Advertisement

Arthritis Associated with Alphavirus Infections: Chikungunya

  • Olga Lidia Vera-Lastra
  • Jesús Sepúlveda-Delgado
  • Julio Granados
  • María del Pilar Cruz-Domínguez
  • Gabriela Medina
  • Luis J. Jara
Chapter

Abstract

Since 2004, the epidemic of alphavirus, mainly chikungunya viral (CHIKV) infection, has spread throughout the world and will continue to produce outbreaks due to viral mutations and the spread caused by travelers visiting endemic areas.

The main clinical manifestations of CHIKV infection are fever and arthritis, which has become a real clinical challenge, because a high percentage of patients develop chronic post-infectious arthritis. The most vulnerable population groups are children, the elderly, and those who have chronic comorbidity, including chronic diseases as respiratory, cardiovascular, autoimmune, diabetes, etc., which are a risk factor for aggravation of this infection and turn it into a chronic infection. During the viremic phase, CHIKV is detectable by viral culture and reverse transcriptase PCR. After about 5 days of illness, following viremia, CHIKV can be diagnosed serologically by ELISA.

Viral load, evasion of immune responses, and induction of autophagy, as well as guest factors such as innate immune response, host proteins, adaptive immune response, osteoblasts, cytokines, chemokines, growth factors, and genetic factors, especially those related to the main histocompatibility complex, contribute to the pathogenesis of viral infection and the development of arthritis.

The treatment consists in taking preventive sanitary measures to diminish the presence of the vector Aedes mosquitoes and treating the patient with various medications in order to reduce pain and joint inflammation, improve their quality of life, and limit or prevent chronic damage.

Keywords

Chikungunya viral infection Chikungunya arthritis Chikungunya viral mutations Postviral chronic arthritis 

