HTLV-1 HAM/TSP Inflammatory diseases Uveitis Arthritis Sjögren’s syndrome Infective dermatitis Pulmonary manifestations Myositis 

References

  1. 1.
    Hlela C, Shepperd S, Khumalo NP, Taylor GP. The prevalence of human T-cell lymphotropic virus type 1 in the general population is unknown. AIDS Rev [Internet]. 2009;11(4):205–14.. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19940947.Google Scholar
  2. 2.
    Francki RIB, Fauquet CM, Knudson DL, Brown F. Classification and Nomenclature of viruses: fifth report of the international committee on taxonomy of viruses. Virology division of the international union of microbiological societies [Internet]. Vienna: Springer; 2012. (Archives of Virology. Supplementa).Google Scholar
  3. 3.
    Gallo RC. History of the discoveries of the first human retroviruses: HTLV-1 and HTLV-2. Oncogene. 2005;24(39):5926–30.PubMedCrossRefGoogle Scholar
  4. 4.
    Gessain A, Cassar O. Epidemiological aspects and world distribution of HTLV-1 infection. Front Microbiol. 2012;3:388.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Gonçalves DU, Proietti FA, Ribas JGR, Araújo MG, Pinheiro SR, Guedes AC, et al. Epidemiology, treatment, and prevention of human T-cell leukemia virus type 1-associated diseases. Clin Microbiol Rev. 2010;23(3):577–89.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Martin F, Taylor GP, Jacobson S. Inflammatory manifestations of HTLV-1 and their therapeutic options. Expert Rev Clin Immunol. 2014;10(11):1531–46.PubMedCrossRefGoogle Scholar
  7. 7.
    Bangham CRM, Araujo A, Yamano Y, Taylor GP. HTLV-1-associated myelopathy/tropical spastic paraparesis. Nat Rev Dis Prim. 2015;1:15012.PubMedCrossRefGoogle Scholar
  8. 8.
    Hewitt PE, Davison K, Howell DR, Taylor GP. Human T-lymphotropic virus lookback in NHS Blood and Transplant (England) reveals the efficacy of leukoreduction. Transfusion. 2013;53(10):2168–75.PubMedGoogle Scholar
  9. 9.
    Chen YC, Wang CH, Su IJ, Hu CY, Chou MJ, Lee TH, et al. Infection of human T-cell leukemia virus type I and development of human T-cell leukemia lymphoma in patients with hematologic neoplasms: a possible linkage to blood transfusion. Blood. 1989;74(1):388–94.PubMedGoogle Scholar
  10. 10.
    Armstrong MJ, Corbett C, Rowe IA, Taylor GP, Neuberger JM. HTLV-1 in solid-organ transplantation: current challenges and future management strategies. Transplantation. 2012;94(11):1075–84.PubMedCrossRefGoogle Scholar
  11. 11.
    Glowacka I, Korn K, Potthoff SA, Lehmann U, Kreipe HH, Ivens K, et al. Delayed seroconversion and rapid onset of lymphoproliferative disease after transmission of human t-cell lymphotropic virus type 1 from a multiorgan donor. Clin Infect Dis. 2013;57(10):1417–24.PubMedCrossRefGoogle Scholar
  12. 12.
    Dourado I, Andrade T, Carpenter CL, Galvão-Castro B. Risk factors for human T-cell lymphotropic virus type I among injecting drug users in Northeast Brazil: possibly greater efficiency of male to female transmission. Mem Inst Oswaldo Cruz. 1999;94(1):13–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Poljak M, Bednarik J, Rednak K, Seme K, Kristancic L, Celan-Lucu B. Seroprevalence of human T-cell leukaemia/lymphoma virus type I (HTLV-I) in pregnant women, patients attending venereological outpatient services and intravenous drug users from Slovenia. Folia Biol (Praha) [Internet]. 1998;44(1):23–5.. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10730871.Google Scholar
  14. 14.
    de Thé G, Bomford R. An HTLV-I vaccine: why, how, for whom? AIDS Res Hum Retroviruses [Internet]. 1993;9(5):381–6.. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8318266.CrossRefGoogle Scholar
  15. 15.
    Ando Y, Matsumoto Y, Nakano S, Saito K, Kakimoto K, Tanigawa T, et al. Long-term follow-up study of vertical HTLV-I infection in children breastfed by seropositive mothers. J Infect [Internet]. 2003;46(3):177–9.. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12643867.CrossRefGoogle Scholar
  16. 16.
    Murphy EL, Figueroa JP, Gibbs WN, Holding-Cobham M, Cranston B, Malley K, et al. Human T-lymphotropic virus type I (HTLV-I) seroprevalence in Jamaica. I. Demographic determinants. Am J Epidemiol [Internet]. 1991;133(11):1114–24.. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2035515.CrossRefGoogle Scholar
  17. 17.
    Dumas M, Houinato D, Verdier M, Zohoun T, Josse R, Bonis J, et al. Seroepidemiology of human T-cell lymphotropic virus type I/II in Benin (West Africa). AIDS Res Hum Retroviruses [Internet]. 1991;7(5):447–51.. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1873079 CrossRefGoogle Scholar
  18. 18.
    Maloney EM, Ramirez H, Levin A, Blattner WA. A survey of the human T-cell lymphotropic virus type I (HTLV-I) in south-western Colombia. Int J Cancer [Internet]. 1989;44(3):419–23.. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2777408.CrossRefGoogle Scholar
  19. 19.
    Galvão-Castro B, Loures L, Rodriques LG, Sereno A, Ferreira Júnior OC, Franco LG, et al. Distribution of human T-lymphotropic virus type I among blood donors: a nationwide Brazilian study. Transfusion [Internet]. 1997;37(2):242–3.. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9051104.CrossRefGoogle Scholar
  20. 20.
    Vasquez P, Sanchez G, Volante C, Vera L, Ramirez E, Soto G, et al. Human T-lymphotropic virus type I: new risk for Chilean population. Blood [Internet]. 1991;78(3):850–1.. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1859897.Google Scholar
  21. 21.
    Bastian I, Hinuma Y, Doherty RR. HTLV-I among Northern Territory aborigines. Med J Aust [Internet]. 1993;159(1):12–6.. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8316104.CrossRefGoogle Scholar
  22. 22.
    Koga Y, Iwanaga M, Soda M, Inokuchi N, Sasaki D, Hasegawa H, et al. Trends in HTLV-1 prevalence and incidence of adult T-cell leukemia/lymphoma in Nagasaki, Japan. J Med Virol [Internet]. 2010;82(4):668–74.. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20166187.CrossRefGoogle Scholar
  23. 23.
    Kaplan JE, Osame M, Kubota H, Igata A, Nishitani H, Maeda Y, et al. The risk of development of HTLV-I-associated myelopathy/tropical spastic paraparesis among persons infected with HTLV-I. J Acquir Immune Defic Syndr [Internet]. 1990;3(11):1096–101.. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2213510.Google Scholar
  24. 24.