Abbreviations

BFV

Barmah Forest virus

CCL2

Chemokine (C-C motif) ligand 2

CHIKV

Chikungunya virus

CLIP

Cross-linking immunoprecipitation

CPE

Cytopathic effect

CTLs

Cytotoxic T lymphocytes

CXCL10

C-X-C motif chemokine 10

GM-CSF

Granulocyte-macrophage colony-stimulating factor

MAYV

Mayaro virus

NF-κB

Nuclear factor-kappa B

ONNV

O’nyong-nyong virus

RER

Rough endoplasmic reticulum

RRV

Ross River virus

SINV

Sindbis virus

VEEV

Venezuelan equine encephalitis virus

WEEV

Western equine encephalitis virus

WHODAS II

World Health Organization Disability Assessment Schedule, version 2

References

  1. 1.
    Strauss JH, Strauss EG. The alphaviruses: gene expression, replication, and evolution. Microbiol Rev. 1994;58:491–562.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Wilder-Smith A, Gubler DJ, Weaver SC, Monath TP, Heymann DL, Scott TW. Epidemic arboviral diseases: priorities for research and public health. Lancet Infect Dis. 2017;17(3):e101–6.  https://doi.org/10.1016/S1473-3099(16)30518-7.CrossRefPubMedGoogle Scholar
  3. 3.
    Weaver SC, Reisen WK. Present and future arboviral threats. Antivir Res. 2010;85:328–45.  https://doi.org/10.1016/j.antiviral.2009.10.008.CrossRefPubMedGoogle Scholar
  4. 4.
    Kraemer MU, Sinka ME, Duda KA, et al. The global distribution of the arbovirus vectors Aedesaegypti and Ae. albopictus. Elife. 2015;4:e08347.  https://doi.org/10.7554/eLife.08347.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nsoesie EO, Kraemer MU, Golding N, et al. Global distribution and environmental suitability for chikungunya virus, 1952 to 2015. Euro Surveill. 2016;21(20)  https://doi.org/10.2807/1560-7917.ES.2016.21.20.30234.
  6. 6.
    Adouchier S, Smura T, Sane J, Vapalahti O, Kurkela S. Sindbis virus as a human pathogen-epidemiology, clinical picture and pathogenesis. Rev Med Virol. 2016;26:221–41.  https://doi.org/10.1002/rmv.1876.CrossRefGoogle Scholar
  7. 7.
    Figueiredo ML, Figueiredo LT. Emerging alphaviruses in the Americas: Chikungunya and Mayaro. Rev Soc Bras Med Trop. 2014;47:677–83.  https://doi.org/10.1590/0037-8682-0246-2014.CrossRefPubMedGoogle Scholar
  8. 8.
    Forrester NL, Wertheim JO, Dugan VG, et al. Evolution and spread of Venezuelan equine encephalitis complex alphavirus in the Americas. PLoS Negl Trop Dis. 2017;11:e0005693.  https://doi.org/10.1371/journal.pntd.0005693.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Forrester NL, Kenney JL, Deardorff E, Wang E, Weaver SC. Western Equine Encephalitis submergence: lack of evidence for a decline in virus virulence. Virology. 2008;380:170–2.  https://doi.org/10.1016/j.virol.2008.08.012.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lwande OW, Obanda V, Bucht G, et al. Global emergence of Alphaviruses that cause arthritis in humans. Infect Ecol Epidemiol. 2015;5:29853.PubMedGoogle Scholar
  11. 11.
    Ogden NH, Lindsay LR. Effects of climate and climate change on vectors and vector-borne diseases: ticks are different. Trends Parasitol. 2016;32:646–56.CrossRefGoogle Scholar
  12. 12.
    Gould EA, Coutard B, ÇMalet H, et al. Understanding the alpha viruses: recent research on important emerging pathogens and progress towards their control. Antivir Res. 2010;87(2):111–24.  https://doi.org/10.1016/j.antiviral.2009.07.007.CrossRefPubMedGoogle Scholar
  13. 13.
  14. 14.
    Weaver SC, Lecuit ÇM. Chikungunya virus and the global spread of a mosquito-borne disease. N Engl J Med. 2015;372:1231–9.  https://doi.org/10.1056/NEJMra1406035.CrossRefPubMedGoogle Scholar
  15. 15.
    Suhrbier A, Jaffar-Bandjee MC, Gasque P. Arthritogenic alphaviruses, an overview. Nat Rev Rheumatol. 2012;8(8):420–9.  https://doi.org/10.1038/nrrheum.2012.64.CrossRefPubMedGoogle Scholar
  16. 16.
    Tong S, Dale P, Nicholls N, Mackensie JS, Wolff R, McMichael AJ. Climate variability, social and environmental factors, and Ross River Virus transmission: research development and future research Needs. Environ Health Perspect. 2008;116(12):1591–7.CrossRefGoogle Scholar
  17. 17.
    Rezza G, Chen R, Weaver S. O’nyong-nyong fever: a neglected mosquito-borne viral disease. Pathog Glob Health. 2017;111(6):271–5.  https://doi.org/10.1080/204477724.2017.1355431.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Adouchief S, Smura T, Sane J, Vapalahti O, Kurkela S. Sindbis virus as a human pathogen-epidemiology, clinical picture and pathogenesis. Rev Med Virol. 2016;26(4):221–41.  https://doi.org/10.1002/rmv.1876.CrossRefPubMedGoogle Scholar
  19. 19.
    Bergqvist J, Forsman O, Larsson P, et al. Detection and isolation of Sindbis virus from mosquitoes captured during an outbreak in Sweden in 2013. Vector Borne Zoonotic Dis. 2015;15:133–40. http://dx.doi.org/10.1089.CrossRefGoogle Scholar
  20. 20.
    Vasconcelos PF, Calisher CH. Emergence of human arboviral diseases in the Americas, 2000-2016. Vector Borne Zoonotic Dis. 2016;16(5):295–301.  https://doi.org/10.1089/vbz.2016.1952.CrossRefPubMedGoogle Scholar
  21. 21.
    Hoarau JJ, JaffarBandjee MC, KrejbichTrotot P, et al. Persistet chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust host immune response. J Immunol. 2010;184:5914–27.CrossRefGoogle Scholar
  22. 22.
    Labadie K, Larcher T, Joubert C, et al. Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J Clin Invest. 2010;120:894–906.CrossRefGoogle Scholar
  23. 23.
    Hawmann DW, Fox JM, Ashbrook AW, et al. Pathogenic chikungunya virus evades B cell responses to establish persistence. Cell Rep. 2016;16:1326–38.CrossRefGoogle Scholar
  24. 24.
    Lee CY, Kam Y-W, Fric J, et al. Chikungunya virus neutralization antigens and direct cell-to-cell transmission are revealed by human antibody-escape mutants. PLoS Pathog. 2011;7:e1002390.CrossRefGoogle Scholar
  25. 25.
    Krejbich-Troto P, Gay B, Li-Pat-Yuen G, et al. Chikungunya triggers an autophagic process which promotes viral replication. Virol J. 2011;8:432.CrossRefGoogle Scholar
  26. 26.
    Davis FP, Barkan DT, Eswar N, et al. Host pathogen protein interactions predicted by comparative modeling. Protein Sci. 2007;16:2585–896.CrossRefGoogle Scholar
  27. 27.
    Paixäo ES, Rodrigues LC, Costa MDCN, Itaparica M, Barreto F, Gérardin P, Teixeira MG. Chikungunya chronic disease: a systematic review and meta-analysis. Trans R Soc Trop Med Hyg. 2018;112(7):301–16.  https://doi.org/10.1093/trstmh/try063.CrossRefPubMedGoogle Scholar
  28. 28.
    Amdekar S, Parashar D, Alagarasu K. Chikungunya Virus-induced arthritis: role of host and viral factors in the pathogenesis. Viral Immunol. 2017;30(10):691–702.  https://doi.org/10.1089/vim.2017.0052.CrossRefPubMedGoogle Scholar
  29. 29.
    Nakaya HI, Gardner J, Poo YS, et al. Gene profiling of chikungunya virus arthritis reveals significant overlap with rheumatoid arthritis. Arthritis Rheum. 2012;64:3553–63.CrossRefGoogle Scholar
  30. 30.
    Suhbier A, Linn LA. Clinical and pathologic aspects of arthritis due to ross river and other alphaviruses. Curr Opin Rheumatol. 2004;16:374–9.CrossRefGoogle Scholar
  31. 31.
    Dupuis Maguriga L, Noret M, Brun S, et al. Chikungunya disease: infections associated markers from the acute to the chronic phase of arboviral-induced arthralgias. PLoS Negl Trop Dis. 2012;6:e1446.CrossRefGoogle Scholar
  32. 32.
    Gardner J, Anraku I, Le TT, et al. Chikungunya virus arthritis in adult wild type mice. J Virol. 2010;84:8021–32.CrossRefGoogle Scholar
  33. 33.
    Chen W, Foo SS, Sims NA, Herrero LJ, Walsch NC, Mahalingam S. Arthritogenic alphaviruses: new insights into arthritis and bone pathology. Trends Microbiol. 2015;23:35–43.  https://doi.org/10.1016/j.tim.2014.09.005.CrossRefPubMedGoogle Scholar
  34. 34.
    Soden M, Vasudevan H, Roberts B, et al. Detection of viral ribonucleic acid and histologic analysis of inflamed synovium in Ross River virus infection. Arthritis Rheum. 2000;43:365–9.CrossRefGoogle Scholar
  35. 35.