    Mochizuki M, Ono A, Ikeda E, Hikita N, Watanabe T, Yamaguchi K, et al. HTLV-I uveitis. J Acquir Immune Defic Syndr Hum Retrovirol [Internet]. 1996;13(Suppl 1):S50–6.. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8797704.CrossRefGoogle Scholar
  25. 25.
    Pinheiro SRAA, Martins-Filho OA, Ribas JGR, Catalan-Soares BC, Proietti FA, Namen-Lopes S, et al. Immunologic markers, uveitis, and keratoconjunctivitis sicca associated with human T-cell lymphotropic virus type 1. Am J Ophthalmol [Internet]. 2006;142(5):811–5.. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16989761.CrossRefGoogle Scholar
  26. 26.
    Lee R, Schwartz RA. Human T-lymphotropic virus type 1-associated infective dermatitis: a comprehensive review. J Am Acad Dermatol [Internet]. 2011;64(1):152–60.. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20691499.CrossRefGoogle Scholar
  27. 27.
    Pinheiro SR, Lana-Peixoto MA, Proietti AB, Oréfice F, Lima-Martins MV, Proietti FA. HTLV-I-associated uveitis, myelopathy, rheumatoid arthritis and Sjögren’s syndrome. Arq Neuropsiquiatr [Internet]. 1995;53(4):777–81.. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8729772.CrossRefGoogle Scholar
  28. 28.
    Matsuda T, Tomita M, Uchihara J-N, Okudaira T, Ohshiro K, Tomoyose T, et al. Human T-cell leukemia virus type I-infected patients with Hashimoto’s thyroiditis and Graves’ disease. J Clin Endocrinol Metab [Internet]. 2005;90(10):5704–10.. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16076945.CrossRefGoogle Scholar
  29. 29.
    Gabet AS, Mortreux F, Talarmin A, Plumelle Y, Leclercq I, Leroy A, et al. High circulating proviral load with oligoclonal expansion of HTLV-1 bearing T cells in HTLV-1 carriers with strongyloidiasis. Oncogene [Internet]. 2000;19(43):4954–60.. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11042682.CrossRefGoogle Scholar
  30. 30.
    Boxus M, Willems L. Mechanisms of HTLV-1 persistence and transformation. Br J Cancer [Internet]. 2009;101(9):1497–501. Available from: http://www.nature.com/articles/6605345.CrossRefGoogle Scholar
  31. 31.
    Higuchi M, Fujii M. Distinct functions of HTLV-1 Tax1 from HTLV-2 Tax2 contribute key roles to viral pathogenesis. Retrovirology [Internet]. 2009;6:117. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20017952.CrossRefGoogle Scholar
  32. 32.
    Quaresma JAS, Yoshikawa GT, Koyama RVL, Dias GAS, Fujihara S, Fuzii HT. HTLV-1, immune response and autoimmunity. Viruses. 2015;8(1):2–11.CrossRefGoogle Scholar
  33. 33.
    Kibler KV, Jeang KT. CREB/ATF-dependent repression of cyclin a by human T-cell leukemia virus type 1 Tax protein. J Virol [Internet]. 2001;75(5):2161–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11160720.CrossRefGoogle Scholar
  34. 34.
    Matsumoto J, Ohshima T, Isono O, Shimotohno K. HTLV-1 HBZ suppresses AP-1 activity by impairing both the DNA-binding ability and the stability of c-Jun protein. Oncogene [Internet]. 2005;24(6):1001–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15592508.CrossRefGoogle Scholar
  35. 35.
    Cheng H, Ren T, Sun S. New insight into the oncogenic mechanism of the retroviral oncoprotein Tax. Protein Cell [Internet]. 2012;3(8):581–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22865346.CrossRefGoogle Scholar
  36. 36.
    Azran I, Schavinsky-Khrapunsky Y, Aboud M. Role of Tax protein in human T-cell leukemia virus type-I leukemogenicity. Retrovirology [Internet]. 2004;1:20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15310405.CrossRefGoogle Scholar
  37. 37.
    Satou Y, Yasunaga J, Yoshida M, Matsuoka M. HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T-cell leukemia cells. Proc Natl Acad Sci U S A [Internet]. 2006;103(3):720–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16407133.CrossRefGoogle Scholar
  38. 38.
    Matsuoka M. Human T-cell leukemia virus type I (HTLV-I) infection and the onset of adult T-cell leukemia (ATL). Retrovirology [Internet]. 2005;2:27. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15854229.CrossRefGoogle Scholar
  39. 39.
    Satou Y, Matsuoka M. HTLV-1 and the host immune system: how the virus disrupts immune regulation, leading to HTLV-1-associated diseases. J Clin Exp Hematop [Internet]. 2010;50(1):1–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20505271.CrossRefGoogle Scholar
  40. 40.
    Hieshima K, Nagakubo D, Nakayama T, Shirakawa A-K, Jin Z, Yoshie O. Tax-inducible production of CC chemokine ligand 22 by human T-cell leukemia virus type 1 (HTLV-1)-infected T cells promotes preferential transmission of HTLV-1 to CCR4-expressing CD4+ T cells. J Immunol [Internet]. 2008;180(2):931–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18178833.CrossRefGoogle Scholar
  41. 41.
    Araya N, Sato T, Ando H, Tomaru U, Yoshida M, Coler-Reilly A, et al. HTLV-1 induces a Th1-like state in CD4+CCR4+ T cells. J Clin Invest [Internet]. 2014;124(8):3431–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24960164.CrossRefGoogle Scholar
  42. 42.
    Sato T, Coler-Reilly ALG, Yagishita N, Araya N, Inoue E, Furuta R, et al. Mogamulizumab (anti-CCR4) in HTLV-1-associated myelopathy. N Engl J Med [Internet]. 2018;378(6):529–38. Available from: http://www.nejm.org/doi/10.1056/NEJMoa1704827.CrossRefGoogle Scholar
  43. 43.
    Best I, López G, Verdonck K, González E, Tipismana M, Gotuzzo E, et al. IFN-gamma production in response to Tax 161-233, and frequency of CD4+ Foxp3+ and Lin HLA-DRhigh CD123+ cells, discriminate HAM/TSP patients from asymptomatic HTLV-1 carriers in a Peruvian population. Immunology [Internet]. 2009;128(1 Suppl):e777–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19740339.CrossRefGoogle Scholar
  44. 44.
    Goncalves DU, Proietti FA, Barbosa-Stancioli EF, Martins ML, Ribas JG, Martins-Filho OA, et al. HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) inflammatory network. Inflamm Allergy Drug Targets [Internet]. 2008;7(2):98–107. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18691139.CrossRefGoogle Scholar
  45. 45.