    Labadie K, et al. Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J Clin Invest. 2010;120:894–906.CrossRefGoogle Scholar
  36. 36.
    Roscoe DM, Ihikawa K, Lyles D. Role of the novo protein synthesis in target cells recognized by cytotoxic T lymphocytes specific for vesicular stomatitis virus. J Virol. 1991;65:6856–61.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Chow A, Her Z, Ong EK, Chen JM, Dimatatac F, Kwek DJ, Barkham T, Yang H, Rénia L, Leo YS, Ng LF. Persistent arthralgia induced by Chikungunya virus infection is associated with interleukin-6 and granulocyte macrophage colony-stimulating factor. J Infect Dis. 2011;203(2):149–57.  https://doi.org/10.1093/infdis/jiq042.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chirathaworn C, Rianthavorn WN, Poovorawan Y. Serum IL-18 and IL-18PB levels in patients with Chikungunya virus infection. Viral Immunol. 2010;23:113–7.CrossRefGoogle Scholar
  39. 39.
    Ng LF, et al. IL-1B, IL-6, and RANTES as biomarkers of chikungunya severity. PLoS One. 2009;4:e4261.CrossRefGoogle Scholar
  40. 40.
    Chang AY, Martins KAO, Encinales L, et al. Chikungunya Arthritis mechanisms in the Americas: a cross-sectional analysis of Chikungunya Arthritis Patients Twenty-Two months after infection demonstrating no detectable viral persistence in synovial fluid. Arthritis Rheumatol. 2018;70:585–93.CrossRefGoogle Scholar
  41. 41.
    Chang AY, Tritsch S, Reid SP, et al. The cytokine profile in Acute Chikungunya Infection is predictive of chronic arthritis 20 months postinfection. Diseases. 2018;64. Pii: E95.  https://doi.org/10.3390/diseases6040095.CrossRefGoogle Scholar
  42. 42.
    Sepúlveda-Delgado J, Vera-Lastra OL, Trujillo-Murillo OL, et al. Inflammatory biomarkers, disease activity index, and self-reported disability may be predictor of chronic arthritis after chikungunya infection: brief report. Clin Rheumatol. 2017;36:695–9.CrossRefGoogle Scholar
  43. 43.
    Rims C, Uchtenhagen H, Kaplan MJ, Carmona-Rivera C, Carlucci P. Citrullinated aggrecan epitopes as targets of auto-reactive CD4+ T cells in patients with rheumatoid arthritis. Arthritis Rheumatol. 2018;71:518.  https://doi.org/10.1002/art.40768.CrossRefGoogle Scholar
  44. 44.
    Fujinami RS, Von HMG, Christen U, Whitton JL. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev. 2006;19:80–94.CrossRefGoogle Scholar
  45. 45.
    Simmonds M, Gough S. The HLA region and autoimmune disease: associations and mechanisms of action. Curr Genomics. 2007;8:453–65.CrossRefGoogle Scholar
  46. 46.
    Moller E. Mechanisms for induction of autoimmunity in humans. Acta Paediatr. 1998;424:16–20.Google Scholar
  47. 47.
    FitzGerald O, Haroon M, Giles JT, Winchester R. Concepts of pathogenesis in psoriatic arthritis: genotype determines clinical phenotype. Arthritis Res Ther. 2015;17:1–11.CrossRefGoogle Scholar
  48. 48.
    Hennecke J, Wiley DC. Structure of a complex of the human α/β T cellreceptor (TCR) HA1.7, influenza hemagglutinin peptide, and majorhistocompatibility complex class II molecule, HLA-DR4 (DRA1∗0101 andDRB1∗0401): insight into TCR cross-restriction and alloreactivity. J Exp Med. 2002;195:571–81.CrossRefGoogle Scholar
  49. 49.
    Stern LJ, Brown JH, Jardetzky TS, Gorga JC, Urban RG, Strominger JL, Wiley DC. Crystal structure of the human class II MHC protein HLA-DR1complexed with an influenza virus peptide. Nature. 1994;368:215–21.CrossRefGoogle Scholar
  50. 50.
    Zúñiga J, Yu N, Barquera R, Alosco S, Ohashi M, Lebedevai T, et al. HLA class I and class II conserved extended haplotypes and their fragments or blocks in Mexicans: implications for the study of genetic diversity in admixed populations. PLoS One. 2013;8(9):e74442.CrossRefGoogle Scholar
  51. 51.
    Chopra A, Anuradha V, Lagoo-Joshi V, Kunjir V, Salvi S, Saluja M. Chikungunya virus aches and pains: an emerging challenge. Arthritis Rheum. 2008;58:2921–.21.CrossRefGoogle Scholar
  52. 52.