    Jia H, Qi H, Gong Z, Yang S, Ren J, Liu Y, et al. The expression of FOXP3 and its role in human cancers. Biochim Biophys Acta Rev Cancer [Internet]. 2019;1871(1):170–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30630091.CrossRefGoogle Scholar
  46. 46.
    Bacchetta R, Gambineri E, Roncarolo M-G. Role of regulatory T cells and FOXP3 in human diseases. J Allergy Clin Immunol [Internet]. 2007;120(2):227–35; quiz 236–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17666212.CrossRefGoogle Scholar
  47. 47.
    Toulza F, Heaps A, Tanaka Y, Taylor GP, Bangham CRM. High frequency of CD4+ FoxP3+ cells in HTLV-1 infection: inverse correlation with HTLV-1-specific CTL response. Blood [Internet]. 2008;111(10):5047–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18094326.CrossRefGoogle Scholar
  48. 48.
    Goon PKC, Biancardi A, Fast N, Igakura T, Hanon E, Mosley AJ, et al. Human T-cell lymphotropic virus (HTLV) type-1-specific CD8+ T cells: frequency and immunodominance hierarchy. J Infect Dis [Internet]. 2004;189(12):2294–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15181578.CrossRefGoogle Scholar
  49. 49.
    Jacobson S. Immunopathogenesis of human T-cell lymphotropic virus type I-associated neurologic disease. J Infect Dis [Internet]. 2002;186 Suppl:S187–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12424696.CrossRefGoogle Scholar
  50. 50.
    Jeffery KJ, Usuku K, Hall SE, Matsumoto W, Taylor GP, Procter J, et al. HLA alleles determine human T-lymphotropic virus-I (HTLV-I) proviral load and the risk of HTLV-I-associated myelopathy. Proc Natl Acad Sci U S A [Internet]. 1999;96(7):3848–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10097126.CrossRefGoogle Scholar
  51. 51.
    Jeffery KJ, Siddiqui AA, Bunce M, Lloyd AL, Vine AM, Witkover AD, et al. The influence of HLA class I alleles and heterozygosity on the outcome of human T-cell lymphotropic virus type I infection. J Immunol [Internet]. 2000;165(12):7278–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11120862.CrossRefGoogle Scholar
  52. 52.
    Osame M. Pathological mechanisms of human T-cell lymphotropic virus type I-associated myelopathy (HAM/TSP). J Neurovirol [Internet]. 2002;8(5):359–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12402162.CrossRefGoogle Scholar
  53. 53.
    Nagai M, Yamano Y, Brennan MB, Mora CA, Jacobson S. Increased HTLV-I proviral load and preferential expansion of HTLV-I Tax-specific CD8+ T cells in cerebrospinal fluid from patients with HAM/TSP. Ann Neurol [Internet]. 2001;50(6):807–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11761481.CrossRefGoogle Scholar
  54. 54.
    Ando H, Sato T, Tomaru U, Yoshida M, Utsunomiya A, Yamauchi J, et al. Positive feedback loop via astrocytes causes chronic inflammation in virus-associated myelopathy. Brain [Internet]. 2013;136(Pt 9):2876–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23892452.CrossRefGoogle Scholar
  55. 55.
    Yamano Y, Sato T. Clinical pathophysiology of human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis. Front Microbiol. 2012;3(NOV):1–10.Google Scholar
  56. 56.
    Vine AM, Witkover AD, Lloyd AL, Jeffery KJM, Siddiqui A, Marshall SEF, et al. Polygenic control of human T-lymphotropic virus type I (HTLV-I) provirus load and the risk of HTLV-I-associated myelopathy/tropical spastic paraparesis. J Infect Dis [Internet]. 2002;186(7):932–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12232833.CrossRefGoogle Scholar
  57. 57.
    Nagai M, Usuku K, Matsumoto W, Kodama D, Takenouchi N, Moritoyo T, et al. Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J Neurovirol [Internet]. 1998;4(6):586–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10065900.CrossRefGoogle Scholar
  58. 58.
    Olindo S, Lézin A, Cabre P, Merle H, Saint-Vil M, Edimonana Kaptue M, et al. HTLV-1 proviral load in peripheral blood mononuclear cells quantified in 100 HAM/TSP patients: a marker of disease progression. J Neurol Sci [Internet]. 2005;237(1–2):53–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15972218.CrossRefGoogle Scholar
  59. 59.
    Iwasaki Y. Human T-cell leukemia virus type I infection and chronic myelopathy. Brain Pathol [Internet]. 1993;3(1):1–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8269079.CrossRefGoogle Scholar
  60. 60.
    Aye MM, Matsuoka E, Moritoyo T, Umehara F, Suehara M, Hokezu Y, et al. Histopathological analysis of four autopsy cases of HTLV-I-associated myelopathy/tropical spastic paraparesis: inflammatory changes occur simultaneously in the entire central nervous system. Acta Neuropathol [Internet]. 2000;100(3):245–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10965793.CrossRefGoogle Scholar
  61. 61.
    Shakudo M, Inoue Y, Tsutada T. HTLV-I-associated myelopathy: acute progression and atypical MR findings. AJNR Am J Neuroradiol [Internet]. 1999;20(8):1417–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10512222.Google Scholar
  62. 62.
    Gadelha SR, Junior Alcântara LC, Costa GC, Acosta AX, Rios D, Kashima S, et al. Correlation between polymorphisms at interleukin-6 but not at interleukin-10 promoter and the risk of human T-lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis in Brazilian individuals. J Med Virol [Internet]. 2008;80(12):2141–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19040291.CrossRefGoogle Scholar
  63. 63.
    Treviño A, Vicario JL, Lopez M, Parra P, Benito R, Ortiz de Lejarazu R, et al. Association between HLA alleles and HAM/TSP in individuals infected with HTLV-1. J Neurol [Internet]. 2013;260(10):2551–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23835632.CrossRefGoogle Scholar
  64. 64.
    Maloney EM, Cleghorn FR, Morgan OS, Rodgers-Johnson P, Cranston B, Jack N, et al. Incidence of HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in Jamaica and Trinidad. J Acquir Immune Defic Syndr Hum Retrovirol [Internet]. 1998;17(2):167–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9473019.CrossRefGoogle Scholar
  65. 65.
    Hisada M, Stuver SO, Okayama A, Li H-C, Sawada T, Hanchard B, et al. Persistent paradox of natural history of human T-lymphotropic virus type I: parallel analyses of Japanese and Jamaican carriers. J Infect Dis [Internet]. 2004;190(9):1605–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15478065.CrossRefGoogle Scholar
  66. 66.
    Kaplan JE, Litchfield B, Rouault C, Lairmore MD, Luo CC, Williams L, et al. HTLV-I-associated myelopathy associated with blood transfusion in the United States: epidemiologic and molecular evidence linking donor and recipient. Neurology [Internet]. 1991;41(2 (Pt 1)):192–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1992361.CrossRefGoogle Scholar
  67. 67.
    Emmanouilides CE, Territo M. HTLV-I-associated myelopathy following allogeneic bone marrow transplantation. Bone Marrow Transplant [Internet]. 1999;24(2):205–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10455351.CrossRefGoogle Scholar
  68. 68.
    Toro C, Rodés B, Poveda E, Soriano V. Rapid development of subacute myelopathy in three organ transplant recipients after transmission of human T-cell lymphotropic virus type I from a single donor. Transplantation [Internet]. 2003;75(1):102–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12544880.CrossRefGoogle Scholar
  69. 69.
    Ramos-Remus C, Duran-Barragan S, Castillo-Ortiz JD. Beyond the joints: neurological involvement in rheumatoid arthritis. Clin Rheumatol. 2012;31(1):1–12.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Oliveira P, Castro NM, Muniz AL, Tanajura D, Brandão JC, Porto AF, et al. Prevalence of erectile dysfunction in HTLV-1-infected patients and its association with overactive bladder. Urology [Internet]. 2010;75(5):1100–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20189229.CrossRefGoogle Scholar
  71. 71.
    Nakagawa M, Izumo S, Ijichi S, Kubota H, Arimura K, Kawabata M, et al. HTLV-I-associated myelopathy: analysis of 213 patients based on clinical features and laboratory findings. J Neurovirol [Internet]. 1995;1(1):50–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9222342.CrossRefGoogle Scholar
  72. 72.
    Gotuzzo E, Cabrera J, Deza L, Verdonck K, Vandamme A-M, Cairampoma R, et al. Clinical characteristics of patients in Peru with human T-cell lymphotropic virus type 1-associated tropical spastic paraparesis. Clin Infect Dis [Internet]. 2004;39(7):939–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15472843.CrossRefGoogle Scholar
  73. 73.
    Olindo S, Cabre P, Lézin A, Merle H, Saint-Vil M, Signate A, et al. Natural history of human T-lymphotropic virus 1-associated myelopathy: a 14-year follow-up study. Arch Neurol [Internet]. 2006;63(11):1560–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17101824.CrossRefGoogle Scholar
  74. 74.
    Lezin A, Olindo S, Oliere S, Varrin-Doyer M, Marlin R, Cabre P, et al. Human T-lymphotropic virus type I (HTLV-I) proviral load in cerebrospinal fluid: a new criterion for the diagnosis of HTLV-I-associated myelopathy/tropical spastic paraparesis? J Infect Dis [Internet]. 2005;191(11):1830–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15871115.CrossRefGoogle Scholar
  75. 75.
    Kirk PD, Witkover A, Courtney A, Lewin AM, Wait R, Stumpf MP, et al. Plasma proteome analysis in HTLV-1-associated myelopathy/tropical spastic paraparesis. Retrovirology [Internet]. 2011;8(1):81. Available from: http://retrovirology.biomedcentral.com/articles/10.1186/1742-4690-8-81.CrossRefGoogle Scholar
  76. 76.
    Morgan DJ, Caskey MF, Abbehusen C, Oliveira-Filho J, Araujo C, Porto AF, et al. Brain magnetic resonance imaging white matter lesions are frequent in HTLV-I carriers and do not discriminate from HAM/TSP. AIDS Res Hum Retroviruses [Internet]. 2007;23(12):1499–504. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18160007.CrossRefGoogle Scholar
  77. 77.
    Griffith C, Bagnato F, Gupta S, Calabrese A, Oh U, Chiu A, et al. Brain volume measurements in patients with human T-cell lymphotropic virus-1-associated tropical spastic paraparesis. J Neurovirol [Internet]. 2006;12(5):349–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17065127.CrossRefGoogle Scholar
  78. 78.
    Yukitake M, Takase Y, Nanri Y, Kosugi M, Eriguchi M, Yakushiji Y, et al. Incidence and clinical significances of human T-cell lymphotropic virus type I-associated myelopathy with T2 hyperintensity on spinal magnetic resonance images. Intern Med [Internet]. 2008;47(21):1881–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18981631.CrossRefGoogle Scholar
  79. 79.
    De Castro-Costa CM, Araújo AQC, Barreto MM, Takayanagui OM, Sohler MP, ELM DS, et al. Proposal for diagnostic criteria of tropical spastic paraparesis/HTLV-I-associated myelopathy (TSP/HAM). AIDS Res Hum Retroviruses [Internet]. 2006;22(10):931–5. Available from: http://www.liebertonline.com/doi/abs/10.1089/aid.2006.22.931.CrossRefGoogle Scholar
  80. 80.
    Ertzgaard P, Campo C, Calabrese A. Efficacy and safety of oral baclofen in the management of spasticity: a rationale for intrathecal baclofen. J Rehabil Med [Internet]. 2017;49(3):193–203. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28233010.CrossRefGoogle Scholar
  81. 81.
    Lin J, Chay W. Special considerations in assessing and treating spasticity in spinal cord injury. Phys Med Rehabil Clin N Am [Internet]. 2018;29(3):445–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30626507.CrossRefGoogle Scholar
  82. 82.
    Moulin D, Boulanger A, Clark AJ, Clarke H, Dao T, Finley GA, et al. Pharmacological management of chronic neuropathic pain: revised consensus statement from the Canadian Pain Society. Pain Res Manag [Internet]. 2014;19(6):328–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25479151.CrossRefGoogle Scholar
  83. 83.
    de BVLS, Correa R, Vincent MB. Proprioceptive neuromuscular facilitation in HTLV-I-associated myelopathy/tropical spastic paraparesis. Rev Soc Bras Med Trop [Internet]. 2014;47(1):24–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24603733.CrossRefGoogle Scholar
  84. 84.
    Nakagawa M, Nakahara K, Maruyama Y, Kawabata M, Higuchi I, Kubota H, et al. Therapeutic trials in 200 patients with HTLV-I-associated myelopathy/ tropical spastic paraparesis. J Neurovirol [Internet]. 1996;2(5):345–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8912211.CrossRefGoogle Scholar
  85. 85.
    Croda MG, de Oliveira ACP, Vergara MPP, Bonasser F, Smid J, Duarte AJ da S, et al. Corticosteroid therapy in TSP/HAM patients: the results from a 10-year open cohort. J Neurol Sci [Internet]. 2008;269(1–2):133–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18258264.CrossRefGoogle Scholar
  86. 86.
    Duncan J, Rudge P. Methylprednisolone therapy in tropical spastic paraparesis. J Neurol Neurosurg Psychiatry [Internet]. 1990;53(2):173–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2313308.CrossRefGoogle Scholar
  87. 87.
    Taylor GP, Goon P, Furukawa Y, Green H, Barfield A, Mosley A, et al. Zidovudine plus lamivudine in Human T-Lymphotropic Virus type-I-associated myelopathy: a randomized trial. Retrovirology [Internet]. 2006;3:63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16984654.CrossRefGoogle Scholar
  88. 88.