    Lopes Marques CD, Branco Pinto Duarte AL, Ranzolin A, et al. Recommendations of the Brazilian Society of Rheumatology for diagnosis and treatment of Chikungunya fever. Part 1. Diagnosis and special situations. Rev Bras Reumatol Engl Ed. 2017;57 Suppl 2:421–37.CrossRefGoogle Scholar
  53. 53.
    Rajapakse S, Rodrigo C, Rajapakse A. Atypical manifestations of chikungunya infection. Trans R Soc Trop Med Hyg. 2010;104:89–96.  https://doi.org/10.1016/j.trstmh.2009.07.031. Epub 2009 Aug 27. Review.CrossRefPubMedGoogle Scholar
  54. 54.
    Economopoulou A, Dominguez M, Helynck B, Sissoko D, Wichmann O, Quenel P, Germonneau P, Quatresous I. Atypical Chikungunya virus infections: clinical manifestations, mortality and risk factors for severe disease during the 2005-2006 outbreak on Réunion. Epidemiol Infect. 2009;137:534–41.  https://doi.org/10.1017/S0950268808001167. Epub 2008 Aug 11.CrossRefPubMedGoogle Scholar
  55. 55.
    Arroyo-Ávila M, Vilá LM. Rheumatic manifestations in patients with Chikungunya infection. P R Health Sci J. 2015;34:71–7.PubMedGoogle Scholar
  56. 56.
    Simon F, Javelle E, Cabie A, et al. French guidelines for management of Chikungunya (acute and persistent presentation). Med Mal Infect. 2015;45:243–63.CrossRefGoogle Scholar
  57. 57.
    Schilte C, Staikovsky F, Coudertc T, et al. Chikungunya virus-associated long-term arthralgia: a 36-month prospective longitudinal study. C. 2013;7:e2137.Google Scholar
  58. 58.
    Javelle E, Rivera A, Degasne I, et al. Specific management of post-Chikungunya rheumatic disorders: a retrospective study of 159 cases in Reunion Island from 2006-2012. PloS Negl Trop Dis. 2015;9(3):e000360.CrossRefGoogle Scholar
  59. 59.
    Danis-Lozano R, Díaz-González EE, Trujillo-Murillo KDC, et al. Clinical characterization of acute and convalescent illness of confirmed chikungunya cases from Chiapas, S. Mexico: a cross sectional study. PLoS One. 2017;12(10):e0186923.  https://doi.org/10.1371/journal.pone.0186923. eCollection 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Essckjee K, Goorah S, Ramchurn SK, et al. Prevalence of risk factors for chronic arthralgia and rheumatoid-like polyarthritis more than 2 years after infection with Chikungunya virus. Posgrad Med J. 2013;89:440–7.CrossRefGoogle Scholar
  61. 61.
    Sissoko Malvy S, Ezzedine K, et al. Post–epidemic Chikungunya disease on reunion island: course of rheumatic manifestations and associated factors over a 15-month period. PloS Negl Trop Dis. 2009;e:389.CrossRefGoogle Scholar
  62. 62.
    Simon F, Javelle E, Oliver M, et al. Chikungunya virus infection. Curr Infect Dis Rep. 2011;13:218–28.CrossRefGoogle Scholar
  63. 63.
    Anfansa F, Privacia L, Geurtsvankessel C, et al. Hyperferritinemia is a potential marker of chronic chikungunya: a retrospective study on the Island of Curacao during the 2014-2015 outbreak. J Clin Invest. 2017;86:1–38.Google Scholar
  64. 64.
    Litzba N, Schuffenecker I, Zeller H, et al. Evaluation of the first commercial chikungunya virus indirect immunofluorescence test. J Virol Methods. 2008;149:175–9.CrossRefGoogle Scholar
  65. 65.
    Reddy V, Ravi V, Desai I, et al. Utility of IgM ELIS, TaqMan real PCR, reverse transcription PCR, and RT-LAMP assay for diagnosis of Chikungunya fever. J Med Virol. 2012;84:1771–8.CrossRefGoogle Scholar
  66. 66.
    Taubitz W, Cramer JP, Kapauna A, et al. Chikungunya fever in travelers: clinical presentation and course. Clin Infect Dis. 2007;45:1–4.CrossRefGoogle Scholar
  67. 67.
    Cunha RVD, Trinta KS. Chikungunya virus: clinical aspects and treatment - a review. Mem Inst Oswaldo Cruz. 2017;112:523–31.CrossRefGoogle Scholar
  68. 68.
    Runowska M, Majewski D, Niklas K, Puszczewicz M. Chikungunya virus: a rheumatologist’s perspective. Clin Exp Rheumatol. 2018;36:494–501.PubMedGoogle Scholar
  69. 69.
    Chopra A, Saluja M, Venugopalan A. Effectiveness of chloroquine and inflammatory cytokine response in patients with early persistent musculoskeletal pain and arthritis following chikungunya virus infection. Arthritis Rheumatol. 2014;66:319–26.CrossRefGoogle Scholar