    Izumo S, Goto I, Itoyama Y, Okajima T, Watanabe S, Kuroda Y, et al. Interferon-alpha is effective in HTLV-I-associated myelopathy: a multicenter, randomized, double-blind, controlled trial. Neurology [Internet]. 1996;46(4):1016–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8780082.CrossRefGoogle Scholar
  89. 89.
    Ahmed S, Adonis A, Hilburn S, Demontis M, Fedina A, Haddow J, et al. Treatment of patients with HTLV-1-associated myelopathy with methotrexate. Retrovirology [Internet]. 2014;11(Suppl 1):P33. Available from: http://retrovirology.biomedcentral.com/articles/10.1186/1742-4690-11-S1-P33.CrossRefGoogle Scholar
  90. 90.
    Martin F, Castro H, Gabriel C, Adonis A, Fedina A, Harrison L, et al. Ciclosporin A proof of concept study in patients with active, progressive HTLV-1-associated myelopathy/tropical spastic paraparesis. PLoS Negl Trop Dis [Internet]. 2012;6(6):e1675. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22720101.CrossRefGoogle Scholar
  91. 91.
    Oh U, Yamano Y, Mora CA, Ohayon J, Bagnato F, Butman JA, et al. Interferon-beta1a therapy in human T-lymphotropic virus type I-associated neurologic disease. Ann Neurol [Internet]. 2005;57(4):526–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15786444.CrossRefGoogle Scholar
  92. 92.
    Shirabe S, Nakamura T, Tsujino A, Nishiura Y, Furuya T, Goto H, et al. Successful application of pentoxifylline in the treatment of HTLV-I-associated myelopathy. J Neurol Sci [Internet]. 1997;151(1):97–101. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9335018.CrossRefGoogle Scholar
  93. 93.
    Lehky TJ, Fox CH, Koenig S, Levin MC, Flerlage N, Izumo S, et al. Detection of human T-lymphotropic virus type I (HTLV-I) tax RNA in the central nervous system of HTLV-I-associated myelopathy/tropical spastic paraparesis patients by in situ hybridization. Ann Neurol [Internet]. 1995;37(2):167–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7847858.CrossRefGoogle Scholar
  94. 94.
    Franzoi AC, Araújo AQC. Disability profile of patients with HTLV-I-associated myelopathy/tropical spastic paraparesis using the Functional Independence Measure (FIM). Spinal Cord [Internet]. 2005;43(4):236–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15520834.CrossRefGoogle Scholar
  95. 95.
    Diniz MSC, Feldner PC, Castro RA, Sartori MGF, Girão MJBC. Impact of HTLV-I in quality of life and urogynecologic parameters of women with urinary incontinence. Eur J Obstet Gynecol Reprod Biol [Internet]. 2009;147(2):230–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19733955.CrossRefGoogle Scholar
  96. 96.
    Andrade R, Tanajura D, Santana D, dos SD, Carvalho EM. Association between urinary symptoms and quality of life in HTLV-1 infected subjects without myelopathy. Int Braz J Uro [Internet]. 2013;39(6):861–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24456778.CrossRefGoogle Scholar
  97. 97.
    Castro NM, Rodrigues W, Freitas DM, Muniz A, Oliveira P, Carvalho EM. Urinary symptoms associated with human T-cell lymphotropic virus type I infection: evidence of urinary manifestations in large group of HTLV-I carriers. Urology [Internet]. 2007;69(5):813–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17482910.CrossRefGoogle Scholar
  98. 98.
    Netto EC, Brites C. Characteristics of chronic pain and its impact on quality of life of patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Clin J Pain [Internet]. 2011;27(2):131–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20842011.CrossRefGoogle Scholar
  99. 99.
    Sweet RD. A pattern of eczema in Jamaica. Br J Dermatol [Internet]. 1966;78(2):93–100. Available from: http://www.ncbi.nlm.nih.gov/pubmed/5907441.CrossRefGoogle Scholar
  100. 100.
    LaGrenade L, Hanchard B, Fletcher V, Cranston B, Blattner W. Infective dermatitis of Jamaican children: a marker for HTLV-I infection. Lancet (London, England) [Internet]. 1990;336(8727):1345–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1978165.CrossRefGoogle Scholar
  101. 101.
    La Grenade L, Manns A, Fletcher V, Derm D, Carberry C, Hanchard B, et al. Clinical, pathologic, and immunologic features of human T-lymphotropic virus type I-associated infective dermatitis in children. Arch Dermatol [Internet]. 1998;134(4):439–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9554295.CrossRefGoogle Scholar
  102. 102.
    Trope BM, Lenzi MER. Infective dermatitis. Clin Dermatol [Internet]. 2009;27(3):281–4. Available from:  https://doi.org/10.1016/j.clindermatol.2008.10.007 CrossRefGoogle Scholar
  103. 103.
    de Oliveira Mde FSP, Fatal PL, Primo JRL, da Silva JLS, Batista Eda S, Farré L, et al. Infective dermatitis associated with human T-cell lymphotropic virus type 1: evaluation of 42 cases observed in Bahia, Brazil. Clin Infect Dis [Internet]. 2012;54(12):1714–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22467669.CrossRefGoogle Scholar
  104. 104.
    LaGrenade L, Sonoda S, Miller W, Pate E, Rodgers-Johnson P, Hanchard B, et al. HLA DRB1∗DQB1∗ haplotype in HTLV-I-associated familial infective dermatitis may predict development of HTLV-I-associated myelopathy/tropical spastic paraparesis. Am J Med Genet [Internet]. 1996;61(1):37–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8741915.CrossRefGoogle Scholar
  105. 105.
    Nascimento MCF, Primo J, Bittencourt A, Siqueira I, de Fátima Oliveira M, Meyer R, et al. Infective dermatitis has similar immunological features to human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis. Clin Exp Immunol [Internet]. 2009;156(3):455–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19438598.CrossRefGoogle Scholar
  106. 106.
    Gonçalves DU, Guedes AC, Carneiro-Proietti AB, Lambertucci JR. HTLV-I-associated infective dermatitis may be an indolent HTLV-I associated lymphoma. Braz J Infect Dis [Internet]. 2000;4(2):100–2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10797656.Google Scholar
  107. 107.
    Primo JRL, Brites C, de OM d FSP, Moreno-Carvalho O, Machado M, Bittencourt AL. Infective dermatitis and human T-cell lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis in childhood and adolescence. Clin Infect Dis [Internet]. 2005;41(4):535–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16028164.CrossRefGoogle Scholar
  108. 108.
    Bittencourt AL. Adult T-cell leukemia/lymphoma (ATL) in Bahia, Brazil. Brazilian J Infect Dis [Internet]. 2005;9(5):437–8. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413-86702005000500020&lng=en&nrm=iso&tlng=en.CrossRefGoogle Scholar
  109. 109.