  70. 70.
    Ravindran V, Alias G. Efficacy of combination DMARD therapy vs. hydroxychloroquine monotherapy in chronic persistent chikungunya arthritis: a 24-week randomized controlled open label study. Clin Rheumatol. 2017;36:1335–40.CrossRefGoogle Scholar
  71. 71.
    Bouquillard E, Combe E. A report of 21 cases of rheumatoid arthritis following Chikungunya fever. A mean follow-up two years. J Bone Spine. 2009;76:654–7.CrossRefGoogle Scholar
  72. 72.
    Miner JJ, Cook LE, Hong JP, et al. Therapy with CTL$-Ig an antiviral monoclonal antibody control chikungunya virus arthritis. Sci Transl Med. 2017;9:3438.CrossRefGoogle Scholar
  73. 73.
    Dengue WHO. Guidelines for diagnosis, treatment, prevention and control. Geneva: World Health Organization; 2009. https://www.who.int/tdr/publications/documents/dengue-diagnosis.pdf.
  74. 74.
    Erasmus JH, Shannan L, Rossi SL, Weaver SC. Development of vaccines for Chikungunya fever. J Infect Dis. 2016;214(S5):S488–96.CrossRefGoogle Scholar
  75. 75.
    Porta J, Mangala Prasad V, Wang CI, Akahata W, Ng LF, Rossmann MG. Structural studies of Chikungunya virus-like particles complexed with human antibodies: neutralization and cell-to-cell transmission. J Virol. 2015;90:1169–77.CrossRefGoogle Scholar
  76. 76.
    Sutaria RB, Amaral JK, Schoen RT. Emergence and treatment of chikungunya arthritis. Curr Opin Rheumatol. 2018;30:256–63.  https://doi.org/10.1097/BOR.0000000000000486.CrossRefPubMedGoogle Scholar
  77. 77.
    Mavalankar D, Shastri P, Bandyopadhyay T, et al. Increased mortality rate associated with chikungunya epidemic, Ahmedabad, India. Emerg Infect Dis. 2008;14:412–5.CrossRefGoogle Scholar
  78. 78.
    Mascarenhas M, Garasia S, Berthiaume P, Corrin T, Greig J, Ng V, Young I, Wadell L. A scoping review of published literature on chikungunya virus. PLoS One. 2018;13:e0207554.  https://doi.org/10.1371/journal.pone.0207554. eCollection 2018.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Gardner J, Rudd PA, Prow NA, Belarbi E, Roques P, Larcher T, et al. Infectious Chikungunya virus in the saliva of mice, monkeys and humans. PLoS One. 2015;10(10):e0139481.  https://doi.org/10.1371/journal.pone.0139481. PMID: 26447467.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Bandeira AC, Campos GS, Rocha VF, Souza BS, Soares MB, Oliveira AA, et al. Prolonged shedding of Chikungunya virus in semen and urine: a new perspective for diagnosis and implications for transmission. IDCases. 2016;6:100–3.  https://doi.org/10.1016/j.idcr.2016.10.007.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Yactayo S, Staples JE, Millot V, Cibrelus L, Ramon-Pardo P. Epidemiology of Chikungunya in the Americas. J Infect Dis. 2016;214(Suppl 5):S441–5.  https://doi.org/10.1093/infdis/jiw390.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Bocanegra C, Anton A, Sulleiro E, Pou D, Salvador F, Roure S, et al. Imported cases of Chikungunya in Barcelona in relation to the current American outbreak. J Travel Med. 2016;23(3)  https://doi.org/10.1093/jtm/tav033. Print 2016 Mar. PMID: 26984354.CrossRefGoogle Scholar
  83. 83.
    Perret C, Vizcaya C, Weitzel T, Rosas R, Dabanch J, Martínez C. Chikungunya, emerging disease in Latin America. Description of the first cases in Chile. Rev Chil Infectol. 2018;35(4):413–9.  https://doi.org/10.4067/s0716-10182018000400413.CrossRefGoogle Scholar
  84. 84.
    YiuWing K, KwoonYong P, KaiEr E, LiKiang T, Kaur S, Lee WWL, et al. Sero-prevalence and crossreactivity of Chikungunya virus specific anti-E2EP3 antibodies in arbovirus-infected patients. PLoS Negl Trop Dis. 2015;9(1):e3445.CrossRefGoogle Scholar
  85. 85.
    Hassing RJ, Leparc-Goffart I, Tolou H, van Doornum G, van Genderen PJ. Cross-reactivity of antibodies to viruses belonging to the Semliki forest serocomplex. Eur Secur. 2010;(23):15.Google Scholar
  86. 86.
    Torres JR, Leopoldo Códova G, Castro JS, Rodrıguez L, Saravia V, Arvelaez J, et al. Chikungunya fever: atypical and lethal cases in the Western hemisphere: a Venezuelan experience. IDCases. 2015;2(1):6–10.  https://doi.org/10.1016/j.idcr.2014.12.002.CrossRefPubMedGoogle Scholar
  87. 87.
    Larrieu S, Pouderoux N, Pistone T, Filleul L, Receveur MC, Sissoko D, et al. Factors associated with persistence of arthralgia among chikungunya virus-infected travellers: report of 42 French cases. J Clin Virol. 2010;47(1):85–8.  https://doi.org/10.1016/j.jcv.2009.11.014. PMID: 20004145.CrossRefPubMedGoogle Scholar
  88. 88.
    Torres JR, Cordova LG, Saravia V, Arvelaez J, Castro JS. Nasal skin necrosis: an unexpected new finding in severe Chikungunya fever. Clin Infect Dis. 2016;62(1):78–81.  https://doi.org/10.1093/cid/civ718. PMID: 26423381.CrossRefPubMedGoogle Scholar
  89. 89.
    Taraphdar D, Roy BK, Chatterjee S. Chikungunya virus infection amongst the acute encephalitis syndrome cases in West Bengal, India. Indian J Med Microbiol. 2015;33(5 Suppl):153–6.PubMedGoogle Scholar
  90. 90.
    Oliver GF, Carr JM, Smith JR. Emerging infectious uveitis: Chikungunya, Dengue, Zika, Ebola. Clin Exp Ophthalmol. 2019;47:372.  https://doi.org/10.1111/ceo.13450.CrossRefPubMedGoogle Scholar
  91. 91.
    Mahto SK, Gupta PK, Singh A, Meena RC. Atypical neurological manifestations of Chikungunya fever: two case reports. Indian J Crit Care Med. 2018;22:306–8.  https://doi.org/10.4103/ijccm.IJCCM_459_17.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Muñoz-Medina JE, Garcia-Knight MA, Sanchez-Flores A, Monroy-Muñoz IE, Grande R, Esbjörnsson J, Santacruz-Tinoco CE, González-Bonilla CR. Evolutionary analysis of the Chikungunya virus epidemic in Mexico reveals intra-host mutational hotspots in the E1 protein. PLoS One. 2018;13:e0209292.  https://doi.org/10.1371/journal.pone.0209292.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Akhrymuk I, Lukash T, Frolov I, Frolova EI. Novel mutations in nsP2 abolish chikungunya virus-induced transcriptional shutoff and make virus less cytopathic without affecting its replication rates. J Virol. 2018;93(4). pii: JVI.02062-18.  https://doi.org/10.1128/JVI.02062-18.
  94. 94.
    Paul B, Pariyapurath R. Risk factor assessment of rheumatoid arthritis in North Kerala. Eur J Rheumatol. 2018;5:184–90.  https://doi.org/10.5152/eurjrheum.2018.17111.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Parashar D, Paingankar MS, More A, Patil P, Amdekar S. Altered microRNA expression signature in Chikungunya-infected mammalian fibroblast cells. Virus Genes. 2018;54:502.  https://doi.org/10.1007/s11262-018-1578-8.CrossRefPubMedGoogle Scholar
  96. 96.
    Selvamani SP, Mishra R, Singh SK. Chikungunya virus exploits miR-146a to regulate NF-κB pathway in human synovial fibroblasts. PLoS One. 2014;9(8):e103624.  https://doi.org/10.1371/journal.pone.0103624. eCollection 2014.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Olga Lidia Vera-Lastra
    • 1
    • 2
  • Jesús Sepúlveda-Delgado
    • 2
    • 3
  • Julio Granados
    • 4
  • María del Pilar Cruz-Domínguez
    • 5
  • Gabriela Medina
    • 6
  • Luis J. Jara
    • 2
    • 7
  1. 1.Internal Medicine DepartmentHospital de Especialidades “Dr Antonio Fraga Mouret”, Centro Médico La RazaMexico CityMexico
  2. 2.Universidad Nacional Autónoma de MéxicoMexico CityMexico
  3. 3.Research and Diagnosis DivisionHospital Regional de Alta Especialidad Ciudad Salud, Centro Regional de Alta Especialidad de ChiapasTapachulaMexico
  4. 4.Immunogenetics Division, Department of TransplantsInstituto Nacional de Ciencias Medica y Nutricion Salvador ZubiránMexico CityMexico
  5. 5.Health Research DivisionHospital de Especialidades, Centro Médico La RazaMexico CityMexico
  6. 6.Clinical Research Unit, Hospital de Especialidades, Centro Medico La RazaMexico CityMexico
  7. 7.Education and Research, Hospital de Especialidades, Centro Médico La Raza, Instituto Mexicano del Seguro SocialMexico CityMexico

Personalised recommendations