    Maloney EM, Hisada M, Palmer P, Brooks K, Pate E, Wiktor SZ, et al. Human T-cell lymphotropic virus type I-associated infective dermatitis in Jamaica: a case report of clinical and biologic correlates. Pediatr Infect Dis J [Internet]. 2000;19(6):560–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10877174.CrossRefGoogle Scholar
  110. 110.
    Van den Hove LE, Van Gool SW, Vandenberghe P, Boogaerts MA, Ceuppens JL. CD57+/CD28- T cells in untreated hemato-oncological patients are expanded and display a Th1-type cytokine secretion profile, ex vivo cytolytic activity and enhanced tendency to apoptosis. Leukemia [Internet]. 1998;12(10):1573–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9766502.CrossRefGoogle Scholar
  111. 111.
    Farre L, de Oliveira Mde FP, Primo J, Vandamme A-M, Van Weyenbergh J, Bittencourt AL. Early sequential development of infective dermatitis, human T-cell lymphotropic virus type 1-associated myelopathy, and adult T-cell leukemia/lymphoma. Clin Infect Dis [Internet]. 2008;46(3):440–2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18173359.CrossRefGoogle Scholar
  112. 112.
    Ohba N, Matsumoto M, Sameshima M, Kabayama Y, Nakao K, Unoki K, et al. Ocular manifestations in patients infected with human T-lymphotropic virus type I. Jpn J Ophthalmol [Internet]. 1989;33(1):1–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2733251.Google Scholar
  113. 113.
    Nakao K, Abematsu N, Sakamoto T. Systemic diseases in patients with HTLV-1-associated uveitis. Br J Ophthalmol [Internet]. 2018;102(3):373–6. Available from: http://bjo.bmj.com/lookup/doi/10.1136/bjophthalmol-2018-312081.CrossRefGoogle Scholar
  114. 114.
    Terada Y, Kamoi K, Komizo T, Miyata K, Mochizuki M. Human T-cell leukemia virus type 1 and eye diseases. J Ocul Pharmacol Ther [Internet]. 2017;33(4):216–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28263674.CrossRefGoogle Scholar
  115. 115.
    Ono A, Mochizuki M, Yamaguchi K, Miyata N, Watanabe T. Immunologic and virologic characterization of the primary infiltrating cells in the aqueous humor of human T-cell leukemia virus type-1 uveitis. Accumulation of the human T-cell leukemia virus type-1-infected cells and constitutive expression of viral and. Invest Ophthalmol Vis Sci [Internet]. 1997;38(3):676–89. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9071222.Google Scholar
  116. 116.
    Merle H, Cabre P, Olindo S, Merle S, Smadja D. Ocular lesions in 200 patients infected by the human T-cell lymphotropic virus type 1 in Martinique (French West Indies). Am J Ophthalmol [Internet]. 2002;134(2):190–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12140025.CrossRefGoogle Scholar
  117. 117.
    Taniguchi A, Takenaka Y, Noda Y, Ueno Y, Shichikawa K, Sato K, et al. Adult T-cell leukemia presenting with proliferative synovitis. Arthritis Rheum [Internet]. 1988;31(8):1076–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2900640.CrossRefGoogle Scholar
  118. 118.
    Kitajima I, Maruyama I, Maruyama Y, Ijichi S, Eiraku N, Mimura Y, et al. Polyarthritis in human T-lymphotropic virus type I-associated myelopathy. Arthritis Rheum [Internet]. 1989;32(10):1342–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2803335.CrossRefGoogle Scholar
  119. 119.
    Hasunuma T, Sumida T, Nishioka K. Human T-cell leukemia virus type-I and rheumatoid arthritis. Int Rev Immunol [Internet]. 1998;17(5–6):291–307. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10036636.CrossRefGoogle Scholar
  120. 120.
    Guérin B, Arfi S, Numéric P, Jean-Baptiste G, Le Parc JM, Smadja D, et al. Polyarthritis in HTLV-1-infected patients. A review of 17 cases. Rev Rhum Engl Ed [Internet]. 1995;62(1):21–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7788319.Google Scholar
  121. 121.
    Eguchi K, Origuchi T, Takashima H, Iwata K, Katamine S, Nagataki S. High seroprevalence of anti–HTLV-I antibody in rheumatoid arthritis. Arthritis Rheum [Internet]. 1996;39(3):463–6. Available from: http://doi.wiley.com/10.1002/art.1780390314.CrossRefGoogle Scholar
  122. 122.
    Murphy EL, Wang B, Sacher RA, Fridey J, Smith JW, Nass CC, et al. Respiratory and urinary tract infections, arthritis, and asthma associated with HTLV-I and HTLV-II infection. Emerg Infect Dis [Internet]. 2004;10(1):109–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15078605.CrossRefGoogle Scholar
  123. 123.
    Sato K, Maruyama I, Maruyama Y, Kitajima I, Nakajima Y, Higaki M, et al. Arthritis in patients infected with human T-lymphotropic virus type I. Clinical and immunopathologic features. Arthritis Rheum [Internet]. 1991;34(6):714–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2053917.CrossRefGoogle Scholar
  124. 124.
    McCallum RM, Patel DD, Moore JO, Haynes BF. Arthritis syndromes associated with human T-cell lymphotropic virus type I infection. Med Clin North Am [Internet]. 1997;81(1):261–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9012764.CrossRefGoogle Scholar
  125. 125.
    Nakajima T, Aono H, Hasunuma T, Yamamoto K, Maruyama I, Nosaka T, et al. Overgrowth of human synovial cells driven by the human T-cell leukemia virus type I tax gene. J Clin Invest [Internet]. 1993;92(1):186–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8325983.CrossRefGoogle Scholar
  126. 126.
    Sakai M, Eguchi K, Terada K, Nakashima M, Yamashita I, Ida H, et al. Infection of human synovial cells by human T-cell lymphotropic virus type I. Proliferation and granulocyte/macrophage colony-stimulating factor production by synovial cells. J Clin Invest [Internet]. 1993;92(4):1957–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8408648.CrossRefGoogle Scholar
  127. 127.
    Yakova M, Lézin A, Dantin F, Lagathu G, Olindo S, Jean-Baptiste G, et al. Increased proviral load in HTLV-1-infected patients with rheumatoid arthritis or connective tissue disease. Retrovirology [Internet]. 2005;2:4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15686595.CrossRefGoogle Scholar
  128. 128.
    Umekita K, Hidaka T, Miyauchi S, Ueno S, Kubo K, Takajo I, et al. Treatment with anti-tumor necrosis factor biologic agents in human T-lymphotropic virus type I–positive patients with rheumatoid arthritis. Arthritis Care Res (Hoboken) [Internet]. 2014;66(5):788–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24127184.CrossRefGoogle Scholar
  129. 129.
    Eguchi K, Matsuoka N, Ida H, Nakashima M, Sakai M, Sakito S, et al. Primary Sjögren’s syndrome with antibodies to HTLV-I: clinical and laboratory features. Ann Rheum Dis [Internet]. 1992;51(6):769–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1352097.CrossRefGoogle Scholar
  130. 130.
    Hida A, Kawabe Y, Kawakami A, Migita K, Tominaga M, Nakamura H, et al. HTLV-I-associated Sjögren’s syndrome is aetiologically distinct from anti-centromere antibodies positive Sjögren’s syndrome. Ann Rheum Dis [Internet]. 1999;58(5):320–2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10225819.CrossRefGoogle Scholar
  131. 131.
    Terada K, Katamine S, Eguchi K, Moriuchi R, Kita M, Shimada H, et al. Prevalence of serum and salivary antibodies to HTLV-1 in Sjögren’s syndrome. Lancet (London, England) [Internet]. 1994;344(8930):1116–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7934493.CrossRefGoogle Scholar
  132. 132.
    Gilbert DT, Morgan O, Smikle MF, Simeon D, Barton EN. HTLV-1-associated polymyositis in Jamaica. Acta Neurol Scand [Internet]. 2001;104(2):101–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11493227.CrossRefGoogle Scholar
  133. 133.
    Saito M, Higuchi I, Saito A, Izumo S, Usuku K, Bangham CRM, et al. Molecular analysis of T cell clonotypes in muscle-infiltrating lymphocytes from patients with human T-lymphotropic virus type 1 polymyositis. J Infect Dis [Internet]. 2002;186(9):1231–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12402192.CrossRefGoogle Scholar
  134. 134.
    Matsuura E, Umehara F, Nose H, Higuchi I, Matsuoka E, Izumi K, et al. Inclusion body myositis associated with human T-lymphotropic virus type I infection: eleven patients from an endemic area in Japan. J Neuropathol Exp Neurol [Internet]. 2008;67(1):41–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18091562.CrossRefGoogle Scholar
  135. 135.
    Ozden S, Gessain A, Gout O, Mikol J. Sporadic inclusion body myositis in a patient with human T-cell leukemia virus type 1-associated myelopathy. Clin Infect Dis [Internet]. 2001;32(3):510–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11170963.CrossRefGoogle Scholar
  136. 136.
    Smadja D, Bellance R, Cabre P, Arfi S, Vernant JC. Clinical characteristics of HTLV-1-associated dermato-polymyositis. Seven cases from Martinique. Acta Neurol Scand [Internet]. 1995;92(3):206–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7484073.CrossRefGoogle Scholar
  137. 137.
    Ozden S, Mouly V, Prevost M-C, Gessain A, Butler-Browne G, Ceccaldi P-E. Muscle wasting induced by HTLV-1 tax-1 protein: an in vitro and in vivo study. Am J Pathol [Internet]. 2005;167(6):1609–19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16314474.CrossRefGoogle Scholar
  138. 138.
    Higuchi I, Hashimoto K, Matsuoka E, Rosales R, Nakagawa M, Arimura K, et al. The main HTLV-I-harboring cells in the muscles of viral carriers with polymyositis are not macrophages but CD4+ lymphocytes. Acta Neuropathol [Internet]. 1996;92(4):358–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8891067.CrossRefGoogle Scholar
  139. 139.
    Ozden S, Cochet M, Mikol J, Teixeira A, Gessain A, Pique C. Direct evidence for a chronic CD8+-T cell-mediated immune reaction to tax within the muscle of a human T-cell leukemia/lymphoma virus type 1-infected patient with sporadic inclusion body myositis. J Virol [Internet]. 2004;78(19):10320–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15367598.PubMedCentralCrossRefGoogle Scholar
  140. 140.
    Sugimoto M, Nakashima H, Watanabe S, Uyama E, Tanaka F, Ando M, et al. T-lymphocyte alveolitis in HTLV-I-associated myelopathy. Lancet (London, England) [Internet]. 1987;2(8569):1220. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2890850.CrossRefGoogle Scholar
  141. 141.
    Kawabata T, Higashimoto I, Takashima H, Izumo S, Kubota R. Human T-lymphotropic virus type I (HTLV-I)-specific CD8+ cells accumulate in the lungs of patients infected with HTLV-I with pulmonary involvement. J Med Virol [Internet]. 2012;84(7):1120–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22585731.CrossRefGoogle Scholar
  142. 142.
    Kikuchi T, Saijo Y, Sakai T, Abe T, Ohnuma K, Tezuka F, et al. Human T-cell lymphotropic virus type I (HTLV-I) carrier with clinical manifestations characteristic of diffuse panbronchiolitis. Intern Med [Internet]. 1996;35(4):305–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8739787.CrossRefGoogle Scholar
  143. 143.
    Magno Falcão LF, Falcão ASC, Medeiros Sousa RC, Vieira W de B, de Oliveira RTM, Normando VMF, et al. CT Chest and pulmonary functional changes in patients with HTLV-associated myelopathy in the Eastern Brazilian Amazon. PLoS One [Internet]. 2017;12(11):e0186055. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29095831.CrossRefGoogle Scholar
  144. 144.
    Okada F, Ando Y, Yoshitake S, Yotsumoto S, Matsumoto S, Wakisaka M, et al. Pulmonary CT findings in 320 carriers of human T-lymphotropic virus type 1. Radiology [Internet]. 2006;240(2):559–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16864677.CrossRefGoogle Scholar
  145. 145.
    Dias ARN, Falcão LFM, Falcão ASC, Normando VMF, Quaresma JAS. Human T-lymphotropic virus and pulmonary diseases. Front Microbiol. 2018;9(AUG):1–7.Google Scholar
  146. 146.
    Nakayama Y, Yamazato Y, Tamayose M, Atsumi E, Yara S, Higa F, et al. Increased expression of HBZ and Foxp3 mRNA in bronchoalveolar lavage cells taken from human T-lymphotropic virus type 1-associated lung disorder patients. Intern Med [Internet]. 2013;52(23):2599–609. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24292748.CrossRefGoogle Scholar
  147. 147.
    Desgranges C, Bechet JM, Couderc LJ, Caubarrere I, Vernant JC. Detection of HTLV-1 DNA by polymerase chain reaction in alveolar lymphocytes of patients with tropical spastic paraparesis. J Infect Dis [Internet]. 1989;160(1):162–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2732511.CrossRefGoogle Scholar
  148. 148.
    Matsuyama W, Kawabata M, Mizoguchi A, Iwami F, Wakimoto J, Osame M. Influence of human T-lymphotropic virus type I on cryptogenic fibrosing alveolitis - HTLV-I-associated fibrosing alveolitis: proposal of a new clinical entity. Clin Exp Immunol [Internet]. 2003;133(3):397–403. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12930367.CrossRefGoogle Scholar
  149. 149.
    Mori S, Mizoguchi A, Kawabata M, Fukunaga H, Usuku K, Maruyama I, et al. Bronchoalveolar lymphocytosis correlates with human T-lymphotropic virus type I (HTLV-I) proviral DNA load in HTLV-I carriers. Thorax [Internet]. 2005;60(2):138–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15681503.PubMedCentralCrossRefGoogle Scholar
  150. 150.
    Einsiedel L, Pham H, Wilson K, Walley R, Turpin J, Bangham C, et al. Human T-lymphotropic virus type 1c subtype proviral loads, chronic lung disease and survival in a prospective cohort of Indigenous Australians. PLoS Negl Trop Dis [Internet]. 2018;12(3):e0006281. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29529032.CrossRefGoogle Scholar
  151. 151.
    Bastos Mde L, Santos SB, Souza A, Finkmoore B, Bispo O, Barreto T, et al. Influence of HTLV-1 on the clinical, microbiologic and immunologic presentation of tuberculosis. BMC Infect Dis [Internet]. 2012;12:199. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22925731.CrossRefGoogle Scholar
  152. 152.
    Pedral-Sampaio DB, Martins Netto E, Pedrosa C, Brites C, Duarte M, Harrington WJ. Co-infection of tuberculosis and HIV/HTLV retroviruses: frequency and prognosis among patients admitted in a Brazilian Hospital. Braz J Infect Dis [Internet]. 1997;1(1):31–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11107236.Google Scholar
  153. 153.
    Verdonck K, González E, Schrooten W, Vanham G, Gotuzzo E. HTLV-1 infection is associated with a history of active tuberculosis among family members of HTLV-1-infected patients in Peru. Epidemiol Infect [Internet]. 2008;136(8):1076–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17892632.CrossRefGoogle Scholar
  154. 154.
    Shirdel A, Hashemzadeh K, Sahebari M, Rafatpanah H, Hatef M, Rezaieyazdi Z, et al. Is there any association between human lymphotropic virus type I (HTLV-I) infection and systemic lupus erythematosus? an original research and literature review. Iran J Basic Med Sci [Internet]. 2013;16(3):252–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24470872.Google Scholar
  155. 155.
    Sugimoto T, Okamoto M, Koyama T, Takashima H, Saeki M, Kashiwagi A, et al. The occurrence of systemic lupus erythematosus in an asymptomatic carrier of human T-cell lymphotropic virus type I. Clin Rheumatol [Internet]. 2007;26(6):1005–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16565895.CrossRefGoogle Scholar
  156. 156.
    Akimoto M, Matsushita K, Suruga Y, Aoki N, Ozaki A, Uozumi K, et al. Clinical manifestations of human T-lymphotropic virus type I-infected patients with systemic lupus erythematosus. J Rheumatol [Internet]. 2007;34(9):1841–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17696273.Google Scholar
  157. 157.
    Takayanagui OM, Moura LS, Petean FC, Bíscaro TA, Covas DT, Osame M. Human T-lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis and systemic lupus erythematosus. Neurology [Internet]. 1997;48(5):1469–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9153500.CrossRefGoogle Scholar
  158. 158.
    Miura T, Tanaka H, Makino Y, Okamoto K, Iida T, Komura K, et al. Human T-cell leukemia virus type I-associated myelopathy in a patient with systemic lupus erythematosus. Intern Med [Internet]. 1999;38(6):512–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10411360.CrossRefGoogle Scholar
  159. 159.
    Ito H, Harada R, Uchida Y, Odashiro K, Uozumi K, Yasumoto Y, et al. Lupus nephritis with adult T-cell leukemia. Nephron [Internet]. 1990;55(3):325–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2370934.CrossRefGoogle Scholar
  160. 160.
    Bowness P, Davies KA, Tosswill J, Bunn CC, MacAlpine L, Weber JN, et al. Autoimmune disease and HTLV-1 infection. Br J Rheumatol [Internet]. 1991;30(2):141–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2012945.CrossRefGoogle Scholar
  161. 161.
    Mizuki M, Tagawa S, Shibano M, Okamoto Y, Nojima J, Sakata K, et al. A HTLV-I carrier who showed various symptoms and antibodies of autoimmune diseases. Intern Med [Internet]. 1993;32(6):449–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7902142.CrossRefGoogle Scholar
  162. 162.
    Matsumoto Y, Muramatsu MO, Sato K. Mixed connective tissue disease and Sjögren’s syndrome, accompanied by HTLV-I infection. Intern Med [Internet]. 1993;32(3):261–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8101109.CrossRefGoogle Scholar
  163. 163.
    Shimojima Y, Ishii W, Hineno A, Yamamoto K, Matsuda M, Ikeda S. Mixed connective tissue disease with interstitial pneumonia in HTLV-1 carrier: case report and review of the literature. Clin Rheumatol [Internet]. 2004;23(6):548–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15278743.CrossRefGoogle Scholar
  164. 164.
    Deguchi HE, Amemiya T. Two cases of uveitis with tubulointerstitial nephritis in HTLV-1 carriers. Jpn J Ophthalmol [Internet]. 2003;47(4):372–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12842206.CrossRefGoogle Scholar
  165. 165.
    Imasawa T, Kitamura H, Nishimura M, Kawaguchi T, Takata K, Yoshino T, et al. Lupus nephritis class I accompanied by tubulointerstitial nephritis with marked T-lymphocyte infiltration in an HTLV-1-positive patient. CEN Case Reports [Internet]. 2013;2(1):90–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28509223.CrossRefGoogle Scholar
  166. 166.
    Nagami S, Konisi T, Kataoka H, Kikui S, Takayanagi T, Suzumura A. [A case with HTLV-I-associated myelopathy (HAM) accompanied by primary biliary cirrhosis (PBC) and autoimmune hepatitis (AIH)]. Rinsho Shinkeigaku [Internet]. 1999;39(11):1132–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10689935.
  167. 167.
    Kawai H, Inui T, Kashiwagi S, Tsuchihashi T, Masuda K, Kondo A, et al. HTLV-I infection in patients with autoimmune thyroiditis (Hashimoto’s thyroiditis). J Med Virol [Internet]. 1992;38(2):138–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1460458.CrossRefGoogle Scholar
  168. 168.
    Mizokami T, Okamura K, Ikenoue H, Sato K, Kuroda T, Maeda Y, et al. A high prevalence of human T-lymphotropic virus type I carriers in patients with antithyroid antibodies. Thyroid [Internet]. 1994;4(4):415–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7711504.CrossRefGoogle Scholar
  169. 169.
    Kubonishi I, Kubota T, Sawada T, Tanaka Y, Machida H, Yoshida O, et al. An HTLV-I carrier with Graves’ disease followed by uveitis: isolation of HTLV-I from thyroid tissue. Int J Hematol [Internet]. 1997;66(2):233–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9277055.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alejandro Fuentes
    • 1
  • Paula I. Burgos
    • 1
  1. 1.Departamento de Immunología Clínica y ReumatologíaPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations